Motion Kinematics

  • Reza N. Jazar


Consider a rigid body with an attached local coordinate frame B(oxyz) moving freely in a fixed global coordinate frame G(OXYZ). The rigid body can rotate in the global frame, while point o of the body frame B can translate relative to the origin O of G as shown in Figure 4.1.
Figure 4.1.

Rotation and translation of a local frame with respect to a global frame.


Rigid Body Coordinate Frame Rigid Body Motion Rigid Motion Body Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ball, R. S., 1900, A Treatise on the Theory of Screws, Cambridge University Press, USA.Google Scholar
  2. Bottema, O., and Roth, B., 1979, Theoretical Kinematics, North-Holland Publication, Amsterdam, The Netherlands.MATHGoogle Scholar
  3. Chernousko, F. L., Bolotnik, N. N., and Gradetsky, V. G,, 1994, Manipulation Robots: Dynamics, Control, and Optimization, CRC press, Boca Raton, Florida.Google Scholar
  4. Davidson, J. K., and Hunt, K. H., 2004, Robots and Screw Theory: Applications of Kinematics and Statics to Robotics, Oxford University Press, New York.MATHGoogle Scholar
  5. Denavit, J., and Hartenberg, R. S., 1955, A kinematic notation for lowerpair mechanisms based on matrices, Journal of Applied Mechanics, 22(2), 215–221.MATHMathSciNetGoogle Scholar
  6. Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Oxford University Press, London.MATHGoogle Scholar
  7. Mason, M. T., 2001, Mechanics of Robotic Manipulation, MIT Press, Cambridge, Massachusetts.Google Scholar
  8. Murray, R. M., Li, Z., and Sastry, S. S. S., 1994, A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, Florida.MATHGoogle Scholar
  9. Niku, S. B., 2001, Introduction to Robotics: Analysis, Systems, Applications, Prentice Hall, New Jersey.Google Scholar
  10. Pltücker, J., 1866, Fundamental views regarding mechanics, Philosophical Transactions, 156, 361–380.CrossRefGoogle Scholar
  11. Selig, J. M., 2005, Geometric Fundamentals of Robotics, 2nd ed., Springer, New York.MATHGoogle Scholar
  12. Schaub, H., and Junkins, J. L., 2003, Analytical Mechanics of Space Systems, AIAA Educational Series, American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia.Google Scholar
  13. Schilling, R. J., 1990, Fundamentals of Robotics: Analysis and Control, Prentice Hall, New Jersey.Google Scholar
  14. Suh. C. H., and Radcliff, C. W., 1978, Kinematics and Mechanisms Design, John Wiley & Sons, New York.Google Scholar
  15. Spong, M. W., Hutchinson, S., and Vidyasagar, M., 2006, Robot Modeling and Control, John Wiley & Sons, New York.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Reza N. Jazar
    • 1
  1. 1.Department of Mechanical EngineeringManhattan CollegeRiverdale

Personalised recommendations