Skip to main content

Optical Coherence Tomography in Optic Nerve Disorders

  • Chapter
Optic Nerve Disorders

Abstract

Optical coherence tomography (OCT) is an evolving technology that provides noninvasive imaging of tissues. It uses low coherence interferometry to produce cross-sectional images based on the optical scattering of light, 1 similar to ultrasound. Since its introduction into the ophthalmology clinic in the 1990s, optical coherence tomography has become a standard tool for the evaluation of ophthalmic disease. Although its main use was initially for retinal disease and glaucoma, OCT now has a niche in neuro-ophthalmic evaluation. It is mainly useful to rule in occult retinal disease when the etiology of visual loss is unclear, but it is also used to evaluate and follow up abnormalities of the retinal nerve fiber layer (RNFL), such as optic nerve edema and atrophy.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254:1178–1181.

    Article  PubMed  CAS  Google Scholar 

  2. Hedges TR, Amaro-Quireza ML. Multifocal visual evoked potential, multifocal electroretinography, and optical coherence tomography in the diagnosis of subclinical loss of vision. Ophtalmol Clin N Am 2004;17:89–105.

    Article  Google Scholar 

  3. Hee MR, Fujimoto JC, Ko T, et al. Interpretation of the optical coherence image. In: Schuman JS, Puliafito CA, Fujimoto JG, editors. Optical coherence tomography of ocular diseases. Thorofare, NJ: Slack; 2004.

    Google Scholar 

  4. Schuman JS, Pedut-Kloizman T, Herzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996;103:1889–1898.

    PubMed  CAS  Google Scholar 

  5. Blumenthal EZ, Williams JM, Weinreb RN, et al. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology 2000;107;2278–2282.

    Article  PubMed  CAS  Google Scholar 

  6. Budenz DL, Chang RT, Huang X, et al. Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2005;46:2440–2443.

    Article  PubMed  Google Scholar 

  7. Olmedo M, Cadarso-Suarez C, Gomez-Ulla F, et al. Reproducibility of optic nerve head measurements obtained by optical coherence tomography. Eur J Ophthalmol 2005;15:486–492.

    PubMed  CAS  Google Scholar 

  8. Schuman JS, Hee MR, Arya AV, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995;6:89–95.

    PubMed  CAS  Google Scholar 

  9. Hoye VJ, Berrocal AM, Hedges TR III, Amaro-Quireza ML. Optical coherence tomography demonstrates subretinal macular edema from papilledema. Arch Ophthalmol 2001;119:1287–1290.

    PubMed  Google Scholar 

  10. Hedges TR III, Flattem NL, Bagga A. Vitreopapillary traction confirmed by optical coherence tomography. Arch Ophthalmol 2006;124:279–281.

    Article  PubMed  Google Scholar 

  11. Karam EZ, Hedges TR. Optical coherence tomography of the retinal nerve fibre layer in mild papilloedema and pseudopapilloedema. Br J Ophthalmol 2005;89:294–298.

    Article  PubMed  CAS  Google Scholar 

  12. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995;113:586–596.

    PubMed  CAS  Google Scholar 

  13. Monteiro ML, Leal BC, Rosa AA, et al. Optical coherence tomography of axonal loss in band atrophy of the optic nerve. Br J Ophthalmol 2004;88:896–899.

    Article  PubMed  CAS  Google Scholar 

  14. Kanamori A, Nakamura M, Matsui N, et al. Optical coherence tomography detects characteristic nerve fiber layer thickness corresponding to band atrophy of the optic discs. Ophthalmology 2004;111:2278–2283.

    Article  PubMed  Google Scholar 

  15. Barboni P, Savini G, Valentino ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber’s hereditary optic neuropathy. Ophthalmology 2005;112:120–126.

    Article  PubMed  Google Scholar 

  16. Savini G, Barboni P, Valentino ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber’s hereditary optic neuropathy mutations. Ophthalmology 2005;112:127–131.

    Article  PubMed  Google Scholar 

  17. Zoulaman CI, Agarwal M, Sadun AA. Optical coherence tomography can measure axonal loss in patients with ethambutol induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol 2005;5:410–416.

    Google Scholar 

  18. Fisher JB, Jacobs DA, Markowitz CE, et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 2006;113:324–332.

    Article  PubMed  Google Scholar 

  19. Hedges TR III. Optical coherence tomography inneuro-ophthalmology. In: Schuman JS, Puliafito CA, Fujimoto JG, editors. Optical coherence tomography of ocular diseases. Thorofare, NJ: Slack; 2004.

    Google Scholar 

  20. Roh S, Noecker RJ, Schuman JS, et al. Effect of optic nerve head drusen on nerve fiber layer thickness. Ophthalmology 1998;105:878–885.

    Article  PubMed  CAS  Google Scholar 

  21. Roh S, Noecker RJ, Schuman JS. Evaluation of coexistent optic nerve head drusen and glaucoma with optical coherence tomography. Ophthalmology 1997;104:1138–1144.

    PubMed  CAS  Google Scholar 

  22. Unoki K, Ohba N, Hoyt WF. Optical coherence tomography of superior segmental optic hypoplasia. Br J Ophthalmol 2002;86:910–914.

    Article  PubMed  CAS  Google Scholar 

  23. Wakakura M, Ishikawa S. Central serous chorioretinopathy complicating systemic corticosteroid treatment. Br J Ophthalmol 1984;5:329–331.

    Article  Google Scholar 

  24. Drexler W, Morgner U, Ghanta RK, et al. Ultra-high-resolution ophthalmic optical coherence tomography. Nat Med 2001;7:502–507.

    Article  PubMed  CAS  Google Scholar 

  25. Drexler W, Sattmann H, Hermann B, et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 2003; 121:695–706.

    Article  PubMed  Google Scholar 

  26. Wojtkowski M, Bajraszewski T, Gorczynska I, et al. Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 2004;138:412–419.

    Article  PubMed  Google Scholar 

  27. Wojtkowski M, Srinivasan V, Fujimoto JG, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005;112:1734–1746.

    Article  PubMed  Google Scholar 

  28. Schmidt-Erfurth U, Leitgeb RA, Michels S, et al. Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest Ophthalmol Vis Sci 2005;46:3393–3402.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rodríguez-Padilla, J.A., Hedges, T.R. (2007). Optical Coherence Tomography in Optic Nerve Disorders. In: Optic Nerve Disorders. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68979-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68979-1_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-68978-4

  • Online ISBN: 978-0-387-68979-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics