Hereditary Optic Neuropathies

  • Jane W. Chan


Leber’s hereditary optic neuropathy (LHON) is a painless, bilateral, acute or subacute optic neuropathy that is maternally inherited from mutations in the mitochondrial DNA. The exact worldwide incidence of LHON is unknown, but it is much less prevalent than other optic nerve disorders, such as optic neuritis and ischemic optic neuropathy. Men are affected two to three times more frequently than women.1-3


Optic Neuropathy Optic Atrophy Familial Dysautonomia Wolfram Syndrome Dominant Optic Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newman NJ, Lott MT, Wallace DC. The clinical characteristics of pedigrees of Leber’s hereditary optic neuropathy with the 11778 mutation. Am J Ophthalmol 1991;111(6):750–762.PubMedGoogle Scholar
  2. 2.
    Oostra RJ, Bolhuis PA, Wijburg FA, Zorn-Ende G, Bleeker-Wagemakers EM. Leber’s hereditary optic neuropathy: correlations between mitochondrial genotype and visual outcome. J Med Genet 1994;31(4):280–286.PubMedGoogle Scholar
  3. 3.
    Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, Da Costa J, Harding AE. The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain 1995;118(pt 2):319–337.PubMedCrossRefGoogle Scholar
  4. 4.
    Nikoskelainen E, Hoyt WF, Nummelin K. Fundus findings in Leber’s hereditary optic neuroretinopathy. Ophthalmic Paediatr Genet 1985;5(1–2):125–130.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith JL, Hoyt WF, Susac JO. Ocular fundus in acute Leber optic neuropathy. Arch Ophthalmol 1973;90(5):349–354.PubMedGoogle Scholar
  6. 6.
    Carroll WM, Mastaglia FL. Leber’s optic neuropathy: a clinical and visual evoked potential study of affected and asymptomatic members of a six generation family. Brain 1979;102(3):559–580.PubMedCrossRefGoogle Scholar
  7. 7.
    Harding AE, Sweeney MG, Govan GG, Riordan-Eva P. Pedigree analysis in Leber hereditary optic neuropathy families with a pathogenic mtDNA mutation. Am J Hum Genet 1995;57(1):77–86.PubMedGoogle Scholar
  8. 8.
    Nikoskelainen E, Hoyt WF, Nummelin K. Ophthalmoscopic findings in Leber’s hereditary optic neuropathy. I. Fundus findings in asymptomatic family members. Arch Ophthalmol 1982;100(10):1597–1602.PubMedGoogle Scholar
  9. 9.
    Nikoskelainen E, Hoyt WF, Nummelin K. Ophthalmoscopic findings in Leber’s hereditary optic neuropathy. II. The fundus findings in the affected family members. Arch Ophthalmol 1983;101(7):1059–1068.PubMedGoogle Scholar
  10. 10.
    Spalton DJ, Hitchings RA, Hunter RA, Hunter PA, Tan JCH, Harry J, editors. Atlas of clinical ophthalmology, 3rd ed. 2005.Google Scholar
  11. 11.
    Livingstone IR, Mastaglia FL, Howe JW, Aherne GE. Leber’s optic neuropathy: clinical and visual evoked response studies in asymptomatic and symptomatic members of a 4-generation family. Br J Ophthalmol 1980;64(10): 751–757.PubMedCrossRefGoogle Scholar
  12. 12.
    Mann ES, Handler SP, Chung SM. Leber’s hereditary optic neuropathy masquerading as retinal vasculitis. Arch Ophthalmol 2000;118: 1587–1589.PubMedGoogle Scholar
  13. 13.
    Phillips PH, Vaphiades M, Glasier CM, Gray LG, Lee AG. Chiasmal enlargement and optic nerve enhancement on magnetic resonance imaging in Leber hereditary optic neuropathy. Arch Ophthalmol 2003;121:577–579.PubMedCrossRefGoogle Scholar
  14. 14.
    Kermode AG, Moseley IF, Kendall BE, Miller DH, MacManus DG, McDonald WI. Magnetic resonance imaging in Leber’s optic neuropathy. J Neurol Neurosurg Psychiatry 1989;52(5): 671–674.PubMedGoogle Scholar
  15. 15.
    Barboni P, Savini G, Valentino ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber’s hereditary optic neuropathy. Ophthalmology 2005;112:120–126.PubMedCrossRefGoogle Scholar
  16. 16.
    Savini G, Barboni P, Valentino ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber’s hereditary optic neuropathy mutations. Ophthalmology 2005;112:127–131.PubMedCrossRefGoogle Scholar
  17. 17.
    Stone EM, Newman NJ, Miller NR, Johns DR, Lott MT, Wallace DC. Visual recovery in patients with Leber’s hereditary optic neuropathy and the 11778 mutation. J Clin Neuro-Ophthalmol 1992;12:10–14.Google Scholar
  18. 18.
    Mackey D, Howell N. A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology. Am J Hum Genet 1992;51(6): 1218–1228.PubMedGoogle Scholar
  19. 19.
    Pezzi PP, De Negri AM, Sadun F, Carelli V, Leuzzi V. Childhood Leber’s hereditary optic neuropathy (ND1/3460) with visual recovery. Pediatr Neurol 1998;19(4):308–312.PubMedCrossRefGoogle Scholar
  20. 20.
    Chuman H, Nao-IT, Sawada A, Ozaki M, Futami Y, Isahiki Y. Leber’s hereditary optic neuropathy: a case with 5 different episodes of visual disturbances. Neuro-Ophthalmology 1999;22: 195–198.CrossRefGoogle Scholar
  21. 21.
    Nikoskelainen EK, Marttila RJ, Huoponen K, et al. Leber’s “plus”: neurological abnormalities in patients with Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 1995; 59(2):160–164.PubMedGoogle Scholar
  22. 22.
    Ortiz RG, Newman NJ, Manoukian SV, Diesenhouse MC, Lott MT, Wallace DC. Optic disk cupping and electrocardiographic abnormalities in an American pedigree with Leber’s hereditary optic neuropathy. Am J Ophthalmol 1992;113(5):561–566.PubMedGoogle Scholar
  23. 23.
    Harding AE, Sweeney MG, Miller DH, et al. Occurrence of a multiple sclerosis-like illness in women who have a Leber’s hereditary optic neuropathy mitochondrial DNA mutation. Brain 1992;115(pt 4):979–989.PubMedCrossRefGoogle Scholar
  24. 24.
    Olsen NK, Hansen AW, Norby S, Edal AL, Jorgensen JR, Rosenberg T. Leber’s hereditary optic neuropathy associated with a disorder indistinguishable from multiple sclerosis in a male harbouring the mitochondrial DNA 11778 mutation. Acta Neurol Scand 1995;91(5): 326–329.PubMedGoogle Scholar
  25. 25.
    Flanigan KM, Johns DR. Association of the 11778 mitochondrial DNA mutation and demyelinating disease. Neurology 1993;43(12): 2720–2722.PubMedGoogle Scholar
  26. 26.
    Kellar-Wood H, Robertson N, Govan GG, Compston DA, Harding AE. Leber’s hereditary optic neuropathy mitochondrial DNA mutations in multiple sclerosis. Ann Neurol 1994; 36(1):109–112.PubMedCrossRefGoogle Scholar
  27. 27.
    McLeod JG, Low PA, Morgan JA. CharcotMarie-Tooth disease with Leber optic atrophy. Neurology 1978;28(2):179–184.PubMedGoogle Scholar
  28. 28.
    Novotny EJ Jr, Singh G, Wallace DC, et al. Leber’s disease and dystonia: a mitochondrial disease. Neurology 1986;36(8):1053–1060.PubMedGoogle Scholar
  29. 29.
    Wallace DC. A new manifestation of Leber’s disease and a new explanation for the agency responsible for its unusual pattern of inheritance. Brain 1970;93:121–132.PubMedCrossRefGoogle Scholar
  30. 30.
    Jun AS, Brown MD, Wallace DC. A mitochondrial DNA mutation at np 14459 of the ND6 gene associated with maternally inherited Leber’s hereditary optic neuropathy and dystonia. Proc Natl Acad Sci USA 1994;91: 6206–3210.PubMedCrossRefGoogle Scholar
  31. 31.
    Gropman A, Chen T-J, Perng C-L, et al. Variable clinical manifestation of homoplasmic G14459A mitochondrial DNA mutation. Am J Med Genet 2004;124A:377–382.CrossRefPubMedGoogle Scholar
  32. 32.
    Funalot B, Reynier P, Vighetto A, et al. Leigh-like encephalopathy complicating Leber’s hereditary optic neuropathy. Ann Neurol 2002;52:374–377.PubMedCrossRefGoogle Scholar
  33. 33.
    Paulus W, Straube A, Bauer W, Harding AE. Central nervous system involvement in Leber’s optic neuropathy. J Neurol 1993;240(4):251–253.PubMedCrossRefGoogle Scholar
  34. 34.
    Carelli V, Ross-Cisneros FN, Sadun AA. Optic nerve degeneration and mitochondrial dysfunction: genetic and acquired optic neuropathies. Neurochem Int 2002;40(6):573–584.PubMedCrossRefGoogle Scholar
  35. 35.
    Sadun AA, Win PH, Ross-Cisneros FN, Walker SO, Carelli V. Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc 2000;98:223–232; discussion 232-5.PubMedGoogle Scholar
  36. 36.
    Nikoskelainen E, Hassinen IE, Paljarvi L, Lang H, Kalimo H. Leber’s hereditary optic neuroretinopathy, a mitochondrial disease? Lancet 1984;2(8417-8418):1474.PubMedCrossRefGoogle Scholar
  37. 37.
    Kerrison JB, Howell N, Miller NR, Hirst L, Green WR. Leber hereditary optic neuropathy. Electron microscopy and molecular genetic analysis of a case. Ophthalmology 1995;102(10): 1509–1516.PubMedGoogle Scholar
  38. 38.
    Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 1980;77(11): 6715–6719.PubMedCrossRefGoogle Scholar
  39. 39.
    Danielson SR, Wong A, Carelli V, Martinuzzi A, Schapira AH, Cortopassi GA. Cells bearing mutations causing Leber’s hereditary optic neuropathy are sensitized to Fas-induced apoptosis. J Biol Chem. 2002 Feb 22;277(8):5810–5815.Google Scholar
  40. 40.
    Ghelli A, Zanna C, Porcelli AM, et al. Leber’s hereditary optic neuropathy (LHON) pathogenic mutations induce mitochondrial-dependent apoptotic death in transmitochondrial cells incubated with galactose medium. J Biol Chem 2003; 278(6):4145–4150.PubMedCrossRefGoogle Scholar
  41. 41.
    Zanna C, Ghelli A, Porcelli AM, Carelli V, Martinuzzi A, Rugolo M. Apoptotic cell death of cybrid cells bearing Leber’s hereditary optic neuropathy mutations is caspase independent. Ann NY Acad Sci 2003;1010:213–217.PubMedCrossRefGoogle Scholar
  42. 42.
    Bristow EA, Griffiths PG, Andrews RM, Johnson MA, Turnbull DM. The distribution of mitochondrial activity in relation to optic nerve structure. Arch Ophthalmol 2002;120(6):791–796.PubMedGoogle Scholar
  43. 43.
    Kirkinezos IG, Moraes CT. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 2001;12(6):449–457.PubMedCrossRefGoogle Scholar
  44. 44.
    Stewart VC, Sharpe MA, Clark JB, Heales SJ. Astrocyte-derived nitric oxide causes both reversible and irreversible damage to the neuronal mitochondrial respiratory chain. J Neurochem 2000;75(2):694–700.PubMedCrossRefGoogle Scholar
  45. 45.
    Mackey DA, Oostra RJ, Rosenberg T, et al. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic. Am J Hum Genet 1996;59(2):481–485.PubMedGoogle Scholar
  46. 46.
    Johns DR, Neufeld MJ, Park RD. An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochem Biophys Res Commun 1992;187(3):1551–1557.PubMedCrossRefGoogle Scholar
  47. 47.
    Howell N, Halvorson S, Burns J, McCullough DA, Paulton J. When does bilateral optic atrophy become Leber hereditary optic neuropathy? Am J Hum Genet 1993;53(4):959–963.PubMedGoogle Scholar
  48. 48.
    Wissinger B, Besch D, Baumann B, et al. Mutation analysis of the ND6 gene in patients with Lebers hereditary optic neuropathy. Biochem Biophys Res Commun 1997;234(2):511–515.PubMedCrossRefGoogle Scholar
  49. 49.
    Wallace DC, Singh G, Hopkins LC, Novotny EJ. Maternally inherited diseases of man. In: Quagliariello E, Slater EC, Palmieri F, Saccone C, Kroon AM, editors. Achievements and perspectives of mitochondrial research. Amsterdam: Elsevier. 1985. p. 427–436.Google Scholar
  50. 50.
    Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988;242: 1427–1430.PubMedCrossRefGoogle Scholar
  51. 51.
    Larsson NG, Andersen O, Holme E, Oldfors A, Wahlstrom J. Leber’s hereditary optic neuropathy and complex I deficiency in muscle. Ann Neurol 1991;30:701–708.PubMedCrossRefGoogle Scholar
  52. 52.
    Singh G, Lott MT, Wallace DC. A mitochondrial DNA mutation as a cause of Leber’s hereditary optic neuropathy. N Engl J Med 1989;320: 1300–1305.PubMedGoogle Scholar
  53. 53.
    Huoponen K, Lamminen T, Juvonen V, Aula P, Nikoskelainen E, Savontaus JL. The spectrum of mitochondrial DNA mutations in families with Leber hereditary optic neuroretinopathy. Hum Genet 1993;92:379–384.PubMedCrossRefGoogle Scholar
  54. 54.
    Lott MT, Voljavec AS, Wallace DC. Variable genotype of Leber’s hereditary optic neuropathy patients. Am J Ophthalmol 1990;109:625–631.PubMedGoogle Scholar
  55. 55.
    Wallace DC, Lott MT. Maternally inherited diseases. In: DiMauro S, Wallace DC, editors. Mitochondrial DNA in human pathology. New York: Raven Press; 1993.Google Scholar
  56. 56.
    Johns DR, Heher KL, Miller NR, Smith KH. Leber’s hereditary optic neuropathy. Clinical manifestations of the 14484 mutation. Arch Ophthalmol 1993;111:495–498.PubMedGoogle Scholar
  57. 57.
    Huoponen K, Vilkki J, Aula P, Nikoskelainen EK, Savontaus ML. A new mtDNA mutation associated with Leber hereditary optic neuroretinopathy. Am J Hum Genet 1991;48: 1147–1153.PubMedGoogle Scholar
  58. 58.
    Brown MD, Voljavec AS, Lott MT, MacDonald I, Wallace DC. Leber’s hereditary optic neuropathy; a model for mitochondrial neurodegenerative diseases. FASEB J 1992;6:2791–2799.PubMedGoogle Scholar
  59. 59.
    Howell N, Kubacka I, Halvorson S, Mackey D. Leber’s hereditary optic neuropathy: the etiological role of a mutation in the mitochondrial cytochrome b gene. [Letter] Genetics 1993;133: 133–136.PubMedGoogle Scholar
  60. 60.
    Smith KH, Johns DR, Heher KL, Miller NR. Heteroplasmy in Leber’s hereditary optic neuropathy. Arch Ophthalmol 1993;111(11): 1486–1490.PubMedGoogle Scholar
  61. 61.
    Howell N, Xu M, Halvorson S, Bodis-Wollner I, Sherman J. A heteroplasmic LHON family: tissue distribution and transmission of the 11778 mutation. Am J Hum Genet 1994;55(1):203–206.PubMedGoogle Scholar
  62. 62.
    Cullom ME, Heher KL, Miller NR, Savino PJ, Johns DR. Leber’s hereditary optic neuropathy masquerading as tobacco-alcohol amblyopia. Arch Ophthalmol 1993;111(11):1482–1485.PubMedGoogle Scholar
  63. 63.
    Brown MD, Allen JC, Van Stavern GP, Newman NJ, Wallace DC. Clinical, genetic, and biochemical characterization of a Leber hereditary optic neuropathy family containing both the 11778 and 14484 primary mutations. Am J Med Genet 2001;104(4):331–338.PubMedGoogle Scholar
  64. 64.
    Carroll FD. The etiology and treatment of tobacco-alcohol amblyopia. Parts I and II. Am J Ophthalmol 1944;27:713–725, 847-63.Google Scholar
  65. 65.
    Sadun F, De Negri AM, Carelli V, et al. Ophthalmologic findings in a large pedigree of 11778/ haplogroup J Leber hereditary optic neuropathy. Am J Ophthalmol 2004;137:271–277.PubMedCrossRefGoogle Scholar
  66. 66.
    Seedorff T. The inheritance of Leber’s disease. A genealogical follow-up study. Acta Ophthalmol (Copenh) 1985;63(2):135–145.Google Scholar
  67. 67.
    Mackey DA, Buttery RG. Leber hereditary optic neuropathy in Australia. Aust N Z J Ophthalmol 1992;20:177–184.PubMedCrossRefGoogle Scholar
  68. 68.
    Newman N. Leber’s hereditary optic neuropathy. New genetic considerations. Arch Neurol 1993;50:540–548.PubMedGoogle Scholar
  69. 69.
    Guy J, Qi X, Pallotti F, et al. Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann Neurol 2002;52:534–542.PubMedCrossRefGoogle Scholar
  70. 70.
    Seedorff T. The inheritance of Leber’s disease. A genealogical follow-up study. Acta Ophthalmol (Copenh) 1985;63(2):135–145.Google Scholar
  71. 71.
    Cortelli P, Montagna P, Pierangeli G, et al. Clinical and brain bioenergetics improvement with idebenone in a patient with Leber’s hereditary optic neuropathy: a clinical and 31P-MRS study. J Neurol Sci 1997;148(1):25–31.PubMedCrossRefGoogle Scholar
  72. 72.
    Yoles E, Wheeler LA, Schwartz M. Alpha-2-adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest Ophthalmol Vis Sci 1999;40(1):65–73. Erratum in Invest Ophthalmol Vis Sci 1999;40(11):2470.PubMedGoogle Scholar
  73. 73.
    Wheeler L, WoldeMussie E, Lai R. Role of alpha-2 agonists in neuroprotection. Surv Ophthalmol 2003;48(suppl 1):S47–S51.PubMedCrossRefGoogle Scholar
  74. 74.
    Neufeld AH, Sawada A, Becker B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci U S A 1999;96(17):9944–9948.PubMedCrossRefGoogle Scholar
  75. 75.
    Goldberg JL, Klassen MP, Hua Y, Barres BA. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 2002; 296(5574):1860–1864.PubMedCrossRefGoogle Scholar
  76. 76.
    Goldberg JL, Espinosa JS, Xu Y, Davidson N, Kovacs GT, Barres BA. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 2002;33(5):689–702.PubMedCrossRefGoogle Scholar
  77. 77.
    Hoyt CS. Autosomal dominant optic atrophy. A spectrum of disability. Ophthalmology 1980; 87(3):245–251.PubMedGoogle Scholar
  78. 78.
    Votruba M, Aijaz S, Moore AT. A review of primary hereditary optic neuropathies. J Inherit Metab Dis 2003;26(2–3):209–227.PubMedCrossRefGoogle Scholar
  79. 79.
    Kok-van Alphen CC. Four families with the dominant infantile form of optic nerve atrophy. Acta Ophthalmol (Copenh) 1970;48(5):905–916.Google Scholar
  80. 80.
    Mantyjarvi MI, Nerdrum K, Tuppurainen K. Color vision in dominant optic atrophy. J Clin Neuro-Ophthalmol 1992;12(2):98–103.Google Scholar
  81. 81.
    Simunovic MP, Votruba M, Regan BC, Mollon JD. Colour discrimination ellipses in patients with dominant optic atrophy. Vision Res 1998; 38(21):3413–3419.PubMedCrossRefGoogle Scholar
  82. 82.
    Kjer P. Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families. Acta Ophthalmol (Copenh) 1959;164(suppl 54):1–147.Google Scholar
  83. 83.
    Manchester PT Jr, Calhoun FP Jr. Dominant hereditary optic atrophy with bitemporal field defects. AMA Arch Ophthalmol 1958;60(3): 479–484.PubMedGoogle Scholar
  84. 84.
    Buono LM, Foroozan R, Sergott RC, Savino PJ. Is normal tension glaucoma actually an unrecognized hereditary optic neuropathy? New evidence from genetic analysis. Curr Opin Ophthalmol 2002;13(6):362–370.PubMedCrossRefGoogle Scholar
  85. 85.
    Weiner NC, Newman NJ, Lessell S, Johns DR, Lott MT, Wallace DC. Atypical Leber’s hereditary optic neuropathy with molecular confirmation. Arch Neurol 1993;50(5):470–473.PubMedGoogle Scholar
  86. 86.
    Mashima Y, Kimura I, Yamamoto Y, et al. Optic disc excavation in the atrophic stage of Leber’s hereditary optic neuropathy: comparison with normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol 2003;241(2):75–80.PubMedCrossRefGoogle Scholar
  87. 87.
    Votruba M,Thiselton D, Bhattacharya SS. Optic disc morphology of patients with OPA1 autosomal dominant optic atrophy. Br J Ophthalmol 2003;87(1):48–53.PubMedCrossRefGoogle Scholar
  88. 88.
    Votruba M, Moore AT, Bhattacharya SS. Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy. J Med Genet 1998;35(10):793–800.PubMedGoogle Scholar
  89. 89.
    Fournier AV, Damji KF, Epstein DL, Pollock SC. Disc excavation in dominant optic atrophy. Ophthalmology 2001;108:1595–1602.PubMedCrossRefGoogle Scholar
  90. 90.
    Payne M, Yang Z, Katz BJ, et al. Dominant optic atrophy, sensorineural hearing loss, ptosis, and ophthalmoplegia: a syndrome caused by a missense mutation in OPA1. Am J Ophthalmol 2004;138(5):749–755.PubMedCrossRefGoogle Scholar
  91. 91.
    Votruba M, Leary S, Losseff N, et al. MRI of the intraorbital optic nerve in patients with autosomal dominant optic atrophy. Neuroradiology 2000;42(3):180–183.PubMedCrossRefGoogle Scholar
  92. 92.
    Johnston PB, Gaster RN, Smith VC, Tripathi RC. A clinicopathologic study of autosomal dominant optic atrophy. Am J Ophthalmol 1979;88(5):868–875.PubMedGoogle Scholar
  93. 93.
    Kjer P, Jensen OA, Klinken L. Histopathology of eye, optic nerve and brain in a case of dominant optic atrophy. Acta Ophthalmol (Copenh) 1983;61(2):300–312.Google Scholar
  94. 94.
    Alexander C, Votruba M, Pesch UEA, et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 2000;26:211–215.PubMedCrossRefGoogle Scholar
  95. 95.
    Lodi R, Tonon C, Valentino ML, et al. Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy. Ann Neurol 2004;56:719–723.PubMedCrossRefGoogle Scholar
  96. 96.
    Kim JY, Hwang J-M, Ko HS, Seong M-W, Park B-J, Park SS. Mitochondrial DNA content is decreased in autosomal dominant optic atrophy. Neurology 2005;64:966–972.PubMedGoogle Scholar
  97. 97.
    Eiberg H, Kjer B, Kjer P, Rosenberg T. Dominant optic atrophy (OPA1) mapped to chromosome 3q region. I. Linkage analysis. Hum Mol Genet 1994;3(6):977–980.PubMedCrossRefGoogle Scholar
  98. 98.
    Kerrison JB, Arnould VJ, Ferraz Sallum JM, et al. Genetic heterogeneity of dominant optic atrophy, Kjer type: identification of a second locus on chromosome 18q12.2-12.3. Arch Ophthalmol 1999;117(6):805–810.PubMedGoogle Scholar
  99. 99.
    Ozden S, Duzcan F, Wollnik B, et al. Progressive autosomal dominant optic atrophy and sensorineural hearing loss in a Turkish family. Ophthalmic Genet 2002;23(1):29–36.PubMedCrossRefGoogle Scholar
  100. 100.
    Toomes C, Marchbank NJ, Mackey DA, et al. Spectrum, frequency and penetrance of OPA1 mutations in dominant optic atrophy. Hum Mol Genet 2001;10(13):1369–1378.PubMedCrossRefGoogle Scholar
  101. 101.
    Delettre C, Griffoin JM, Kaplan J, et al. Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 2001;109(6):584–591.PubMedCrossRefGoogle Scholar
  102. 102.
    Thiselton DL, Alexander C, Morris A, et al. A frameshift mutation in exon 28 of the OPA1 gene explains the high prevalence of dominant optic atrophy in the Danish population: evidence for a founder effect. Hum Genet 2001; 109(5):498–502.PubMedCrossRefGoogle Scholar
  103. 103.
    Marchbank NJ, Craig JE, Leek JP, et al. Deletion of the OPA1 gene in a dominant optic atrophy family: evidence that haploinsufficiency is the cause of disease. J Med Genet 2002;39(8): e47.PubMedCrossRefGoogle Scholar
  104. 104.
    Delettre C, Lenaers G, Pelloquin L, Belenguer P, Hamel CP. OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol Genet Metab 2002;75(2):97–107.PubMedCrossRefGoogle Scholar
  105. 105.
    Aung T, Ocaka L, Ebenezer ND, et al. Investigating the association between OPA1 polymorphisms and glaucoma: comparison between normal tension and high tension primary open angle glaucoma. Hum Genet 2002;110(5): 513–514.PubMedCrossRefGoogle Scholar
  106. 106.
    Lake S, Liverani E, Desai M, et al. Normal tension glaucoma is not associated with the common apolipoprotein E genepolymorphisms. Br J Ophthalmol 2004;88(4):491–493.PubMedCrossRefGoogle Scholar
  107. 107.
    Kline LB, Glaser JS. Dominant optic atrophy. The clinical profile. Arch Ophthalmol 1979; 97(9):1680–1686.PubMedGoogle Scholar
  108. 108.
    Shiose Y, Kitazawa Y, Tsukahara S, et al. Epidemiology of glaucoma in Japan: a nationwide glaucoma survey. Jpn J Ophthalmol 1991; 35(2):133–155.PubMedGoogle Scholar
  109. 109.
    Bennett SR, Alward WL, Folberg R. An autosomal dominant form of low-tension glaucoma. Am J Ophthalmol 1989;108(3):238–244.PubMedGoogle Scholar
  110. 110.
    Sandvig K. Pseudoglaucoma of autosomal, dominant inheritance. A report on three families. Acta Ophthalmol (Copenh) 1961;39:33–43.Google Scholar
  111. 111.
    Levene RZ. Low tension glaucoma: a critical review and new material. Surv Ophthalmol 1980;24(6):621–664.PubMedCrossRefGoogle Scholar
  112. 112.
    Araie M. Pattern of visual field defects in normal-tension and high-tension glaucoma. Curr Opin Ophthalmol 1995;6(2):36–45.PubMedGoogle Scholar
  113. 113.
    Anderson DR; Normal Tension Glaucoma Study. Collaborative normal tension glaucoma study. Curr Opin Ophthalmol 2003;14(2): 86–90.PubMedCrossRefGoogle Scholar
  114. 114.
    Newman NJ. Hereditary optic neuropathies. In: Miller NR, Newman NJ, editors. Walsh and Hoyt’s clinical neuro-ophthalmology. 5th ed. Baltimore: Williams and Wilkins; 1998. p. 741–773.Google Scholar
  115. 115.
    Volker-Dieben HJ, Van Lith GHM, Went LN, Klawer JW, Staal A, De Vries-de Mol EC. A family with sex linked optic atrophy (ophthalmological and neurological aspects). Docum Ophthalmol 1974;37(2):307–326.CrossRefGoogle Scholar
  116. 116.
    Assink JJ, Tijmes NT, ten Brink JB, et al. A gene for X-linked optic atrophy is closely linked to the Xp11.4-Xp11.2 region of the X chromosome. Am J Hum Genet 1997;61(4):934–939.PubMedCrossRefGoogle Scholar
  117. 117.
    Pizzatto MR, Pascual-Castroviejo I. Sindrome de Behr. Presentacion de siete casos. Rev Neurol 2001;32:721–724.PubMedGoogle Scholar
  118. 118.
    Horoupian DS, Zucker DK, Moshe S, Peterson H De C. Behr syndrome: a clinicopathologic report. Neurology 1979;29:323–327.PubMedCrossRefGoogle Scholar
  119. 119.
    Barrett TG, Bundey SE, Macleod AF. Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome. Lancet 1995;346(8988):1458–1463.PubMedCrossRefGoogle Scholar
  120. 120.
    Scolding NJ, Kellar-Wood HF, Shaw C, Shneerson JM, Antoun N. Wolfram syndrome: hereditary diabetes mellitus with brainstem and optic atrophy. Ann Neurol 1996;39(3):352–360.PubMedCrossRefGoogle Scholar
  121. 121.
    Hardy C, Khanim F, Torres R, et al. Clinical and molecular genetic analysis of 19 Wolfram syndrome kindreds demonstrating a wide spectrum of mutations in WFS1. Am J Hum Genet 1999;65:1279–1290.PubMedCrossRefGoogle Scholar
  122. 122.
    Kinsley BT, Swift M, Dumont RH, Swift RG. Morbidity and mortality in the Wolfram syndrome. Diabetes Care 1995;18(12):1566–1570.PubMedCrossRefGoogle Scholar
  123. 123.
    Barrientos A, Volpini V, Casademont J, et al. A nuclear defect in the 4p16 region predisposes to multiple mitochondrial DNA deletions in families with Wolfram syndrome. J Clin Invest 1996;97:1570–1576.PubMedCrossRefGoogle Scholar
  124. 124.
    Rotig A, Cormier V, Chatelain P, et al. Deletion of mitochondrial DNA in a case of early-onset diabetes mellitus, optic atrophy, and deafness (Wolfram syndrome, MIM 222300). J Clin Invest 1993;91:1095–1098.PubMedCrossRefGoogle Scholar
  125. 125.
    Anikster Y, Kleta R, Shaag A, Gahl WA, Elpeleg O. Type III 3-methylglutaconic aciduria (optic atrophy plus syndrome, or Costeff optic atrophy syndrome): identification of the OPA3 gene and its founder mutation in Iraqi Jews. Am J Hum Genet 2001;69:1218–1224.PubMedCrossRefGoogle Scholar
  126. 126.
    Costeff H, Gadoth N, Apter N, Prialnic M, Savir H. A familial syndrome of infantile optic atrophy, movement disorder, and spastic paraplegia. Neurology 1989;39:595–597.PubMedGoogle Scholar
  127. 127.
    Kollarits CR, Pinheiro ML, Swann ER, Marcus DF, Corrie WS. The autosomal dominant syndrome of progressive optic atrophy and congenital deafness. Am J Ophthalmol 1979;87(6): 789–792.PubMedGoogle Scholar
  128. 128.
    Johns DR, Newman NJ: Hereditary optic neuropathies. Semin Ophthalmol 10:203–213, 1995.PubMedCrossRefGoogle Scholar
  129. 129.
    Hagemoser K, Weinstein J, Bresnick G, Nellis R, Kirkpatrick S, Pauli RM. Optic atrophy, hearing loss, and peripheral neuropathy. Am J Med Genet 1989;33:61–65.PubMedCrossRefGoogle Scholar
  130. 130.
    Iwashita H, Inoue N, Araki S, Kuriowa Y. Optic atrophy, neural deafness, and distal neurogenic amyotrophy: report of a family with two affected siblings. Arch Neurol 1970;22:357–364.PubMedGoogle Scholar
  131. 131.
    Rosenberg RN, Chutorian A. Familial opticoacoustic nerve degeneration and polyneuropathy. Neurology 1967;17:827–832.PubMedGoogle Scholar
  132. 132.
    Kim H-J, Hong SH, Ki C-S, et al. A novel locus for X-linked recessive CMT with deafness and optic neuropathy maps to Xq21.32-q24. Neurology 2005;64:1964–1967.PubMedCrossRefGoogle Scholar
  133. 133.
    Muller J, Zeman W. Degenerescence systematisee optico-cochleo-dentelee. Acta Neuropathol 1985;5:26–39.CrossRefGoogle Scholar
  134. 134.
    Jensen PKA, Reske-Nielsen E, Hein-Sorensen O, Warburg M. The syndrome of opticoacoustic nerve atrophy with dementia. Am J Med Genet 1987;28:517–518.PubMedCrossRefGoogle Scholar
  135. 135.
    Jensen PKA, Reske-Nielsen E, Hein-Sorensen O. The syndrome of opticoacoustic nerve atrophy with dementia: a new X-linked recessive syndrome with extensive calcifications of the central nervous system. [Abstract] Clin Genet 1989;35:222–223.Google Scholar
  136. 136.
    Kremer H, Hamel BCJ, van den Helm B, et al. Localization of the gene (or genes) for a syndrome with X-linked mental retardation, ataxia, weakness, hearing impairment, loss of vision and a fatal course in early childhood. Hum Genet 1996;98:513–517.PubMedCrossRefGoogle Scholar
  137. 137.
    Arts WFM, Loonen MCB, Sengers RCA, Slooff JL. X-linked ataxia, weakness, deafness, and loss of vision in early childhood with a fatal course. Ann Neurol 1993;33:535–539.PubMedCrossRefGoogle Scholar
  138. 138.
    Salonen R, Somer M, Haltia M, Lorentz M, Norio R. Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO syndrome). Clin Genet 1991;39:287–293.PubMedGoogle Scholar
  139. 139.
    Somer M. Diagnostic criteria and genetics of the PEHO syndrome. J Med Genet 1993;30:932–936.PubMedGoogle Scholar
  140. 140.
    Durr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996;335(16):1169–1175.PubMedCrossRefGoogle Scholar
  141. 141.
    Harding AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 1981;104(3): 589–620.PubMedCrossRefGoogle Scholar
  142. 142.
    Camacho LM, Wenzel W, Aschoff JC. The pattern-reversal visual evoked potential in the clinical study of lesions of the optic chiasm and visual pathway. Adv Neurol 1982;32:49–59.PubMedGoogle Scholar
  143. 143.
    Boyer SH IV, Chisolm AW, McKusick VA. Cardiac aspects of Friedreich’s ataxia. Circulation 1962;25:493–505.PubMedGoogle Scholar
  144. 144.
    Chamberlain S, Shaw J, Rowland A, et al. Mapping of mutation causing Friedreich’s ataxia to human chromosome 9. Nature (Lond) 1988;334(6179):248–250.CrossRefGoogle Scholar
  145. 145.
    Fujita R, Agid Y, Trouillas P, et al. Confirmation of linkage of Friedreich ataxia to chromosome 9 and identification of a new closely linked marker. Genomics 1989;4(1):110–111.PubMedCrossRefGoogle Scholar
  146. 146.
    Forrest SM, Knight M, Delatycki MB, et al. The correlation of clinical phenotype in Friedreich ataxia with the site of point mutations in the FRDA gene. Neurogenetics 1998;1(4):253–257.PubMedCrossRefGoogle Scholar
  147. 147.
    Koeppen AH. The hereditary ataxias. J Neuropathol Exp Neurol 1998;57(6):531–543.PubMedCrossRefGoogle Scholar
  148. 148.
    Voncken M, Ioannou P, Delatycki MB. Friedreich ataxia-update on pathogenesis and possible therapies. Neurogenetics 2004;5(1):1–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Orr HT, Chung MY, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993;4(3): 221–226.PubMedCrossRefGoogle Scholar
  150. 150.
    Paulson H, Ammache Z. Ataxia and hereditary disorders. Neurol Clin 2001;19(3):759–782, viii.PubMedCrossRefGoogle Scholar
  151. 151.
    Buttner N, Geschwind D, Jen JC, Perlman S, Pulst SM, Baloh RW. Oculomotor phenotypes in autosomal dominant ataxias. Arch Neurol 1998;55(10):1353–1357.PubMedCrossRefGoogle Scholar
  152. 152.
    Robitaille Y, Schut L, Kish SJ. Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol (Berl) 1995;90(6):572–581.CrossRefGoogle Scholar
  153. 153.
    Vig PJ, Subramony SH, Burright EN, et al. Reduced immunoreactivity to calcium-binding proteins in Purkinje cells precedes onset of ataxia in spinocerebellar ataxia-1 transgenic mice. Neurology 1998;50(1):106–113.PubMedCrossRefGoogle Scholar
  154. 154.
    Burk K, Abele M, Fetter M, et al. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain 1996;119(pt 5):1497–1505.PubMedCrossRefGoogle Scholar
  155. 155.
    Dyck PJ, Chance P, Lebo R, Carney JA. Hereditary motor and sensory neuropathies. In: Dyck PJ, Thomas PK, Griffin JW, Low PA, Poduslo JF, editors. Peripheral neuropathy, vol. 2. Philadelphia: Saunders; 1993. p. 1094–1123.Google Scholar
  156. 156.
    Voo I, Allf BE, Udar N, Silva-Garcia R, Vance J, Small KW. Hereditary motor and sensory neuropathy type VI with optic atrophy. Am J Ophthalmol 2003;136:670–677.PubMedCrossRefGoogle Scholar
  157. 157.
    Zuchner S, De Jonghe P, Jordanova A, et al. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann Neurol 2006;59:276–281.PubMedCrossRefGoogle Scholar
  158. 158.
    Slaugenhaupt SA, Blumenfeld A, Gill SP, et al. Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia. Am J Hum Genet 2001;68: 598–605.PubMedCrossRefGoogle Scholar
  159. 159.
    Riley CM, Day RL, Greeley DM, Langford WS. Central autonomic dysfunction with defective lacrimation: report of five cases. Pediatrics 1949;3:468–478.PubMedGoogle Scholar
  160. 160.
    Pearson J, Pytel BA, Grover-Johnson N, Axelrod F, Dancis J. Quantitative studies of dorsal root ganglia and neuropathologic observations on spinal cords in familial dysautonomia. J Neurol Sci 1978;35:77–92.PubMedCrossRefGoogle Scholar
  161. 161.
    Axelrod FB, Pearson J, Tepperberg J, Ackerman BD. Congenital sensory neuropathy with skeletal dysplasia. J Pediatr 1983;102:727–730.PubMedCrossRefGoogle Scholar
  162. 162.
    Rizzo JF 3rd, Lessell S, Liebman SD. Optic atrophy in familial dysautonomia. Am J Ophthlamol. 1986; 102(4):463–467.Google Scholar
  163. 163.
    Groom M, Kay MD, Corrent GF. Optic neuropathy in familial dysautonomia. J Neuro-Ophthalmol 1997;17(2):101–102.CrossRefGoogle Scholar
  164. 164.
    Schnitzler A, Witte OW, Kunesch E, Freund HJ, Benecke R. Early-onset multisystem degeneration with central motor, autonomic and optic nerve disturbances: unusual Riley-Day syndrome or new clinical entity? J Neurol Sci 1998;154(2):205–208.PubMedCrossRefGoogle Scholar
  165. 165.
    Scott HS, Bunge S, Gal A, Clarke LA, Morris CP, Hopwood JJ. Molecular genetics of mucopolysaccharidosis type I: diagnostic, clinical, and biological implications. Hum Mutat 1995; 6(4):288–302.PubMedCrossRefGoogle Scholar
  166. 166.
    Collins ML, Traboulsi EI, Maumenee IH. Optic nerve head swelling and optic atrophy in the systemic mucopolysaccharidoses. Ophthalmology 1990;97(11):1445–1449.PubMedGoogle Scholar
  167. 167.
    Hall CW, Liebaers I, Di Natale P, Neufeld EF. Enzymic diagnosis of the genetic mucopolysaccharide storage disorders. Methods Enzymol 1978;50:439–456.PubMedGoogle Scholar
  168. 168.
    Fairbairn LJ, Lashford LS, Spooncer E, et al. Long-term in vitro correction of alpha-l-iduronidase deficiency (Hurler syndrome) in human bone marrow. Proc Natl Acad Sci 1996;93:2025–2030.PubMedCrossRefGoogle Scholar
  169. 169.
    Neufeld EF. Natural history and inherited disorders of a lysosomal enzyme, beta-hexosaminidase. J Biol Chem 1989;264(19):10927–10930.PubMedGoogle Scholar
  170. 170.
    Morgan NV, Westaway SK, Morton JE, et al. PLA2G6, encoding a phospholipase A(2), is mutated in neurodegenerative disorders with high brain iron. Nat Genet 2006;38(7):752–754.PubMedCrossRefGoogle Scholar
  171. 171.
    Farina L, Nardocci N, Bruzzone MG, et al. Infantile neuroaxonal dystrophy: neuroradiological studies in 11 patients. Neuroradiology 1999;41(5):376–380.PubMedCrossRefGoogle Scholar
  172. 172.
    Aicardi J, Castelein P. Infantile neuroaxonal dystrophy. Brain 1979;102(4):727–748.PubMedCrossRefGoogle Scholar
  173. 173.
    Schaumburg HH, Powers JM, Raine CS, Suzuki K, Richardson EP Jr. Adrenoleukodystrophy: a clinical and pathological study of 17 cases. Arch Neurol 1975;32:577–591.PubMedGoogle Scholar
  174. 174.
    Aubourg P, Chaussain JL, Dulac O, Arthuis M. Adrenoleukodystrophy in children: apropos of 20 cases. Arch Fr Pediatr 1982;39:663–669.PubMedGoogle Scholar
  175. 175.
    Moser HW, Moser AB, Frayer KK, et al. Adrenoleukodystrophy: increased plasma content of saturated very long chain fatty acids. Neurology 1981;31:1241–1249.PubMedGoogle Scholar
  176. 176.
    Kolodny EH. The adrenoleukodystrophyadrenomyeloneuropathy complex: is it treatable? [Editorial] Ann Neurol 1987;21:230–231.CrossRefGoogle Scholar
  177. 177.
    Aubourg P, Blanche S, Jambaque I, et al. Reversal of early neurologic and neuroradiologic manifestations of X-linked adrenoleukodystrophy by bone marrow transplantation. N Engl J Med 1990;322:1860–1866.PubMedGoogle Scholar
  178. 178.
    Malm G, Ringden O, Anvret M, et al. Treatment of adrenoleukodystrophy with bone marrow transplantation. Acta Paediatr 1997;86: 484–492.PubMedCrossRefGoogle Scholar
  179. 179.
    Percy AK, Brady RO. Metachromatic leukodystrophy: diagnosis with samples of venous blood. Science 1968;161:594–595.PubMedCrossRefGoogle Scholar
  180. 180.
    Austin J, McAfee D, Armstrong D, O’Rourke M, Shearer L, Bachhawat BK. Abnormal sulphatase activities in two human diseases (metachromatic leukodystrophy and gargoylism). Biochem J 1964;93:15C–17C.PubMedGoogle Scholar
  181. 181.
    Bayever E, Ladisch S, Philippart M, et al. A. Bone-marrow transplantation for metachromatic leucodystrophy. Lancet 1985;II: 471–473.CrossRefGoogle Scholar
  182. 182.
    Krivit W, Shapiro E, Kennedy W, et al. Treatment of late infantile metachromatic leukodystrophy by bone marrow transplantation. N Engl J Med 1990;322:28–32.PubMedGoogle Scholar
  183. 183.
    Zlotogora J, Chakraborty S, Knowlton RG, Wenger DA. Krabbe disease locus mapped to chromosome 14 by genetic linkage. Am J Hum Genet 1990;47:37–44.PubMedGoogle Scholar
  184. 184.
    D’Agostino AN, Sayre GP, Hayles AB. Krabbe’s disease: globoid cell type of leukodystrophy. Arch Neurol 1963;8:82–96.PubMedGoogle Scholar
  185. 185.
    Husain AM, Altuwaijri M, Aldosari M. Krabbe disease: neurophysiologic studies and MRI correlations. Neurology 2004;63:617–620.PubMedGoogle Scholar
  186. 186.
    Krivit W, Shapiro EG, Peters C, et al. Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N Engl J Med 1998;338: 1119–1126.PubMedCrossRefGoogle Scholar
  187. 187.
    Renier WO, Gabreels FJM, Hustinx TWJ, et al. Connatal Pelizaeus-Merzbacher disease with congenital stridor in two maternal cousins. Acta Neuropathol 1981;54:11–17.PubMedCrossRefGoogle Scholar
  188. 188.
    Schinzel A, Boltshauser E, Wichmann W, Haller D, Valavanis A. Pelizaeus-Merzbacher disease: magnetic resonance imaging as a potential tool for carrier detection. [Abstract] J Med Genet 1988;25:276–277.Google Scholar
  189. 189.
    Kaul R, Gao GP, Balamurugan K, Matalon R. Cloning of the human aspartoacylase cDNA and a common missense mutation in Canavan disease. Nat Genet 1993;5:118–123.PubMedCrossRefGoogle Scholar
  190. 190.
    Matalon R, Michals K, Sebesta D, Deanching M, Gashkoff P, Casanova J. Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 1988;29:463–471.PubMedCrossRefGoogle Scholar
  191. 191.
    Matalon R, Kaul R, Casanova J, et al. Aspartoacylase deficiency: the enzyme defect in Canavan disease. J Inherit Metab Dis 1989; 12(suppl 2):329–331.PubMedGoogle Scholar
  192. 192.
    Wittsack HJ, Kugel H, Roth B, Heindel W. Quantitative measurements with localized 1H MR spectroscopy in children with Canavan’s disease. J Magn Reson Imaging 1996;6(6):889–893.PubMedCrossRefGoogle Scholar
  193. 193.
    Biousse V, Newman NJ. Hereditary optic neuropathies. Ophthalmol Clin N Am 2001;14(3): 547–568.CrossRefGoogle Scholar
  194. 194.
    Battaile KP, Steiner RD. Smith-Lemli-Opitz syndrome: the first malformation syndrome associated with defective cholesterol synthesis. Mol Genet Metab 2000 71(1–2):154–162.PubMedCrossRefGoogle Scholar
  195. 195.
    Battaile KP, Maslem CL, Wassif CA, Krakowiak P, Porter FA, Steiner RD. A simple PCR-based assay allows detection of a common mutation, IVS8-IG→C, in DHCR7 in Smith-Lemli-Opitz syndrome. Genet Test 1999 3(4):361–363.PubMedGoogle Scholar
  196. 196.
    Atchaneeyasakul LO, Linck LM, Connor WE, Weleber RG, Steiner RD. Eye findings in 8 children and a spontaneously aborted fetus with RSH/Smith-Lemli-Opitz syndrome. Am J Med Genet 1998;80(5):501–505.PubMedCrossRefGoogle Scholar
  197. 197.
    Merkens LS, Connor WE, Linck LM. Effects of dietary cholesterol on plasma lipoproteins in Smith-Lemli-Opitz syndrome. Pediatr Res 2004 56(5):726–732.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jane W. Chan
    • 1
  1. 1.Ophthalmology and NeurologyUniversity of Kentucky College of MedicineLexingtonUSA

Personalised recommendations