Optical Coherence Tomography Findings in Vitreomacular Interface Disorders

  • Javier Elizalde
  • Santiago Abengoechea
  • María F. de la Paz

Optical coherence tomography (OCT) images of the interface between the macula and vitreous are very well defined because of the difference in reflectivity of the relatively acellular vitreous and the parallel-fiber orientation of the inner retina.1 Disorders such as epiretinal membranes (ERMs), vitreomacular traction syndrome (VMTS), and macular holes are readily imaged and recognized even by persons inexperienced in biomicroscopy. Optical coherence tomography has also significantly contributed to making an accurate differential diagnosis of all these entities and to better understanding the varying structural anomalies of the retina that can explain visual loss in highly myopic eyes. The information obtained from high-resolution evaluation of retinal anatomy in all these conditions also improves the clinician’s ability to make the optimal treatment decision and provides an objective means to monitor disease progression and therapeutic response.


Optical Coherence Tomography Macular Hole Cystoid Macular Edema Internal Limit Membrane Optical Coherence Tomography Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Voo I, Mavofrides EC, Puliafito C. Clinical applications of optical coherence tomography for the diagnosis and management of macular diseases. Ophthalmol Clin North Am 2004;17:21–31.PubMedCrossRefGoogle Scholar
  2. 2.
    Gass JDM. Macular dysfunction caused by vitreous and vitreoretinal interface abnormalities. Vitreous traction maculopathies. In: Gass JDM (Ed.). Stereoscopic Atlas of Macular Diseases. St Louis: Mosby, 1987.Google Scholar
  3. 3.
    Wilkins JR, Puliafito CA, Hee MR, et al. Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 1996;103:2142–2151.PubMedGoogle Scholar
  4. 4.
    Massin P, Allouch C, Haouchine B, et al. Optical coherence tomography of idiopathic epiretinal membranes before and after surgery. Am J Ophthalmol 2000;130:732–739.PubMedCrossRefGoogle Scholar
  5. 5.
    Gallemore RP, Jumper JM, McCuen BW, et al. Diagnosis of vitreoretinal adhesions in macular disease with optical coherence tomography. Retina 2000;20:115–120.PubMedCrossRefGoogle Scholar
  6. 6.
    Smiddy WE, Michels RG, Glaser BM, De Bustros S. Vitrectomy for macular traction caused by incomplete vitreous separation. Arch Ophthalmol 1988;106:624–628.PubMedCrossRefGoogle Scholar
  7. 7.
    Yamada N, Kishi S. Tomographic features and surgical outcomes of vitreomacular traction syndrome. Am J Ophthalmol 2005;139:112–117.PubMedCrossRefGoogle Scholar
  8. 8.
    Sulkes DJ, Ip MS, Baumal CR, Wu HK, Puliafito CA. Spontaneous resolution of vitreomacular traction documented by optical coherence tomography. Arch Ophthalmol 2000;118:286–287.PubMedGoogle Scholar
  9. 9.
    Kusaka S, Saito Y, Okada AA, et al. Optical coherence tomography in spontaneously resolving vitreomacular traction syndrome. Ophthalmologica 2001;215:139–141.PubMedCrossRefGoogle Scholar
  10. 10.
    Munuera JM, Garcia-Layana A, Maldonado MJ, et al. Optical coherence tomography of successful surgery of vitreomacular traction syndrome. Arch Ophthalmol 1998;116:1388–1389.PubMedGoogle Scholar
  11. 11.
    Uchino E, Uemura A, Doi N, Ohba N. Postsurgical evaluation of idiopathic vitreomacular traction syndrome by optical coherence tomography. Am J Ophthalmol 2001;132:122–123.PubMedCrossRefGoogle Scholar
  12. 12.
    Ho AC, Guyer DR, Fine SL. Macular hole. Surv Ophthalmol 1998;42:393–416.PubMedCrossRefGoogle Scholar
  13. 13.
    Chew EY, Sperduto RD, Hiller R, et al. The eye diseases casecontrol study. Clinical course of macular holes. Arch Ophthalmol 1999;117:242–246.PubMedGoogle Scholar
  14. 14.
    Gass JDM. Idiopathic senile macular holes: its early stages and pathogenesis. Arch Ophthalmol 1988;106:629–639.PubMedGoogle Scholar
  15. 15.
    Gass JDM. Reappraisal of biomicroscopic classification of stages of development of a macular hole. Am J Ophthalmol 1995;119:752–759.PubMedGoogle Scholar
  16. 16.
    Gaudric A, Haouchine B, Massin P, Paques M, Blain P, Erginay A. Macular hole formation: new data provided by optical coherence tomography. Arch Ophthalmol 1999;117:744–751.PubMedGoogle Scholar
  17. 17.
    Altaweel M, Ip M. Macular hole: improved understanding of pathogenesis, staging, and management based on optical coherence tomography. Semin Ophthalmol 2003;18(2):58–66.PubMedCrossRefGoogle Scholar
  18. 18.
    Lewis MI, Cohen SM, Smiddy WE, Gass JD. Bilaterality of idiopathic macular holes. Graefes Arch Clin Exp Ophthalmol 1996;234:241–245.PubMedCrossRefGoogle Scholar
  19. 19.
    Spiritus A, Dralands L, Stalmans P, Stalmans I, Spileers W. OCT study of fellow eyes of macular holes. Bull Soc Belge Ophthalmol 2000;275:81–84.Google Scholar
  20. 20.
    Ip M, Baker BJ, Duker JS, et al. Anatomical outcomes of surgery for idiopathic macular hole as determined by optical coherence tomography. Arch Ophthalmol 2002;120(1):29–35.PubMedGoogle Scholar
  21. 21.
    Tilanus MAD, Cuupyers MHM, Bemelmans NAM, et al. Predictive value of pattern VEP, pattern ERG and hole size in macular hole surgery. Graefes Arch Clin Exp Ophthalmol 1999;237: 629–635.PubMedCrossRefGoogle Scholar
  22. 22.
    Ullrich S, Haritoglou C, Gass C, Schaumberger M, Ulbig MW, Kampik A. Macular hole size as a prognostic factor in macular hole surgery. Br J Ophthalmol 2002;86(4):390–393.PubMedCrossRefGoogle Scholar
  23. 23.
    Jumper M, Gallemore R, McCuen BW, Toth CA. Features of macular hole closure in the early postoperative period using optical coherence tomography. Retina 2000;20:232–237.PubMedCrossRefGoogle Scholar
  24. 24.
    Mondon H. Physiopathologie de la myopie forte. In: Mondon H, Metge P, eds. La Myopie Forte. Paris: Masson, 1994:29–57.Google Scholar
  25. 25.
    Green JS, Bear JC, Johnson GJ. The burden of genetically determined eye disease. Br J Ophthalmol 1986;70:696–699.PubMedCrossRefGoogle Scholar
  26. 26.
    Takano M, Kishi S. Foveal retinoschisis and retinal detachment in severely myopic eyes with posterior staphyloma. Am J Ophthalmol 1999;128:472–476.PubMedCrossRefGoogle Scholar
  27. 27.
    Rochon-Duvigneaud M. Déformation et lésions de l’œil myope. In: Mawas J, ed. Introduction à L’étude de la myopie et des chorio-rétinites myopiques. Bull Soc Ophtalmol Paris 1938;1:1–10.Google Scholar
  28. 28.
    Green WR. Retina, myopia. In: Spencer WH ed. Ophthalmic Pathology: An Atlas and Textbook, vol 2, 4th ed. Philadelphia: WB Saunders, 1996:913–924.Google Scholar
  29. 29.
    Benhamou N, Massin P, Haouchine B, Erginay A, Gaudric A. Macular retinoschisis in highly myopic eyes. Am J Ophthalmol 2002;133:794–800.PubMedCrossRefGoogle Scholar
  30. 30.
    Panozzo G, Mercanti A. Optical coherence tomography findings in myopic traction maculopathy. Arch Ophthalmol 2004;122: 1455–1460.PubMedCrossRefGoogle Scholar
  31. 31.
    Ikuno Y, Sayanagi K, Ohji M, et al. Vitrectomy and internal limiting membrane peeling for myopic foveoschisis. Am J Ophthalmol 2004;137:719–724.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Javier Elizalde
    • 1
  • Santiago Abengoechea
    • 1
  • María F. de la Paz
    • 1
  1. 1.Vitreoretinal Surgery ServiceCentro de Oftalmología BarraquerBarcelonaSpain

Personalised recommendations