The Use of Multifocal Electroretinograms and Visual Evoked Potentials in Diagnosing Optic Nerve Disorders

  • Donald C. Hood
  • Karen Holopigian


Electrophysiological tests of vision measure the electrical activity generated by the eye, the optic pathways, and the visual cortex, and thus provide important diagnostic information to the clinical ophthalmologist. Traditionally, these electrophysiological tests involved stimulation of relatively large areas of the retina.1 For example, for the standard electroretinogram (ERG) and the flash visual evoked potential (VEP) tests, the entire retina is illuminated. Other tests, such as the pattern ERG and VEP tests, use a stimulus that typically exceeds 15° in diameter. The size of the stimuli used for these tests presents a problem if the clinician is interested in the local topography of the damage to the retina or optic nerve, as is often the case in neuro-ophthalmology. Although ERG and VEP responses can be elicited to relatively small stimuli using traditional measures, each retinal area had to be be tested separately. Thus, if a clinician wanted a topographical map, the time needed to obtain multiple responses was prohibitive.


Optic Neuritis Visual Evoke Potential Multifocal ERGs Multifocal Electroretinogram mfERG Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holopigian K, Hood DC. Electrophysiology. Ophthalmol Clin N Am 2003;16(2):237–251.CrossRefGoogle Scholar
  2. 2.
    Sutter EE, Tran D. The field topography of ERG components in man. I. The photopic luminance response. Vision Res 1992;32(3):433–446.PubMedCrossRefGoogle Scholar
  3. 3.
    Hood DC. Assessing retinal function with the multifocal technique. Prog Retin Eye Res 2000;19(5):607–646.PubMedCrossRefGoogle Scholar
  4. 4.
    Keating D, Parks S, Malloch C, Evans A. A comparison of CRT and digital stimulus delivery methods in the multifocal ERG. Doc Ophthalmol 2001;102(2):95–114.PubMedCrossRefGoogle Scholar
  5. 5.
    Marmor MF, Hood DC, Keating D, Kondo M, Seeliger MW, Miyake Y. Guidelines for basic multifocal electroretinography (mfERG). Doc Ophthalmol 2003;106(2):105–115.PubMedCrossRefGoogle Scholar
  6. 6.
    Sutter E. The interpretation of multifocal binary kernels. Doc Ophthalmol 2000;100(2–3): 49–75.CrossRefGoogle Scholar
  7. 7.
    Keating D, Parks S, Evans A. Technical aspects of multifocal ERG recording. Doc Ophthalmol 2000;100(2–3):77–98.CrossRefGoogle Scholar
  8. 8.
    Hood DC, Greenstein VC, Holopigian K, et al. An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 2000;41(6):1570–1579.PubMedGoogle Scholar
  9. 9.
    Hood DC, Odel JG, Chen CS, Winn BJ. The multifocal electroretinogram. J Neuro-Ophthalmol 2003;23(3):225–235.CrossRefGoogle Scholar
  10. 10.
    Hood DC. Electrophysiologic imaging of retinal and optic nerve damage: the multifocal technique. Ophthalmol Clin N Am 2004;17(1):69–88.CrossRefGoogle Scholar
  11. Hood DC, Holopigian K, Greenstein V, et al. Assessment of local retinal function in patients with retinitis pigmentosa using the multi-focal ERG technique. Vision Res 1998;38(1):163–179.PubMedCrossRefGoogle Scholar
  12. 12.
    Seeliger MW, Kretschmann UH, Apfelstedt-Sylla E, Zrenner E. Implicit time topography of multifocal electroretinograms. Invest Ophthalmol Vis Sci 1998;39(5):718–723.PubMedGoogle Scholar
  13. 13.
    Holopigian K, Sciple W, Greenstein VC, Hood DC, Carr RE. Local cone and rod system function in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2001;42(3):779–788.PubMedGoogle Scholar
  14. 14.
    Holopigian K, Sciple W, Greenstein VC, Hood DC, Carr RE. Local cone and rod system function in progressive cone dystrophy. Invest Ophthalmol Vis Sci 2002;43(7):2364–2373.PubMedGoogle Scholar
  15. 15.
    Greenstein VC, Holopigian K, Hood DC, Sciple W, Carr RE. The nature and extent of retinal dysfunction associated with diabetic macular edema. Invest Ophthalmol Vis Sci 2000;41(11): 3643–3654.PubMedGoogle Scholar
  16. 16.
    Fortune B, Schneck ME, Adams AJ. Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 1999;40(11):2638–2651.PubMedGoogle Scholar
  17. 17.
    Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 2004;45(3):948–954.PubMedCrossRefGoogle Scholar
  18. 18.
    Piao CH, Kondo M, Tanikawa A, Terasaki H, Miyake Y. Multifocal electroretinogram in occult macular dystrophy. Invest Ophthalmol Vis Sci 2000;41(2):513–517.PubMedGoogle Scholar
  19. 19.
    Hood DC, Li J. A technique for measuring individual multifocal ERG records. In: Non-invasive assessment of the visual system. Trends in optics and photonics. Washington, DC: Optical Society of America; 1997.Google Scholar
  20. 20.
    Hood DC, Frishman LJ, Saszik S, Viswanathan S. Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 2002;43(5):1673–1685.PubMedGoogle Scholar
  21. 21.
    Hood DC, Zhang X. Multifocal ERG and VEP responses and visual fields: comparing diseaserelated changes. Doc Ophthalmol 2000;100(2–3): 115–137.CrossRefGoogle Scholar
  22. 22.
    Kretschmann U, Seeliger MW, Ruether K, Usui T, Apfelstedt-Sylla E, Zrenner E. Multifocal electroretinography in patients with Stargardt’s macular dystrophy. Br J Ophthalmol 1998;82(3):267–275.PubMedCrossRefGoogle Scholar
  23. 23.
    Sutter EE, Bearse MA Jr. The optic nerve head component of the human ERG. Vision Res 1999;39(3):419–436.PubMedCrossRefGoogle Scholar
  24. 24.
    Hood DC, Bearse MA Jr, Sutter EE, Viswanathan S, Frishman LJ. The optic nerve head component of the monkey’s (Macaca mulatto) multifocal electroretinogram (mERG). Vision Res 2001;41(16):2029–2041.PubMedCrossRefGoogle Scholar
  25. 25.
    Hasegawa S, Takagi M, Usui T, Takada R, Abe H. Waveform changes of the first-order multifocal electroretinogram in patients with glaucoma. Invest Ophthalmol Vis Sci 2000;41(6):1597–1603.PubMedGoogle Scholar
  26. 26.
    Fortune B, Johnson CA, Cioffi GA. The topographic relationship between multifocal electroretinographic and behavioralperimetric measures of function in glaucoma. Optom Vis Sci 2001; 78(4):206–214.PubMedCrossRefGoogle Scholar
  27. 27.
    Palmowski AM, Allgayer R, Heinemann Vemaleken B. The multifocal ERG in open angle glaucoma: a comparison of high and low contrast recordings in high and low-tension open angle glaucoma. Doc Ophthalmol 2000;101(1):35–49.PubMedCrossRefGoogle Scholar
  28. 28.
    Shimada Y, Li Y, Bearse MA Jr, Sutter EE, Fung W. Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol 2001;85(4):414–419.PubMedCrossRefGoogle Scholar
  29. 29.
    Fortune B, Bearse MA Jr, Cioffi GA, Johnson CA. Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 2002; 43(8):2638–2647.PubMedGoogle Scholar
  30. 30.
    Palmowski AM, Allgayer R, Heinemann-Vernaleken B, Ruprecht KW. Multifocal electroretinogram with a multiflash stimulation technique in open-angle glaucoma. Ophthalmic Res 2002;34(2):83–89.PubMedCrossRefGoogle Scholar
  31. 31.
    Halliday AM, McDonald WI, Mushin J. Delayed visual evoked response in optic neuritis. Lancet 1972;1(7758):982–985.PubMedCrossRefGoogle Scholar
  32. 32. Halliday AM, McDonald WI, Mushin J. Visual evoked response in diagnosis of multiple sclerosis. Br Med J 1973;4(5893):661–664.PubMedCrossRefGoogle Scholar
  33. 33.
    Halliday AM, Michael WF. Changes in patternevoked responses in man associated with the vertical and horizontal meridians of the visual field. J Physiol 1970;208(2):499–513.PubMedGoogle Scholar
  34. 34.
    Michael WF, Halliday AM. Differences between the occipital distribution of upper and lower field pattern-evoked responses in man. Brain Res 1971;32(2):311–324.PubMedCrossRefGoogle Scholar
  35. 35.
    Fortune B, Hood DC. Conventional patternreversal VEPs are not equivalent to summed multifocal VEPs. Invest Ophthalmol Vis Sci 2003;44(3):1364–1375.PubMedCrossRefGoogle Scholar
  36. 36.
    Odom JV, Bach M, Barber C, et al. Visual evoked potentials standard (2004). Doc Ophthalmol 2004;108(2):115–123.PubMedCrossRefGoogle Scholar
  37. 37.
    Baseler HA, Sutter EE, Klein SA, Carney T. The topography of visual evoked response properties across the visual field. Electroencephalogr Clin Neurophysiol 1994;90(1):65–81.PubMedCrossRefGoogle Scholar
  38. 38.
    Baseler HA, Sutter EE. M and P components of the VEP and their visual field distribution. Vision Res 1997;37(6):675–690.PubMedCrossRefGoogle Scholar
  39. 39.
    James AC, Ruseckaite R, Maddess T. Effect of temporal sparseness and dichoptic presentation on multifocal visual evoked potentials. Vis Neurosci 2005;22(1):45–54.PubMedCrossRefGoogle Scholar
  40. 40.
    Hood DC, Zhang X, Greenstein VC, et al. An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. Invest Ophthalmol Vis Sci 2000; 41(6):1580–1587.PubMedGoogle Scholar
  41. 41.
    Klistorner A, Graham SL. Objective perimetry in glaucoma. Ophthalmology 2000;107(12):2283–2299.PubMedCrossRefGoogle Scholar
  42. 42.
    Hood DC, Greenstein VC. Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog Retin Eye Res 2003;22(2):201–251.PubMedCrossRefGoogle Scholar
  43. 43.
    Hood DC, Odel JG, Winn BJ. The multifocal visual evoked potential. J Neuro-Ophthalmol 2003;23(4):279–289.CrossRefGoogle Scholar
  44. 44.
    Hood DC, Zhang X, Hong JE, Chen CS. Quantifying the benefits of additional channels of multifocal VEP recording. Doc Ophthalmol 2002;104(3):303–320.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhang X, Hood DC, Chen CS, Hong JE. A signalto-noise analysis of multifocal VEP responses: an objective definition for poor records. Doc Ophthalmol 2002;104(3):287–302.PubMedCrossRefGoogle Scholar
  46. 46.
    Hood DC, Greenstein VC, Odel JG, et al. Visual field defects and multifocal visual evoked potentials: evidence of a linear relationship. Arch Ophthalmol 2002;120(12):1672–1681.PubMedGoogle Scholar
  47. 47.
    Graham SL, Klistorner AI, Grigg JR, Billson FA. Objective VEP perimetry in glaucoma: asymmetry analysis to identify early deficits. J Glaucoma 2000;9(1):10–19.PubMedGoogle Scholar
  48. 48.
    Goldberg I, Graham SL, Klistorner AI. Multifocal objective perimetry in the detection of glaucomatous field loss. Am J Ophthalmol 2002; 133(1):29–39.PubMedCrossRefGoogle Scholar
  49. 49.
    Hood DC, Ohri N, Yang EB, et al. Determining abnormal latencies of multifocal visual evoked potentials: a monocular analysis. Doc Ophthalmol 2004;109(2):189–199.PubMedCrossRefGoogle Scholar
  50. 50.
    Hood DC, Zhang X, Rodarte C, et al. Determining abnormal interocular latencies of multifocal visual evoked potentials. Doc Ophthalmol 2004; 109(2):177–187.PubMedCrossRefGoogle Scholar
  51. 51.
    Klistorner AI, Graham SL, Grigg JR, Billson FA. Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest Ophthalmol Vis Sci 1998; 39(6):937–950.PubMedGoogle Scholar
  52. 52.
    Slotnick SD, Klein SA, Carney T, Sutter E, Dastmalchi S. Using multi-stimulus VEP source localization to obtain a retinotopic map of human primary visual cortex. Clin Neurophysiol 1999; 110(10):1793–1800.PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang X, Hood DC. A principal component analysis of multifocal pattern reversal VEP. J Vis 2004;4(1):32–43.PubMedCrossRefGoogle Scholar
  54. 54.
    Hood DC, Odel JG, Zhang X. Tracking the recovery of local optic nerve function after optic neuritis: a multifocal VEP study. Invest Ophthalmol Vis Sci 2000;41(12):4032–4038.PubMedGoogle Scholar
  55. 55.
    Kardon RH, Givre SJ, Wall M, Hood DC. Comparison of threshold and multifocal-VEP perimetry in recovered optic neuritis. In: Perimetry update 2000: proceedings of the XVII International Perimetric Society Meeting. New York: Kugler; 2001.Google Scholar
  56. 56.
    Yang EB, Hood DC, Rodarte C, Zhang X, Odel JG, Behrens MM. Improvement in conduction velocity after optic neuritis measured with the multifocal VEP. Invest Ophthalmol Vis Sci. 2007 Feb;48(2):692–698.Google Scholar
  57. 57.
    Miele DL, Odel JG, Behrens MM, Zhang X, Hood DC. Functional bitemporal quadrantopia and the multifocal visual evoked potential. J Neuro-Ophthalmol 2000;20(3):159–162.Google Scholar
  58. 58.
    Graham SL, Klistorner AI, Goldberg I. Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch Ophthalmol 2005;123(6):729–739.PubMedCrossRefGoogle Scholar
  59. 59.
    Thienprasiddhi P, Greenstein VC, Chu DH, et al. Detecting early functional damage in glaucoma suspect and ocular hypertensive patients with the multifocal VEP technique. J Glaucoma 2006; 15(4):321–327.PubMedCrossRefGoogle Scholar
  60. 60.
    Hood DC, Thienprasiddhi P, Greenstein VC, et al. Detecting early to mild glaucomatous damage: a comparison of the multifocal VEP and automated perimetry. Invest Ophthalmol Vis Sci 2004;45(2):492–498.PubMedCrossRefGoogle Scholar
  61. 61.
    Winn BJ, Shin E, Odel JG, Greenstein VC, Hood DC. Interpreting the multifocal visual evoked potential: the effects of refractive errors, cataracts, and fixation errors. Br J Ophthalmol 2005; 89(3):340–344.PubMedCrossRefGoogle Scholar
  62. 62.
    Marmor MF, Holder GE, Seeliger MW, Yamamoto S. Standard for clinical electroretinography (2004 update). Doc Ophthalmol 2004;108(2): 107–114.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Donald C. Hood
    • 1
  • Karen Holopigian
    • 2
  1. 1.Columbia UniversityNew YorkUSA
  2. 2.New York University School of MedicineNew YorkUSA

Personalised recommendations