Optical Coherence Tomography in Optic Nerve Disorders

  • Julio A. Rodríguez-Padilla
  • Thomas R. HedgesIII


Optical coherence tomography (OCT) is an evolving technology that provides noninvasive imaging of tissues. It uses low coherence interferometry to produce cross-sectional images based on the optical scattering of light, 1 similar to ultrasound. Since its introduction into the ophthalmology clinic in the 1990s, optical coherence tomography has become a standard tool for the evaluation of ophthalmic disease. Although its main use was initially for retinal disease and glaucoma, OCT now has a niche in neuro-ophthalmic evaluation. It is mainly useful to rule in occult retinal disease when the etiology of visual loss is unclear, but it is also used to evaluate and follow up abnormalities of the retinal nerve fiber layer (RNFL), such as optic nerve edema and atrophy.2


Optic Nerve Optical Coherence Tomography Retinal Nerve Fiber Layer Retinal Nerve Fiber Layer Thickness Peripapillary Retinal Nerve Fiber Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254:1178–1181.PubMedCrossRefGoogle Scholar
  2. 2.
    Hedges TR, Amaro-Quireza ML. Multifocal visual evoked potential, multifocal electroretinography, and optical coherence tomography in the diagnosis of subclinical loss of vision. Ophtalmol Clin N Am 2004;17:89–105.CrossRefGoogle Scholar
  3. 3.
    Hee MR, Fujimoto JC, Ko T, et al. Interpretation of the optical coherence image. In: Schuman JS, Puliafito CA, Fujimoto JG, editors. Optical coherence tomography of ocular diseases. Thorofare, NJ: Slack; 2004.Google Scholar
  4. 4.
    Schuman JS, Pedut-Kloizman T, Herzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996;103:1889–1898.PubMedGoogle Scholar
  5. 5.
    Blumenthal EZ, Williams JM, Weinreb RN, et al. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology 2000;107;2278–2282.PubMedCrossRefGoogle Scholar
  6. 6.
    Budenz DL, Chang RT, Huang X, et al. Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2005;46:2440–2443.PubMedCrossRefGoogle Scholar
  7. 7.
    Olmedo M, Cadarso-Suarez C, Gomez-Ulla F, et al. Reproducibility of optic nerve head measurements obtained by optical coherence tomography. Eur J Ophthalmol 2005;15:486–492.PubMedGoogle Scholar
  8. 8.
    Schuman JS, Hee MR, Arya AV, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995;6:89–95.PubMedGoogle Scholar
  9. 9.
    Hoye VJ, Berrocal AM, Hedges TR III, Amaro-Quireza ML. Optical coherence tomography demonstrates subretinal macular edema from papilledema. Arch Ophthalmol 2001;119:1287–1290.PubMedGoogle Scholar
  10. 10.
    Hedges TR III, Flattem NL, Bagga A. Vitreopapillary traction confirmed by optical coherence tomography. Arch Ophthalmol 2006;124:279–281.PubMedCrossRefGoogle Scholar
  11. 11.
    Karam EZ, Hedges TR. Optical coherence tomography of the retinal nerve fibre layer in mild papilloedema and pseudopapilloedema. Br J Ophthalmol 2005;89:294–298.PubMedCrossRefGoogle Scholar
  12. 12.
    Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995;113:586–596.PubMedGoogle Scholar
  13. 13.
    Monteiro ML, Leal BC, Rosa AA, et al. Optical coherence tomography of axonal loss in band atrophy of the optic nerve. Br J Ophthalmol 2004;88:896–899.PubMedCrossRefGoogle Scholar
  14. 14.
    Kanamori A, Nakamura M, Matsui N, et al. Optical coherence tomography detects characteristic nerve fiber layer thickness corresponding to band atrophy of the optic discs. Ophthalmology 2004;111:2278–2283.PubMedCrossRefGoogle Scholar
  15. 15.
    Barboni P, Savini G, Valentino ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber’s hereditary optic neuropathy. Ophthalmology 2005;112:120–126.PubMedCrossRefGoogle Scholar
  16. 16.
    Savini G, Barboni P, Valentino ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber’s hereditary optic neuropathy mutations. Ophthalmology 2005;112:127–131.PubMedCrossRefGoogle Scholar
  17. 17.
    Zoulaman CI, Agarwal M, Sadun AA. Optical coherence tomography can measure axonal loss in patients with ethambutol induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2005;5:410–416.Google Scholar
  18. 18.
    Fisher JB, Jacobs DA, Markowitz CE, et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 2006;113:324–332.PubMedCrossRefGoogle Scholar
  19. 19.
    Hedges TR III. Optical coherence tomography inneuro-ophthalmology. In: Schuman JS, Puliafito CA, Fujimoto JG, editors. Optical coherence tomography of ocular diseases. Thorofare, NJ: Slack; 2004.Google Scholar
  20. 20.
    Roh S, Noecker RJ, Schuman JS, et al. Effect of optic nerve head drusen on nerve fiber layer thickness. Ophthalmology 1998;105:878–885.PubMedCrossRefGoogle Scholar
  21. 21.
    Roh S, Noecker RJ, Schuman JS. Evaluation of coexistent optic nerve head drusen and glaucoma with optical coherence tomography. Ophthalmology 1997;104:1138–1144.PubMedGoogle Scholar
  22. 22.
    Unoki K, Ohba N, Hoyt WF. Optical coherence tomography of superior segmental optic hypoplasia. Br J Ophthalmol 2002;86:910–914.PubMedCrossRefGoogle Scholar
  23. 23.
    Wakakura M, Ishikawa S. Central serous chorioretinopathy complicating systemic corticosteroid treatment. Br J Ophthalmol 1984;5:329–331.CrossRefGoogle Scholar
  24. 24.
    Drexler W, Morgner U, Ghanta RK, et al. Ultra-high-resolution ophthalmic optical coherence tomography. Nat Med 2001;7:502–507.PubMedCrossRefGoogle Scholar
  25. 25.
    Drexler W, Sattmann H, Hermann B, et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 2003; 121:695–706.PubMedCrossRefGoogle Scholar
  26. 26.
    Wojtkowski M, Bajraszewski T, Gorczynska I, et al. Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 2004;138:412–419.PubMedCrossRefGoogle Scholar
  27. 27.
    Wojtkowski M, Srinivasan V, Fujimoto JG, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005;112:1734–1746.PubMedCrossRefGoogle Scholar
  28. 28.
    Schmidt-Erfurth U, Leitgeb RA, Michels S, et al. Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest Ophthalmol Vis Sci 2005;46:3393–3402.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Julio A. Rodríguez-Padilla
    • 1
  • Thomas R. HedgesIII
    • 2
  1. 1.Tufts-New England Eye CenterTufts UniversityBostonUSA
  2. 2.New England Eye Center, Tufts-New England Medical CenterTufts UniversityBostonUSA

Personalised recommendations