Ultra-Widefield Fluorescein Angiography

  • Scott C. N. Oliver
  • Steven D. Schwartz

For the last 50 years, fluorescein angiography (FA) has played a pivotal role in the evaluation and management of retinal diseases. Patterns of hyper- and hypofluorescence provide insights into the pathophysiologic processes involved in vascular, degenerative, dystrophic, traumatic, infectious, inflammatory, and neoplastic diseases of the choroid and retina. Despite recent advances in other imaging techniques, including indocyanine green (ICG) angiography and optical coherence tomography (OCT), FA still plays a primary role in the diagnosis of common retinal diseases, including diabetic retinopathy, macular degeneration, retinal vascular occlusion, and posterior uveitis. Fluorescein angiography remains a vital method to assess success of treatment methods including laser photocoagulation, intraocular pharmacologic therapy such as steroid and antivascular endothelial growth factor (anti-VEGF) agents, and surgical membrane peeling.


Diabetic Retinopathy Fluorescein Angiography Proliferative Diabetic Retinopathy Retinal Vein Occlusion Cystoid Macular Edema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Diabetic retinopathy study. Report Number 6. Design, methods, and baseline results. Report Number 7. A modification of the Airlie House classification of diabetic retinopathy. Prepared by the Diabetic Retinopathy. Invest Ophthalmol Vis Sci 1981;21 (1 pt 2): 1–226.Google Scholar
  2. 2.
    Lotmar W. [A fixation lamp for panoramic fundus pictures (author’s transi)]. Klin Monatsbl Augenheilkd 1977;170(5):767–774.PubMedGoogle Scholar
  3. 3.
    Noyori KS, Chino K, Deguchi T. Wide field fluorescein angiography by use of contact lens. Retina 1983;3(2):131–134.PubMedCrossRefGoogle Scholar
  4. 4.
    Ozerdem U, Freeman WR, Bartsch DU, Clark TM. A simple noncontact wide-angle fundus photography procedure for clinical and research use. Retina 2001;21(2):189–190.PubMedCrossRefGoogle Scholar
  5. 5.
    Spaide RF, Orlock DA, Herrmann-Delemazure B, et al. Wideangle indocyanine green angiography. Retina 1998;18(1):44–49.PubMedGoogle Scholar
  6. 6.
    Pomerantzeff O. Equator-plus camera. Invest Ophthalmol 1975;14(5):401–406.PubMedGoogle Scholar
  7. 7.
    Roth DB, Morales D, Feuer WJ, Hess D, Johnson RA, Flynn JT. Screening for retinopathy of prematurity employing the Retcam 120: Sensitivity and specificity. Arch Ophthalmol 2001;119(2):268–272.PubMedGoogle Scholar
  8. 8.
    Staurenghi G, Viola F, Mainster MA, Graham RD, Harrington PG. Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system. Arch Ophthalmol 2005;123(2):244–252.PubMedCrossRefGoogle Scholar
  9. 9.
    Rivero ME, Bartsch DU, Otto T, Freeman WR. Automated scanning laser ophthalmoscope image montages of retinal diseases. Ophthalmology 1999;106(12):2296–2300.PubMedCrossRefGoogle Scholar
  10. 10.
    Friberg TR, Pandya A, Eller AW. Non-mydriatic panoramic fundus imaging using a non-contact scanning laser-based system. Ophthalmic Surg Lasers Imaging 2003;34(6):488–497.PubMedGoogle Scholar
  11. 11.
    Webb RH, Hughes GW, Delori FC. Confocal scanning laser ophthalmoscope. Appl Opt 1987;26:1492–1499.CrossRefGoogle Scholar
  12. 12.
    Niki T, Muraoka K, Shimizu K. Distribution of capillary nonperfusion in early-stage diabetic retinopathy. Ophthalmology 1984;91(12):1431–1439.PubMedGoogle Scholar
  13. 13.
    Shimizu K, Kobayashi Y, Muraoka K. Midperipheral fundus involvement in diabetic retinopathy. Ophthalmology 1981;88(7):601–612.PubMedGoogle Scholar
  14. 14.
    Kimble JA, Brandt BM, McGwin G Jr. Clinical examination accurately locates capillary nonperfusion in diabetic retinopathy. Am J Ophthalmol 2005;139(3):555–557.PubMedCrossRefGoogle Scholar
  15. 15.
    Manivannan A, Plskova J, Farrow A, McKay S, Sharp PF, Forrester JV Ultra-wide-field fluorescein angiography of the ocular fundus. Am J Ophthalmol 2005;140(3):525–527.PubMedCrossRefGoogle Scholar
  16. 16.
    Win PH, Young TA. Optos Panoramic 200A fluorescein angiography for proliferative diabetic retinopathy with asteroid hyalosis. Semin Ophthalmol 2007;22(2):67–69.PubMedCrossRefGoogle Scholar
  17. 17.
    Theodossiadis G, Micha M. [Peripheral neovascularization of the retina in diabetic retinopathy: fluorescein angiography classification and results of panretinal laser treatment]. Klin Monatsbl Augenheilkd 1990;196(3):143–149.PubMedCrossRefGoogle Scholar
  18. 18.
    Cruess AF, Stephens RF, Magargal LE, Brown GC. Peripheral circumferential retinal scatter photocoagulation for treatment of proliferative sickle retinopathy. Ophthalmology 1983;90(3):272–278.PubMedGoogle Scholar
  19. 19.
    Kimmel AS, Magargal LE, Stephens RF, Cruess AF. Peripheral circumferential retinal scatter photocoagulation for the treatment of proliferative sickle retinopathy. An update. Ophthalmology 1986;93(11):1429–1434.PubMedGoogle Scholar
  20. 20.
    Anderson L, Friberg TR, Singh J. Ultrawide-angle retinal imaging and retinal detachment. Semin Ophthalmol 2007;22(1):43–47.PubMedCrossRefGoogle Scholar
  21. 21.
    Duker JS, Brown GC, McNamara JA. Proliferative sarcoid retinopathy. Ophthalmology 1988;95(12):1680–1686.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Scott C. N. Oliver
    • 1
  • Steven D. Schwartz
    • 2
  1. 1.Department of Ophthalmology, Jules Stein Eye InstituteUniversity of California Los AngelesLos Angeles
  2. 2.Retina Service, Department of Ophthalmology, Jules Stein Eye InstituteUniversity of California Los AngelesLos Angeles

Personalised recommendations