Optical Coherence Tomography Findings in Uveitis

  • Anil Vedula
  • Janet L. Davis

The development of optical coherence tomography (OCT) in the early 1990s was one of the most powerful and exciting advances for imaging the internal microstructure of biologic tissues.1 Optical coherence tomography is a particularly powerful ophthalmic imaging technique, as it provides real-time, noncontact, cross-sectional imaging of the anterior eye and retina, yielding images of tissue pathology without the need for invasive biopsy procedures and histopathologic staining. While OCT has far-reaching applications, it has been used increasingly to evaluate and manage a variety of posterior segment disorders, in particular, retinal pathologies. For example, it has been used to diagnose and guide treatment decisions in eyes with macular holes, vitreomacular traction, choroidal neovascularization, epiretinal membranes, and many more conditions. Moreover, it has been particularly useful for diagnosis and monitoring of retinal nerve head fiber thickness for glaucoma2 and macular edema associated with diabetic retinopathy or other macular conditions.3,4 This chapter reviews the basic principles of OCT and presents cases of chorioretinal inflammatory disease in which OCT was helpful in diagnosis or management.


Optical Coherence Tomography Macular Edema Macular Hole Diabetic Macular Edema Retinal Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254:1178–1181.PubMedCrossRefGoogle Scholar
  2. 2.
    Schuman JS, Hee MR, Arya AV, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995;6:89–95.PubMedGoogle Scholar
  3. 3.
    Hee MR, Puliafito CA, Wong C, et al. Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 1995;113:1019–1029.PubMedGoogle Scholar
  4. 4.
    Hee MR, Puliafito CA, Duker JS, et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 1998;105:360–370.PubMedCrossRefGoogle Scholar
  5. 5.
    Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113: 325–332.PubMedGoogle Scholar
  6. 6.
    Fujimoto JG. Principles of optical coherent tomography. In: Schuman JS, Puliafito CA, Fujimoto JG, eds. Optical Coherent Tomography in Ocular Diseases. Thorofare, NJ: Slack, 2004.Google Scholar
  7. 7.
    Jaffe GJ, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 2004;137:156–169.PubMedCrossRefGoogle Scholar
  8. 8.
    Thomas D, Duguid G. Optical coherence tomography—a review of the principles and contemporary uses in retinal investigation. Eye 2004;18:561–570.PubMedCrossRefGoogle Scholar
  9. 9.
    Drexler W, Morgner U, Ghanta RK, Kartner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 2001;7:502–507.PubMedCrossRefGoogle Scholar
  10. 10.
    Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995;113:586–596.PubMedGoogle Scholar
  11. 11.
    Schuman JS, Pedut-Kloizman T, Hertzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996;103:1889–1898.PubMedGoogle Scholar
  12. 12.
    Yamamoto S, Yamamoto T, Hayashi M, Takeuchi S. Morphological and functional analyses of diabetic macular edema by optical coherence tomography and multifocal electroretinograms. Graefes Arch Clin Exp Ophthalmol 2001;239:96–101.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang CS, Cheng CY, Lee FL, Hsu WM, Liu JH. Quantitative assessment of retinal thickness in diabetic patients with and without clinically significant macular edema using optical coherence tomography. Acta Ophthalmol Scand 2001;79: 266–270.PubMedCrossRefGoogle Scholar
  14. 14.
    Markomichelakis NN, Halkiadakis I, Pantelia E, et al. Patterns of macular edema in patients with uveitis: qualitative and quantitative assessment using optical coherence tomography. Ophthalmology 2004;111:946–953.PubMedCrossRefGoogle Scholar
  15. 15.
    Reinthal EK, Volker M, Freudenthaler N, Grub M, Zierhut M, Schlote T. [Optical coherence tomography in the diagnosis and follow-up of patients with uveitic macular edema]. Ophthalmologe 2004;101:1181–1188.PubMedCrossRefGoogle Scholar
  16. 16.
    Hee MR, Baumal CR, Puliafito CA, et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 1996;103:1260–1270.PubMedGoogle Scholar
  17. 17.
    Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995;102:217–229.PubMedGoogle Scholar
  18. 18.
    Maruyama Y, Kishi S. Tomographic features of serous retinal detachment in Vogt-Koyanagi-Harada syndrome. Ophthalmic Surg Lasers Imaging 2004;35:239–242.PubMedGoogle Scholar
  19. 19.
    Lieb DF, Scott, IU, Flynn HW, Davis JL, Demming SM. Acute acquired toxoplasma retinitis may present similarly to unilateral acute idiopathic maculopathy. Am J Ophthalmol 2004;137:940–942.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Anil Vedula
    • 1
  • Janet L. Davis
    • 2
  1. 1.Bascom Palmer Eye InstituteUniversity of Miami Miller School of MedicineMiami
  2. 2.Uveitis and Intraocular Inflammation Service, Bascom Palmer Eye InstituteUniversity of Miami Miller School of MedicineMiami

Personalised recommendations