Advertisement

Ophthalmic Fundus Imaging

  • Michael D. Ober
  • Lawrence A. Yannuzzi
  • Jason S. Slakter
  • Richard F. Spaide
  • Yale L. Fisher
  • Robert W. Flower
  • Richard Rosen
  • Christina M. Klais
  • Nicole E. Gross

The medical-retina specialty finds its origins in the classic 1967 study, “The Pathogenesis of Disciform Detachment of the Neuro-epithelium” by Dr. J. Donald Gass, which was published initially as a supplemental issue of the American Journal of Ophthalmology. Prior to this milestone in the field, specialists in “retina” were essentially “bucklers,” that is, individuals trained to excel in indirect ophthalmoscopy in order to find “breaks” and to reattach the retina.

Keywords

Optical Coherence Tomography Retinal Pigment Epithelium Retinal Pigment Epithelium Cell Fluorescein Angiography Choroidal Neovascularization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shikano S, Koichi S. Atlas of Fluorescence Fundus Angiography. Philadelphia: WB Saunders, 1968.Google Scholar
  2. 2.
    Wessing A, von Noorden GK. Fluorescein Angiography of the Retina: Textbook and Atlas. St. Louis: CV Mosby, 1969.Google Scholar
  3. 3.
    Rosen ES, Ashworth B, Järpe S. Fluorescence Photography of the Eye: A Manual of Dynamic Clinical Ocular Fundus Pathology. New York: Appleton-Century-Croft, 1969.Google Scholar
  4. 4.
    Schatz H, Burton TC, Yannuzzi LA, Raab ML. Interpretation of Fundus Fluorescein Angiography. St. Louis: CV Mosby, 1978.Google Scholar
  5. 5.
    Yanuzzi LA, Gitter KA, Schatz H, eds. The Macula: A Comprehensive Text and Atlas. Baltimore: Williams & Wilkins, 1979.Google Scholar
  6. 6.
    Gass JDM. Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment. St. Louis: CV Mosby, 1970.Google Scholar
  7. 7.
    Slakter JS. ARVO meeting 1998, abstract.Google Scholar
  8. 8.
    Yannuzzi LA, Slakter JS, Sorenson JA, et al. Digital indocyanine green angiography and choroidal neovascularization. Retina 1992;12:191–223.PubMedCrossRefGoogle Scholar
  9. 9.
    Ober MD, Del Priore LV, Freund KB, et al. Comparison between automated software and manual construction of photo montage: a quality and time-efficiency analysis. The 22nd annual meeting of the American Society of Retinal Specialists, August 20, 2004, San Diego, CA.Google Scholar
  10. 10.
    Delori FC, Dorey CK, Staurenghi G, et al. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 1995;36:718–729.PubMedGoogle Scholar
  11. 11.
    Gaillard ER, Atherton SJ, Eldred G, Dillon J. Photophysical studies on human retinal lipofuscin. Photochem Photobiol 1995;61:448–453.PubMedCrossRefGoogle Scholar
  12. 12.
    Spaide RF. Fundus autofluorescence and age-related macular degeneration. Ophthalmology 2003;110:392–399.PubMedCrossRefGoogle Scholar
  13. 13.
    Tamai K, Spaide RF, Ellis EA, et al. Lipid hydroperoxide stimulates subretinal choroidal neovascularization in the rabbit. Exp Eye Res 2002;74:301–308.PubMedCrossRefGoogle Scholar
  14. 14.
    Coleman DJ. Reliability of ocular and orbital diagnosis with G-scan ultrasound. 1. Ocular diagnosis. Am J Ophthalmol 1972;73:501–516.PubMedGoogle Scholar
  15. 15.
    Coleman DJ. Reliability of ocular and orbital diagnosis with B-Scan ultrasound. 2. Orbital diagnosis. Am J Ophthalmol 1972;74:704–718.PubMedGoogle Scholar
  16. 16.
    Bronson NR, Fisher YL, Pickering NC, Trayner EM. Ophthalmic Contact B-Scan Ultrasonography for the Clinician. Westport, CT: Intercontinental Publications, 1976.Google Scholar
  17. 17.
    Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology 1991;98:287–295.PubMedGoogle Scholar
  18. 18.
    Shammas HJ, Dunne S, Fisher YL. Three-Dimensional Ultrasound Tomography of the Eye. Toronto: Nova Coast Publishing; 1999.Google Scholar
  19. 19.
    Alm A. Physiology of the choroidal circulation. In: Yannuzzi LA, Flower RW, Slakter JS, eds. ICG Angiography. New York: CV Mosby, 1987.Google Scholar
  20. 20.
    Flower RW, Csaky KG, Murphy RP. Disparity between fundus camera and scanning laser ophthalmoscope indocyanine green imaging of retinal pigment epithelium detachments. Retina 1998;18:260.PubMedCrossRefGoogle Scholar
  21. 21.
    Shiraga F, Ojima Y, Matsuo T, et al. Feeder vessel photocoagulation of subfoveal choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology 1998;105:662.PubMedCrossRefGoogle Scholar
  22. 22.
    Flower RW. Extraction of choriocapillaris hemodynamic data from ICG fluorescence angiograms. Invest Ophthalmol Vis Sci 1993;34:2720.PubMedGoogle Scholar
  23. 23.
    Flower RW, Fryczhowski AW, McLeod DS. Variability in choriocapillaris blood flow distribution. Invest Ophthalmol Vis Sci 1995;36:1247.PubMedGoogle Scholar
  24. 24.
    Webb RH, Hughes GW, Delori FC. Confocal scanning laser ophthalmoscope. Appl Opt 1987;26:1492–1499.CrossRefGoogle Scholar
  25. 25.
    Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254:1178–1181.PubMedCrossRefGoogle Scholar
  26. 26.
    Drexler W, Sattmann H, Hermann B, et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 2003;121:695–706.PubMedCrossRefGoogle Scholar
  27. 27.
    Podoleanu AG, Seeger M, Dobre GM, et al. Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry. J Biomed Opt 1998;3:12–20.CrossRefGoogle Scholar
  28. 28.
    Rosen RB, Podoleanu AG, Dunne S, Garcia P. Optical coherence tomography ophthalmoscopy. In: Ciulla TA, Regillo CD, Harris A, eds. Retina and Optic Nerve Imaging. Philadelphia: Lippincott Williams & Wilkins, 2003.Google Scholar
  29. 29.
    Podoleanu AG, Dobre GM, Cucu RG, et al. Combined multiplanar optical coherence tomography and confocal scanning ophthalmoscopy. J Biomed Opt 2004;9(1):86–93.PubMedCrossRefGoogle Scholar
  30. 30.
    Drexler W. Ultrahigh-resolution optical coherence tomography [review]. J Biomed Opt 2004;9(1):47–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Drexler W, Sattmann H, Hermann B, et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 2003;121(5):695–706.PubMedCrossRefGoogle Scholar
  32. 32.
    Wojtkowski M, Bajraszewski T, Gorczynska I, et al. Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 2004;138(3):412–419.PubMedCrossRefGoogle Scholar
  33. 33.
    Polito A, Shah SM, Haller JA, et al. Comparison between retinal thickness analyzer and optical coherence tomography for assessment of foveal thickness in eyes with macular disease. Am J Ophthalmol 2002;134:240–251.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Michael D. Ober
    • 1
  • Lawrence A. Yannuzzi
    • 2
    • 3
  • Jason S. Slakter
    • 1
  • Richard F. Spaide
    • 1
  • Yale L. Fisher
    • 1
  • Robert W. Flower
    • 1
  • Richard Rosen
    • 4
    • 5
    • 6
  • Christina M. Klais
    • 1
  • Nicole E. Gross
    • 1
  1. 1.Department of OphthalmologyLuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat HospitalNew YorkUSA
  2. 2.Department of OphthalmologyColumbia University School of MedicineUSA
  3. 3.Manhattan Eye, Ear, and Throat HospitalVitreous Retina Macula Consultants of New YorkNew York
  4. 4.New York Eye and Ear InfirmaryNew York
  5. 5.Department of Clinical OphthalmologyNew York Medical CollegeValhalla
  6. 6.Department of Applied OpticsUniversity of KentCanterbury

Personalised recommendations