Time Optimal Control

  • Reza N. Jazar


The most important job of industrial robots is moving between two points rest-to-rest. Minimum time control is what we need to increase industrial robots productivity. The objective of time-optimal control is to transfer the end-effector of a robot from an initial position to a desired destination in minimum time. Consider a system with the following equation of motion:
$$ \dot x = f(x(t),Q(t)) $$
where Q is the control input, and x is the state vector of the system
$$ x = \left[ {\begin{array}{*{20}c} q \\ {\dot q} \\ \end{array} } \right]. $$
The minimum time problem is always subject to bounded input such as
$$ \left| {Q\left( t \right)} \right| \leqslant Q_{Max} . $$


Optimal Path Switching Point Control Command Time Optimal Control Optimal Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ailon, A., and Langholz, G., 1985, On the existence of time optimal control of mechanical manipulators, Journal of Optimization Theory and Applications, 46(1), 1–21.MATHCrossRefMathSciNetGoogle Scholar
  2. Bahrami M., and Nakhaie Jazar G., 1991, Optimal control of robotic manipulators: optimization algorithm, Amirkabir Journal, 5(18), (in Persian).Google Scholar
  3. Bahrami M., and Nakhaie Jazar G., 1992, Optimal control of robotic manipulators: application, Amirkabir Journal, 5(19), (in Persian).Google Scholar
  4. Bassein, R., 1989, An Optimization Problem, American Mathematical Monthly, 96(8), 721–725.MATHCrossRefMathSciNetGoogle Scholar
  5. Bobrow, J. E., Dobowsky, S., and Gibson, J. S., 1985, Time optimal control of robotic manipulators along specified paths. The International Journal of Robotics Research, 4(3), 495–499.CrossRefGoogle Scholar
  6. Courant, R., and Robbins. H., 1941, What is Mathematics?, Oxford University Press, London.Google Scholar
  7. Fotouhi, C. R., and Szyszkowski W., 1998, An algorithm for time optimal control problems, Transaction of the ASME, Journal of Dynamic Systems, Measurements, and Control, 120, 414–418.CrossRefGoogle Scholar
  8. Fu, K. S., Gonzales, R. C, and Lee, C. S. G., 1987, Robotics, Control, Sensing, Vision and Intelligence, McGraw-Hill, New York.Google Scholar
  9. Gamkrelidze, R. V., 1958, The theory of time optimal processes in linear systems, Izvcstiya Akademii Nauk SSSR, 22, 449–474.MATHMathSciNetGoogle Scholar
  10. Garg, D. P, 1990, The new time optimal motion control of robotic manipulators, The Franklin Institute, 327(5), 785–804 MATHCrossRefGoogle Scholar
  11. Hart P. E., Nilson N. J., and Raphael B., 1968, A formal basis for heuristic determination of minimum cost path, IEEE Transaction Man, System & Cybernetics, 4, 100–107.CrossRefGoogle Scholar
  12. Kahn, M. E., and Roth B., 1971, The near minimum time control of open loop articulated kinematic chain, Transaction of the ASME, Journal of Dynamic Systems, Measurements, and Control, 93, 164–172.Google Scholar
  13. Kim B. K., and Shin K. G., 1985, Suboptimal control of industrial manipulators with weighted minimum time-fuel criterion, IEEE Transactions on Automatic Control, 30(1), 1–10.MATHCrossRefMathSciNetGoogle Scholar
  14. Krotov, V. F., 1996. Global Methods in Optimal Control Theory, Marcel Decker, Inc.Google Scholar
  15. Kuo, B. C., and Golnaraghi, F., 2003, Automatic Control Systems, John Wiley & Sons, New York.Google Scholar
  16. Lee, E. B., and Markus, L., 1961, Optimal Control for Nonlinear Processes, Archive for Rational Mechanics and Analysis, 8, 36–58.MATHCrossRefMathSciNetGoogle Scholar
  17. Lee, H. W. J., Teo, K. L., Rehbock, V., and Jennings, L. S., 1997, Control parameterization enhancing technique for time optimal control problems, Dynamic Systems and Applications, 6, 243–262.MATHMathSciNetGoogle Scholar
  18. Lewis, F. L., and Syrmos, V. L., 1995, Optimal Control, John Wiley & Sons, New York.Google Scholar
  19. Meier E. B., and Brysou A. E., 1990, Efficient algorithm for time optimal control of a two-link manipulator, Journal of Guidance, Control and Dynamics, 13(5), 859–866.MATHCrossRefMathSciNetGoogle Scholar
  20. Mita T., Hyon, S. H., and Nam, T. K., 2001, Analytical time optimal control solution for a two link planar acrobat with initial angular momentum, IEEE Transactions on Robotics and Automation, 17(3), 361–366.CrossRefGoogle Scholar
  21. Nakamura, Y., 1991, Advanced Robotics: Redundancy and Optimization, Addison Wesley, New York.Google Scholar
  22. Nakhaie Jazar G., and Naghshinehpour A., 2005, Time optimal control algorithm for multi-body dynamical systems, IMechE Part K: Journal of Multi-Body Dynamics, 219(3), 225–236.CrossRefGoogle Scholar
  23. Pinch. E. R., 1993, Optimal Control and the Calculus of Variations, Oxford University Press, New York.MATHGoogle Scholar
  24. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., 1962, The Mathematical Theory of Optimal Processes, John Wiley & Sons, New York.MATHGoogle Scholar
  25. Roxin, E., 1962, The existence of optimal controls, Michigan Mathematical Journal, 9, 109–119.MATHCrossRefMathSciNetGoogle Scholar
  26. Shin K. G., and McKay N. D., 1985, Minimum time control of a robotic manipulator with geometric path constraints, IEEE Transaction Automatic Control 30(6), 531–541.MATHCrossRefGoogle Scholar
  27. Shin K. G., and McKay N. D., 1986. Selection of near minimum time geometric paths for robotic manipulators, IEEE Transaction Automatic Control, 31(6), 501–511.MATHCrossRefGoogle Scholar
  28. Skowronski, J. M., 1986, Control Dynamics of Robotic Manipulator, Academic Press Inc., U.S.Google Scholar
  29. Slotine, J. J. E., and Yang, H. S., 1989, Improving the efficiency of time optimal path following algorithms, IEEE Trans. Robotics Automation, 5(1) 18–124.CrossRefGoogle Scholar
  30. Spong, M. W., Thorp, J. S., and Kleinwaks, J., M., 1986, The control of robot manipulators with bounded input, IEEE Journal of Automatic Control, 31(6), 483–490.MATHCrossRefGoogle Scholar
  31. Sundar, S., and Shiller, Z., 1996, A generalized sufficient condition for time optimal control, Transaction of the ASME, Journal of Dynamic Systems, Measurements, and Control, 118(2), 393–396.MATHCrossRefGoogle Scholar
  32. Takegaki, M., and Arimoto, S., 1981, A new feedback method for dynamic control of manipulators, Transaction of the ASME, Journal of Dynamic Systems, Measurements, and Control, 102, 119–125.CrossRefGoogle Scholar
  33. Vincent T. L., and Grantham W. J., 1997, Nonlinear and Optimal Control Systems, John Wiley & Sons, New York.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Reza N. Jazar
    • 1
  1. 1.Department of Mechanical EngineeringManhattan CollegeRiverdale

Personalised recommendations