Overview of the Large DNA Tumor Viruses

  • Subhash C. Verma
  • Qiliang Cai
  • Bharat G. Bajaj
  • Erle S. Robertson

Introduction: Historical Aspects

Approximately 20% of human tumors are associated with viruses which include RNA as well as DNA viruses. The RNA viruses linked to tumorigenesis are the human T-cell leukemia viruses 1 and 2 (HTLV-1/2) and human hepatitis virus C (HCV). The DNA viruses which primarily cause tumors in humans are Epstein–Barr virus (EBV), human papilloma virus 16 and 18 (HPV 16 and HPV 18), Kaposi’s sarcoma-associated herpesvirus (KSHV) and human hepatitis virus (HBV). EBV was the first DNA virus detected in human tumor, Burkitt lymphoma of the African patients (Burkitt, 1958; Burkitt and O'Conor, 1961). The link between EBV and Burkitt lymphoma was established by the initial work of Epstein and further confirmed by the Henles working at the Children’s Hospital of Philadelphia in 1964 (Epstein et al., 1964, 1965b). EBV was further identified as the causative agent of infectious mononucleosis (IM) by the Henles while analyzing the blood sample of one of their technical...


Burkitt Lymphoma Origin Recognition Complex Lytic Replication Replication Initiation Site Dyad Symmetry Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Public Health service grant from NCI CA072510, CA091792 NIDCR DE014136, DE017338 and NIAID AI067037 (E.S.R.). E.S.R. is a scholar of Leukemia and Lymphoma Society of America. S.C.V. is supported by the NIH pathways to independence award (K99CA126182).


  1. Ackermann, M. (2006). Pathogenesis of gammaherpesvirus infections. Vet Microbiol 113(3–4), 211–22.PubMedCrossRefGoogle Scholar
  2. Adamson, A. L., Wright, N., and LaJeunesse, D. R. (2005). Modeling early Epstein-Barr virus infection in Drosophila melanogaster: the BZLF1 protein. Genetics 171(3), 1125–35.PubMedCrossRefGoogle Scholar
  3. An, J., Sun, Y., and Rettig, M. B. (2004). Transcriptional coactivation of c-Jun by the KSHV-encoded LANA. Blood 103(1), 222–8.PubMedCrossRefGoogle Scholar
  4. Andersson-Anvret, M., Forsby, N., Klein, G., and Henle, W. (1977). Relationship between the Epstein-Barr virus and undifferentiated nasopharyngeal carcinoma: correlated nucleic acid hybridization and histopathological examination. Int J Cancer 20(4), 486–94.PubMedCrossRefGoogle Scholar
  5. Antman, K., and Chang, Y. (2000). Kaposi's sarcoma. N Engl J Med 342(14), 1027–38.PubMedCrossRefGoogle Scholar
  6. Babcock, G. J., Decker, L. L., Freeman, R. B., and Thorley-Lawson, D. A. (1999). Epstein-Barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. J Exp Med 190(4), 567–76.PubMedCrossRefGoogle Scholar
  7. Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Seguin, C., et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310(5974), 207–11.PubMedCrossRefGoogle Scholar
  8. Ballestas, M. E., Chatis, P. A., and Kaye, K. M. (1999). Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284(5414), 641–4.PubMedCrossRefGoogle Scholar
  9. Ballestas, M. E., and Kaye, K. M. (2001). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J Virol 75(7), 3250–8.PubMedCrossRefGoogle Scholar
  10. Banerjee, S., Livanos, E., and Vos, J. M. (1995). Therapeutic gene delivery in human B-lymphoblastoid cells by engineered non-transforming infectious Epstein-Barr virus. Nat Med 1(12), 1303–8.PubMedCrossRefGoogle Scholar
  11. Banks, T. A., and Rouse, B. T. (1992). Herpesviruses--immune escape artists? Clin Infect Dis 14(4), 933–41.PubMedCrossRefGoogle Scholar
  12. Barbera, A. J., Chodaparambil, J. V., Kelley-Clarke, B., Joukov, V., Walter, J. C., Luger, K., and Kaye, K. M. (2006). The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science 311(5762), 856–61.PubMedCrossRefGoogle Scholar
  13. Bashaw, J. M., and Yates, J. L. (2001). Replication from oriP of Epstein-Barr virus requires exact spacing of two bound dimers of EBNA1 which bend DNA. J Virol 75(22), 10603–11.PubMedCrossRefGoogle Scholar
  14. Bashir, T., and Pagano, M. (2004). Don't skip the G1 phase: how APC/CCdh1 keeps SCFSKP2 in check. Cell Cycle 3(7), 850–2.PubMedCrossRefGoogle Scholar
  15. Becker, Y., Tabor, E., and Asher, Y. (1991). Epstein-Barr virus BHRF1 gene but not the cellular protooncogene bcl-2 is expressed in ataxia-telangiectasia lymphoblastoid lines. Virus Genes 5(1), 33–45.PubMedCrossRefGoogle Scholar
  16. Blake, N. W., Moghaddam, A., Rao, P., Kaur, A., Glickman, R., Cho, Y. G., Marchini, A., Haigh, T., Johnson, R. P., Rickinson, A. B., and Wang, F. (1999). Inhibition of antigen presentation by the glycine/alanine repeat domain is not conserved in simian homologues of Epstein-Barr virus nuclear antigen 1. J Virol 73(9), 7381–9.PubMedGoogle Scholar
  17. Bochkarev, A., Barwell, J. A., Pfuetzner, R. A., Bochkareva, E., Frappier, L., and Edwards, A. M. (1996). Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA. Cell 84(5), 791–800.PubMedCrossRefGoogle Scholar
  18. Boulanger, E., Agbalika, F., Maarek, O., Daniel, M. T., Grollet, L., Molina, J. M., Sigaux, F., and Oksenhendler, E. (2001). A clinical, molecular and cytogenetic study of 12 cases of human herpesvirus 8 associated primary effusion lymphoma in HIV-infected patients. Hematol J 2(3), 172–9.PubMedCrossRefGoogle Scholar
  19. Boulikas, T. (1993). Nuclear localization signals (NLS). Crit Rev Eukaryot Gene Expr 3(3), 193–227.PubMedGoogle Scholar
  20. Bowser, B. S., DeWire, S. M., and Damania, B. (2002). Transcriptional regulation of the K1 gene product of Kaposi's sarcoma-associated herpesvirus. J Virol 76(24), 12574–83.PubMedCrossRefGoogle Scholar
  21. Bowser, B. S., Morris, S., Song, M. J., Sun, R., and Damania, B. (2006). Characterization of Kaposi's sarcoma-associated herpesvirus (KSHV) K1 promoter activation by Rta. Virology 348(2), 309–27.PubMedCrossRefGoogle Scholar
  22. Bunnapradist, S., Vo, A., Toyoda, M., Alsabeh, R., Lockhart, C., Puliyanda, D., and Jordan, S. C. (2002). Posttransplantation lymphoproliferative disorder presenting as a unilateral leg mass 10 years after kidney transplantation. Transplantation 74(11), 1648–51.PubMedCrossRefGoogle Scholar
  23. Burkitt, D. (1958). A sarcoma involving the jaws in African children. Br J Surg 46(197), 218–23.PubMedCrossRefGoogle Scholar
  24. Burkitt, D., and O'Conor, G. T. (1961). Malignant lymphoma in African children. I. A clinical syndrome. Cancer 14, 258–69.PubMedCrossRefGoogle Scholar
  25. Burysek, L., Yeow, W. S., Lubyova, B., Kellum, M., Schafer, S. L., Huang, Y. Q., and Pitha, P. M. (1999). Functional analysis of human herpesvirus 8-encoded viral interferon regulatory factor 1 and its association with cellular interferon regulatory factors and p300. J Virol 73(9), 7334–42.PubMedGoogle Scholar
  26. Byun, H., Gwack, Y., Hwang, S., and Choe, J. (2002). Kaposi's sarcoma-associated herpesvirus open reading frame (ORF) 50 transactivates K8 and ORF57 promoters via heterogeneous response elements. Mol Cells 14(2), 185–91.PubMedGoogle Scholar
  27. Cai, Q., Lan, K., Verma, S. C., Si, H., Lin, D., and Robertson, E. S. (2006a). Kaposi's sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: Latency control under low oxygen conditions. J Virol 80(16), 7965–75.Google Scholar
  28. Cai, Q. L., Knight, J. S., Verma, S. C., Zald, P., and Robertson, E. S. (2006b). EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog 2(10), e116.Google Scholar
  29. Cai, Q., Murakami, M., Si, H., and Robertson, E. S. (2007). otential {alpha}-helix motif in the amino terminus of LANA encoded by KSHV is critical for nuclear accumulation of HIF-1{alpha} in normoxia. J Virol.Google Scholar
  30. Cao, S., Cox, K. L., Berquist, W., Hayashi, M., Concepcion, W., Hammes, G. B., Ojogho, O. K., So, S. K., Frerker, M., Castillo, R. O., Monge, H., and Esquivel, C. O. (1999). Long-term outcomes in pediatric liver recipients: comparison between cyclosporin A and tacrolimus. Pediatr Transplant 3(1), 22–6.PubMedCrossRefGoogle Scholar
  31. Cesarman, E., Chang, Y., Moore, P. S., Said, J. W., and Knowles, D. M. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332(18), 1186–91.PubMedCrossRefGoogle Scholar
  32. Cesarman, E., and Mesri, E. A. (2007). Kaposi sarcoma-associated herpesvirus and other viruses in human lymphomagenesis. Curr Top Microbiol Immunol 312, 263–87.PubMedCrossRefGoogle Scholar
  33. Chang, Y., Cesarman, E., Pessin, M. S., Lee, F., Culpepper, J., Knowles, D. M., and Moore, P. S. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266(5192), 1865–9.PubMedCrossRefGoogle Scholar
  34. Chang, Y., Moore, P. S., Talbot, S. J., Boshoff, C. H., Zarkowska, T., Godden, K., Paterson, H., Weiss, R. A., and Mittnacht, S. (1996). Cyclin encoded by KS herpesvirus. Nature 382(6590), 410.PubMedCrossRefGoogle Scholar
  35. Chaudhuri, B., Xu, H., Todorov, I., Dutta, A., and Yates, J. L. (2001). Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci U S A 98(18), 10085–9.PubMedCrossRefGoogle Scholar
  36. Cheng, E. H., Nicholas, J., Bellows, D. S., Hayward, G. S., Guo, H. G., Reitz, M. S., and Hardwick, J. M. (1997). A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci USA 94(2), 690–4.PubMedCrossRefGoogle Scholar
  37. Cohen, J. I., and Kieff, E. (1991). An Epstein-Barr virus nuclear protein 2 domain essential for transformation is a direct transcriptional activator. J Virol 65(11), 5880–5.PubMedGoogle Scholar
  38. Conese, M., Auriche, C., and Ascenzioni, F. (2004). Gene therapy progress and prospects: episomally maintained self-replicating systems. Gene Ther 11(24), 1735–41.PubMedCrossRefGoogle Scholar
  39. Cook, J. G., Chasse, D. A., and Nevins, J. R. (2004). The regulated association of Cdt1 with minichromosome maintenance proteins and Cdc6 in mammalian cells. J Biol Chem 279(10), 9625–33.PubMedCrossRefGoogle Scholar
  40. Cotter, M. A., 2nd, and Robertson, E. S. (1999). The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. Virology 264(2), 254–64.PubMedCrossRefGoogle Scholar
  41. Cotter, M. A., 2nd, Subramanian, C., and Robertson, E. S. (2001). The Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen binds to specific sequences at the left end of the viral genome through its carboxy-terminus. Virology 291(2), 241–59.PubMedCrossRefGoogle Scholar
  42. Crawford, D. H., Edwards, J. M., Sweny, P., Hoffbrand, A. V., and Janossy, G. (1981). Studies on long-term T-cell-mediated immunity to Epstein-BArr virus in immunosuppressed renal allograft recipients. Int J Cancer 28(6), 705–9.PubMedCrossRefGoogle Scholar
  43. Dalla-Favera, R., Lombardi, L., Pelicci, P. G., Lanfrancone, L., Cesarman, E., and Neri, A. (1987). Mechanism of activation and biological role of the c-myc oncogene in B-cell lymphomagenesis. Ann N Y Acad Sci 511, 207–18.PubMedCrossRefGoogle Scholar
  44. Damania, B. (2004). Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol 2(8), 656–68.PubMedCrossRefGoogle Scholar
  45. Damania, B. (2007). DNA tumor viruses and human cancer. Trends Microbiol 15(1), 38–44.PubMedCrossRefGoogle Scholar
  46. Damania, B., Choi, J. K., and Jung, J. U. (2000). Signaling activities of gammaherpesvirus membrane proteins. J Virol 74(4), 1593–601.PubMedCrossRefGoogle Scholar
  47. Davis, D. A., Rinderknecht, A. S., Zoeteweij, J. P., Aoki, Y., Read-Connole, E. L., Tosato, G., Blauvelt, A., and Yarchoan, R. (2001). Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 97(10), 3244–50.PubMedCrossRefGoogle Scholar
  48. DeWire, S. M., McVoy, M. A., and Damania, B. (2002). Kinetics of expression of rhesus monkey rhadinovirus (RRV) and identification and characterization of a polycistronic transcript encoding the RRV Orf50/Rta, RRV R8, and R8.1 genes. J Virol 76(19), 9819–31.PubMedCrossRefGoogle Scholar
  49. Dhar, S. K., Yoshida, K., Machida, Y., Khaira, P., Chaudhuri, B., Wohlschlegel, J. A., Leffak, M., Yates, J., and Dutta, A. (2001). Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell 106(3), 287–96.PubMedCrossRefGoogle Scholar
  50. Diociaiuti, A., Nanni, G., Cattani, P., Lesnoni La Parola, I., Masini, C., Capuano, M., Pozzetto, U., Fadda, G., Castagneto, M., and Cerimele, D. (2000). HHV8 in renal transplant recipients. Transpl Int 13 Suppl 1, S410–2.PubMedGoogle Scholar
  51. Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A., and Ganem, D. (1998). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72(10), 8309–15.PubMedGoogle Scholar
  52. Dourmishev, L. A., Dourmishev, A. L., Palmeri, D., Schwartz, R. A., and Lukac, D. M. (2003). Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 67(2), 175–212, table of contents.PubMedCrossRefGoogle Scholar
  53. Dupin, N., Fisher, C., Kellam, P., Ariad, S., Tulliez, M., Franck, N., van Marck, E., Salmon, D., Gorin, I., Escande, J. P., Weiss, R. A., Alitalo, K., and Boshoff, C. (1999). Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc Natl Acad Sci USA 96(8), 4546–51.PubMedCrossRefGoogle Scholar
  54. Dykstra, M. L., Longnecker, R., and Pierce, S. K. (2001). Epstein-Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR. Immunity 14(1), 57–67.PubMedCrossRefGoogle Scholar
  55. Ellis, M., Chew, Y. P., Fallis, L., Freddersdorf, S., Boshoff, C., Weiss, R. A., Lu, X., and Mittnacht, S. (1999). Degradation of p27(Kip) cdk inhibitor triggered by Kaposi's sarcoma virus cyclin-cdk6 complex. Embo J 18(3), 644–53.PubMedCrossRefGoogle Scholar
  56. Ensser, A., and Fleckenstein, B. (2005). T-cell transformation and oncogenesis by gamma2-herpesviruses. Adv Cancer Res 93, 91–128.PubMedCrossRefGoogle Scholar
  57. Epstein, M. A. (1971). The possible role of viruses in human cancer. Lancet 1(7713), 1344–7.PubMedCrossRefGoogle Scholar
  58. Epstein, M. A., Achong, B. G., and Barr, Y. M. (1964). Virus Particles In Cultured Lymphoblasts From Burkitt's Lymphoma. Lancet 1, 702–3.PubMedCrossRefGoogle Scholar
  59. Epstein, M. A., Achong, B. G., and Pope, J. H. (1967). Virus in cultured lymphoblasts from a New Guinea Burkitt lymphoma. Br Med J 2(5547), 290–1.PubMedCrossRefGoogle Scholar
  60. Epstein, M. A., Barr, Y. M., and Achong, B. G. (1965a). Studies with Burkitt's lymphoma. Wistar Inst Symp Monogr 4, 69–82.Google Scholar
  61. Epstein, M. A., Henle, G., Achong, B. G., and Barr, Y. M. (1965b). Morphological and Biological Studies on a Virus in Cultured Lymphoblasts from Burkitt's Lymphoma. J Exp Med 121, 761–70.Google Scholar
  62. Fakhari, F. D., and Dittmer, D. P. (2002). Charting latency transcripts in Kaposi's sarcoma-associated herpesvirus by whole-genome real-time quantitative PCR. J Virol 76(12), 6213–23.PubMedCrossRefGoogle Scholar
  63. Farrell, P. J. (2005). Epstein-Barr Virus Genome. Epstein-Barr Virus, E. S. Robertson (eds.), Chapter 15, 263–287.Google Scholar
  64. Faye, A., and Vilmer, E. (2005). Post-transplant lymphoproliferative disorder in children: incidence, prognosis, and treatment options. Paediatr Drugs 7(1), 55–65.PubMedCrossRefGoogle Scholar
  65. Fennewald, S., van Santen, V., and Kieff, E. (1984). Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. J Virol 51(2), 411–9.PubMedGoogle Scholar
  66. Flore, O., Rafii, S., Ely, S., O'Leary, J. J., Hyjek, E. M., and Cesarman, E. (1998). Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature 394(6693), 588–92.PubMedCrossRefGoogle Scholar
  67. Friborg, J., Jr., Kong, W., Hottiger, M. O., and Nabel, G. J. (1999). p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402(6764), 889–94.PubMedGoogle Scholar
  68. Fujimuro, M., and Hayward, S. D. (2004). Manipulation of glycogen-synthase kinase-3 activity in KSHV-associated cancers. J Mol Med 82(4), 223–31.PubMedCrossRefGoogle Scholar
  69. Fujimuro, M., Wu, F. Y., ApRhys, C., Kajumbula, H., Young, D. B., Hayward, G. S., and Hayward, S. D. (2003). A novel viral mechanism for dysregulation of beta-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nat Med 9(3), 300–6.PubMedCrossRefGoogle Scholar
  70. Gahn, T. A., and Schildkraut, C. L. (1989). The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell 58(3), 527–35.PubMedCrossRefGoogle Scholar
  71. Gao, S. J., Boshoff, C., Jayachandra, S., Weiss, R. A., Chang, Y., and Moore, P. S. (1997). KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene 15(16), 1979–85.PubMedCrossRefGoogle Scholar
  72. Garber, A. C., Hu, J., and Renne, R. (2002). Latency-associated nuclear antigen (LANA) cooperatively binds to two sites within the terminal repeat, and both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. J Biol Chem 277(30), 27401–11.PubMedCrossRefGoogle Scholar
  73. Glaser, S. L., Lin, R. J., Stewart, S. L., Ambinder, R. F., Jarrett, R. F., Brousset, P., Pallesen, G., Gulley, M. L., Khan, G., O'Grady, J., Hummel, M., Preciado, M. V., Knecht, H., Chan, J. K., and Claviez, A. (1997). Epstein-Barr virus-associated Hodgkin's disease: epidemiologic characteristics in international data. Int J Cancer 70(4), 375–82.PubMedCrossRefGoogle Scholar
  74. Glenn, M., Rainbow, L., Aurade, F., Davison, A., and Schulz, T. F. (1999). Identification of a spliced gene from Kaposi's sarcoma-associated herpesvirus encoding a protein with similarities to latent membrane proteins 1 and 2A of Epstein-Barr virus. J Virol 73(8), 6953–63.PubMedGoogle Scholar
  75. Godden-Kent, D., Talbot, S. J., Boshoff, C., Chang, Y., Moore, P., Weiss, R. A., and Mittnacht, S. (1997). The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J Virol 71(6), 4193–8.PubMedGoogle Scholar
  76. Grossman, S. R., Johannsen, E., Tong, X., Yalamanchili, R., and Kieff, E. (1994). The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc Natl Acad Sci USA 91(16), 7568–72.PubMedCrossRefGoogle Scholar
  77. Groves, A. K., Cotter, M. A., Subramanian, C., and Robertson, E. S. (2001). The latency-associated nuclear antigen encoded by Kaposi's sarcoma-associated herpesvirus activates two major essential Epstein-Barr virus latent promoters. J Virol 75(19), 9446–57.PubMedCrossRefGoogle Scholar
  78. Grundhoff, A., and Ganem, D. (2001). Mechanisms governing expression of the v-FLIP gene of Kaposi's sarcoma-associated herpesvirus. J Virol 75(4), 1857–63.PubMedCrossRefGoogle Scholar
  79. Grundhoff, A., and Ganem, D. (2003). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus permits replication of terminal repeat-containing plasmids. J Virol 77(4), 2779–83.PubMedCrossRefGoogle Scholar
  80. Gunven, P., Klein, G., Henle, G., Henle, W., and Clifford, P. (1970). Epstein-Barr virus in Burkitt's lymphoma and nasopharyngeal carcinoma. Antibodies to EBV associated membrane and viral capsid antigens in Burkitt lymphoma patients. Nature 228(5276), 1053–6.PubMedCrossRefGoogle Scholar
  81. Hammerschmidt, W., and Sugden, B. (1988). Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell 55(3), 427–33.PubMedCrossRefGoogle Scholar
  82. Harada, S., and Kieff, E. (1997). Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain-mediated transcriptional activation. J Virol 71(9), 6611–8.PubMedGoogle Scholar
  83. Harris, A., Young, B. D., and Griffin, B. E. (1985). Random association of Epstein-Barr virus genomes with host cell metaphase chromosomes in Burkitt's lymphoma-derived cell lines. J Virol 56(1), 328–32.PubMedGoogle Scholar
  84. Hellebrand, E., Mautner, J., Reisbach, G., Nimmerjahn, F., Hallek, M., Mocikat, R., and Hammerschmidt, W. (2006). Epstein-Barr virus vector-mediated gene transfer into human B cells: potential for antitumor vaccination. Gene Ther 13(2), 150–62.PubMedCrossRefGoogle Scholar
  85. Henle, G., Henle, W., and Klein, G. (1971). Demonstration of two distinct components in the early antigen complex of Epstein-Barr virus-infected cells. Int J Cancer 8(2), 272–82.PubMedCrossRefGoogle Scholar
  86. Henle, W., and Henle, G. (1981). Epstein-Barr virus-specific serology in immunologically compromised individuals. Cancer Res 41(11 Pt 1), 4222–5.PubMedGoogle Scholar
  87. Henle, W., Henle, G., Ho, H. C., Burtin, P., Cachin, Y., Clifford, P., de Schryver, A., de-The, G., Diehl, V., and Klein, G. (1970). Antibodies to Epstein-Barr virus in nasopharyngeal carcinoma, other head and neck neoplasms, and control groups. J Natl Cancer Inst 44(1), 225–31.PubMedGoogle Scholar
  88. Ho, M., Jaffe, R., Miller, G., Breinig, M. K., Dummer, J. S., Makowka, L., Atchison, R. W., Karrer, F., Nalesnik, M. A., and Starzl, T. E. (1988). The frequency of Epstein-Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestations in children. Transplantation 45(4), 719–27.PubMedCrossRefGoogle Scholar
  89. Hochberg, D., Souza, T., Catalina, M., Sullivan, J. L., Luzuriaga, K., and Thorley-Lawson, D. A. (2004). Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J Virol 78(10), 5194–204.PubMedCrossRefGoogle Scholar
  90. Holowaty, M. N., Sheng, Y., Nguyen, T., Arrowsmith, C., and Frappier, L. (2003a). Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP. J Biol Chem 278(48), 47753–61.Google Scholar
  91. Holowaty, M. N., Zeghouf, M., Wu, H., Tellam, J., Athanasopoulos, V., Greenblatt, J., and Frappier, L. (2003b). Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem 278(32), 29987–94.Google Scholar
  92. Hu, J., and Renne, R. (2005). Characterization of the minimal replicator of Kaposi's sarcoma-associated herpesvirus latent origin. J Virol 79(4), 2637–42.PubMedCrossRefGoogle Scholar
  93. Hung, S. C., Kang, M. S., and Kieff, E. (2001). Maintenance of Epstein-Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc Natl Acad Sci USA 98(4), 1865–70.PubMedCrossRefGoogle Scholar
  94. Hyun, T. S., Subramanian, C., Cotter, M. A., 2nd, Thomas, R. A., and Robertson, E. S. (2001). Latency-associated nuclear antigen encoded by Kaposi's sarcoma-associated herpesvirus interacts with Tat and activates the long terminal repeat of human immunodeficiency virus type 1 in human cells. J Virol 75(18), 8761–71.PubMedCrossRefGoogle Scholar
  95. Izumi, K. M., Kaye, K. M., and Kieff, E. D. (1994). Epstein-Barr virus recombinant molecular genetic analysis of the LMP1 amino-terminal cytoplasmic domain reveals a probable structural role, with no component essential for primary B-lymphocyte growth transformation. J Virol 68(7), 4369–76.PubMedGoogle Scholar
  96. Jarviluoma, A., and Ojala, P. M. (2006). Cell signaling pathways engaged by KSHV. Biochim Biophys Acta 1766(1), 140–58.PubMedGoogle Scholar
  97. Jenner, R. G., Alba, M. M., Boshoff, C., and Kellam, P. (2001). Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75(2), 891–902.PubMedCrossRefGoogle Scholar
  98. Jeong, J., Papin, J., and Dittmer, D. (2001). Differential regulation of the overlapping Kaposi's sarcoma-associated herpesvirus vGCR (orf74) and LANA (orf73) promoters. J Virol 75(4), 1798–807.PubMedCrossRefGoogle Scholar
  99. Johansson, B., Klein, G., Henle, W., and Henle, G. (1970). Epstein-Barr virus (EBV)-associated antibody patterns in malignant lymphoma and leukemia. I. Hodgkin's disease. Int J Cancer 6(3), 450–62.PubMedCrossRefGoogle Scholar
  100. Johansson, B., Klein, G., Henle, W., and Henle, G. (1971). Epstein-Barr virus (EBV)-associated antibody patterns in malignant lymphoma and leukemia. II. Chronic lymphocytic leukemia and lymphocytic lymphoma. Int J Cancer 8(3), 475–86.PubMedGoogle Scholar
  101. Kaldis, P., Ojala, P. M., Tong, L., Makela, T. P., and Solomon, M. J. (2001). CAK-independent activation of CDK6 by a viral cyclin. Mol Biol Cell 12(12), 3987–99.PubMedGoogle Scholar
  102. Kaminsky, L. S., McHugh, T., Stites, D., Volberding, P., Henle, G., Henle, W., and Levy, J. A. (1985). High prevalence of antibodies to acquired immune deficiency syndrome (AIDS)-associated retrovirus (ARV) in AIDS and related conditions but not in other disease states. Proc Natl Acad Sci USA 82(16), 5535–9.PubMedCrossRefGoogle Scholar
  103. Kapoor, P., and Frappier, L. (2003). EBNA1 partitions Epstein-Barr virus plasmids in yeast cells by attaching to human EBNA1-binding protein 2 on mitotic chromosomes. J Virol 77(12), 6946–56.PubMedCrossRefGoogle Scholar
  104. Kapoor, P., Shire, K., and Frappier, L. (2001). Reconstitution of Epstein-Barr virus-based plasmid partitioning in budding yeast. Embo J 20(1–2), 222–30.PubMedCrossRefGoogle Scholar
  105. Katz, B. Z., Raab-Traub, N., and Miller, G. (1989). Latent and replicating forms of Epstein-Barr virus DNA in lymphomas and lymphoproliferative diseases. J Infect Dis 160(4), 589–98.PubMedCrossRefGoogle Scholar
  106. Kaul, R., Verma, S. C., and Robertson, E. S. (2007). Protein complexes associated with the Kaposi's sarcoma-associated herpesvirus-encoded LANA. Virology 364(2), 317–29.PubMedCrossRefGoogle Scholar
  107. Kaye, K. M., Izumi, K. M., and Kieff, E. (1993). Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA 90(19), 9150–4.PubMedCrossRefGoogle Scholar
  108. Kedes, D. H., Lagunoff, M., Renne, R., and Ganem, D. (1997). Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi's sarcoma-associated herpesvirus. J Clin Invest 100(10), 2606–10.PubMedCrossRefGoogle Scholar
  109. Kellam, P., Boshoff, C., Whitby, D., Matthews, S., Weiss, R. A., and Talbot, S. J. (1997). Identification of a major latent nuclear antigen, LNA-1, in the human herpesvirus 8 genome. J Hum Virol 1(1), 19–29.PubMedGoogle Scholar
  110. Kempkes, B., Spitkovsky, D., Jansen-Durr, P., Ellwart, J. W., Kremmer, E., Delecluse, H. J., Rottenberger, C., Bornkamm, G. W., and Hammerschmidt, W. (1995). B-cell proliferation and induction of early G1-regulating proteins by Epstein-Barr virus mutants conditional for EBNA2. Embo J 14(1), 88–96.PubMedGoogle Scholar
  111. Khanna, R., Bell, S., Sherritt, M., Galbraith, A., Burrows, S. R., Rafter, L., Clarke, B., Slaughter, R., Falk, M. C., Douglass, J., Williams, T., Elliott, S. L., and Moss, D. J. (1999). Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci USA 96(18), 10391–6.PubMedCrossRefGoogle Scholar
  112. Klein, G., Giovanella, B. C., Lindahl, T., Fialkow, P. J., Singh, S., and Stehlin, J. S. (1974). Direct evidence for the presence of Epstein-Barr virus DNA and nuclear antigen in malignant epithelial cells from patients with poorly differentiated carcinoma of the nasopharynx. Proc Natl Acad Sci USA 71(12), 4737–41.PubMedCrossRefGoogle Scholar
  113. Knight, J. S., Cotter, M. A., 2nd, and Robertson, E. S. (2001). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus transactivates the telomerase reverse transcriptase promoter. J Biol Chem 276(25), 22971–8.PubMedCrossRefGoogle Scholar
  114. Knight, J. S., and Robertson, E. S. (2004). Epstein-Barr virus nuclear antigen 3C regulates cyclin A/p27 complexes and enhances cyclin A-dependent kinase activity. J Virol 78(4), 1981–91.PubMedCrossRefGoogle Scholar
  115. Knight, J. S., Sharma, N., and Robertson, E. S. (2005a). Epstein-Barr virus latent antigen 3C can mediate the degradation of the retinoblastoma protein through an SCF cellular ubiquitin ligase. Proc Natl Acad Sci USA 102(51), 18562–6.Google Scholar
  116. Knight, J. S., Sharma, N., and Robertson, E. S. (2005b). SCFSkp2 complex targeted by Epstein-Barr virus essential nuclear antigen. Mol Cell Biol 25(5), 1749–63.Google Scholar
  117. Kohn, D. B., Anderson, W. F., and Blaese, R. M. (1989). Gene therapy for genetic diseases. Cancer Invest 7(2), 179–92.PubMedCrossRefGoogle Scholar
  118. Krithivas, A., Fujimuro, M., Weidner, M., Young, D. B., and Hayward, S. D. (2002). Protein interactions targeting the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus to cell chromosomes. J Virol 76(22), 11596–604.PubMedCrossRefGoogle Scholar
  119. Kurth, R. (1995). Risk potential of the chromosomal insertion of foreign DNA. Ann N Y Acad Sci 772, 140–51.PubMedCrossRefGoogle Scholar
  120. Kwun, H. J., da Silva, S. R., Shah, I. M., Blake, N., Moore, P. S., and Chang, Y. (2007). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J Virol 81(15), 8225–35.PubMedCrossRefGoogle Scholar
  121. Lagunoff, M., Bechtel, J., Venetsanakos, E., Roy, A. M., Abbey, N., Herndier, B., McMahon, M., and Ganem, D. (2002). De novo infection and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells. J Virol 76(5), 2440–8.PubMedCrossRefGoogle Scholar
  122. Lagunoff, M., and Ganem, D. (1997). The structure and coding organization of the genomic termini of Kaposi's sarcoma-associated herpesvirus. Virology 236(1), 147–54.PubMedCrossRefGoogle Scholar
  123. Laichalk, L. L., and Thorley-Lawson, D. A. (2005). Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79(2), 1296–307.PubMedCrossRefGoogle Scholar
  124. LaJeunesse, D. R., Brooks, K., and Adamson, A. L. (2005). Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 alter mitochondrial morphology during lytic replication. Biochem Biophys Res Commun 333(2), 438–42.PubMedCrossRefGoogle Scholar
  125. Lanier, A. P., Bornkamm, G. W., Henle, W., Henle, G., Bender, T. R., Talbot, M. L., and Dohan, P. H. (1981). Association of Epstein-Barr virus with nasopharyngeal carcinoma in Alaskan native patients: serum antibodies and tissue EBNA and DNA. Int J Cancer 28(3), 301–5.PubMedCrossRefGoogle Scholar
  126. Larson, R. S., Scott, M. A., McCurley, T. L., and Vnencak-Jones, C. L. (1996). Microsatellite analysis of posttransplant lymphoproliferative disorders: determination of donor/recipient origin and identification of putative lymphomagenic mechanism. Cancer Res 56(19), 4378–81.PubMedGoogle Scholar
  127. Lee, B. S., Alvarez, X., Ishido, S., Lackner, A. A., and Jung, J. U. (2000). Inhibition of intracellular transport of B cell antigen receptor complexes by Kaposi's sarcoma-associated herpesvirus K1. J Exp Med 192(1), 11–21.PubMedCrossRefGoogle Scholar
  128. Lee, H., Veazey, R., Williams, K., Li, M., Guo, J., Neipel, F., Fleckenstein, B., Lackner, A., Desrosiers, R. C., and Jung, J. U. (1998). Deregulation of cell growth by the K1 gene of Kaposi's sarcoma-associated herpesvirus. Nat Med 4(4), 435–40.PubMedCrossRefGoogle Scholar
  129. Lerner, M. R., Andrews, N. C., Miller, G., and Steitz, J. A. (1981). Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 78(2), 805–9.PubMedCrossRefGoogle Scholar
  130. Levitskaya, J., Coram, M., Levitsky, V., Imreh, S., Steigerwald-Mullen, P. M., Klein, G., Kurilla, M. G., and Masucci, M. G. (1995). Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375(6533), 685–8.PubMedCrossRefGoogle Scholar
  131. Li, M., Lee, H., Yoon, D. W., Albrecht, J. C., Fleckenstein, B., Neipel, F., and Jung, J. U. (1997). Kaposi's sarcoma-associated herpesvirus encodes a functional cyclin. J Virol 71(3), 1984–91.PubMedGoogle Scholar
  132. Liang, Y., and Ganem, D. (2003). Lytic but not latent infection by Kaposi's sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc Natl Acad Sci USA 100(14), 8490–5.PubMedCrossRefGoogle Scholar
  133. Lubyova, B., and Pitha, P. M. (2000). Characterization of a novel human herpesvirus 8-encoded protein, vIRF-3, that shows homology to viral and cellular interferon regulatory factors. J Virol 74(17), 8194–201.PubMedCrossRefGoogle Scholar
  134. Mackey, D., Middleton, T., and Sugden, B. (1995). Multiple regions within EBNA1 can link DNAs. J Virol 69(10), 6199–208.PubMedGoogle Scholar
  135. Mackey, D., and Sugden, B. (1997). Studies on the mechanism of DNA linking by Epstein-Barr virus nuclear antigen 1. J Biol Chem 272(47), 29873–9.PubMedCrossRefGoogle Scholar
  136. Malik, P., Blackbourn, D. J., Cheng, M. F., Hayward, G. S., and Clements, J. B. (2004). Functional co-operation between the Kaposi's sarcoma-associated herpesvirus ORF57 and ORF50 regulatory proteins. J Gen Virol 85(Pt 8), 2155–66.PubMedCrossRefGoogle Scholar
  137. Marchini, A., Tomkinson, B., Cohen, J. I., and Kieff, E. (1991). BHRF1, the Epstein-Barr virus gene with homology to Bc12, is dispensable for B-lymphocyte transformation and virus replication. J Virol 65(11), 5991–6000.PubMedGoogle Scholar
  138. Miller, C. L., Lee, J. H., Kieff, E., and Longnecker, R. (1994). An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci USA 91(2), 772–6.PubMedCrossRefGoogle Scholar
  139. Miyashita, E. M., Yang, B., Babcock, G. J., and Thorley-Lawson, D. A. (1997). Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J Virol 71(7), 4882–91.PubMedGoogle Scholar
  140. Moore, P. S., Boshoff, C., Weiss, R. A., and Chang, Y. (1996). Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274(5293), 1739–44.PubMedCrossRefGoogle Scholar
  141. Moore, P. S., and Chang, Y. (2003). Kaposi's sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin? Annu Rev Microbiol 57, 609–39.PubMedCrossRefGoogle Scholar
  142. Moosa, M. R., Treurnicht, F. K., van Rensburg, E. J., Schneider, J. W., Jordaan, H. F., and Engelbrecht, S. (1998). Detection and subtyping of human herpesvirus-8 in renal transplant patients before and after remission of Kaposi's sarcoma. Transplantation 66(2), 214–8.PubMedCrossRefGoogle Scholar
  143. Moses, A. V., Fish, K. N., Ruhl, R., Smith, P. P., Strussenberg, J. G., Zhu, L., Chandran, B., and Nelson, J. A. (1999). Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J Virol 73(8), 6892–902.PubMedGoogle Scholar
  144. Mosialos, G., Birkenbach, M., Yalamanchili, R., VanArsdale, T., Ware, C., and Kieff, E. (1995). The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80(3), 389–99.PubMedCrossRefGoogle Scholar
  145. Muromoto, R., Okabe, K., Fujimuro, M., Sugiyama, K., Yokosawa, H., Seya, T., and Matsuda, T. (2006). Physical and functional interactions between STAT3 and Kaposi's sarcoma-associated herpesvirus-encoded LANA. FEBS Lett 580(1), 93–8.PubMedCrossRefGoogle Scholar
  146. Nador, R. G., Cesarman, E., Chadburn, A., Dawson, D. B., Ansari, M. Q., Sald, J., and Knowles, D. M. (1996). Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus. Blood 88(2), 645–56.PubMedGoogle Scholar
  147. Nash, A. A., Dutia, B. M., Stewart, J. P., and Davison, A. J. (2001). Natural history of murine gamma-herpesvirus infection. Philos Trans R Soc Lond B Biol Sci 356(1408), 569–79.PubMedCrossRefGoogle Scholar
  148. Neipel, F., Albrecht, J. C., and Fleckenstein, B. (1997). Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol 71(6), 4187–92.PubMedGoogle Scholar
  149. Neipel, F., Albrecht, J. C., and Fleckenstein, B. (1998). Human herpesvirus 8--the first human Rhadinovirus. J Natl Cancer Inst Monogr (23), 73–7.Google Scholar
  150. Niederman, J. C., McCollum, R. W., Henle, G., and Henle, W. (1968). Infectious mononucleosis. Clinical manifestations in relation to EB virus antibodies. Jama 203(3), 205–9.PubMedCrossRefGoogle Scholar
  151. Nilsson, K., Klein, G., Henle, W., and Henle, G. (1971). The establishment of lymphoblastoid lines from adult and fetal human lymphoid tissue and its dependence on EBV. Int J Cancer 8(3), 443–50.PubMedGoogle Scholar
  152. Nonkwelo, C., Ruf, I. K., and Sample, J. (1997). The Epstein-Barr virus EBNA-1 promoter Qp requires an initiator-like element. J Virol 71(1), 354–61.PubMedGoogle Scholar
  153. Nonoyama, M., Huang, C. H., Pagano, J. S., Klein, G., and Singh, S. (1973). DNA of Epstein-Barr virus detected in tissue of Burkitt's lymphoma and nasopharyngeal carcinoma. Proc Natl Acad Sci USA 70(11), 3265–8.PubMedCrossRefGoogle Scholar
  154. Norio, P., and Schildkraut, C. L. (2001). Visualization of DNA replication on individual Epstein-Barr virus episomes. Science 294(5550), 2361–4.PubMedCrossRefGoogle Scholar
  155. Norio, P., and Schildkraut, C. L. (2004). Plasticity of DNA replication initiation in Epstein-Barr virus episomes. PLoS Biol 2(6), e152.PubMedCrossRefGoogle Scholar
  156. Oehmig, A., Fraefel, C., Breakefield, X. O., and Ackermann, M. (2004). Herpes simplex virus type 1 amplicons and their hybrid virus partners, EBV, AAV, and retrovirus. Curr Gene Ther 4(4), 385–408.PubMedGoogle Scholar
  157. Ottinger, M., Christalla, T., Nathan, K., Brinkmann, M. M., Viejo-Borbolla, A., and Schulz, T. F. (2006). Kaposi's sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest. J Virol 80(21), 10772–86.PubMedCrossRefGoogle Scholar
  158. Parker, G. A., Crook, T., Bain, M., Sara, E. A., Farrell, P. J., and Allday, M. J. (1996). Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene 13(12), 2541–9.PubMedGoogle Scholar
  159. Parravicini, C., Olsen, S. J., Capra, M., Poli, F., Sirchia, G., Gao, S. J., Berti, E., Nocera, A., Rossi, E., Bestetti, G., Pizzuto, M., Galli, M., Moroni, M., Moore, P. S., and Corbellino, M. (1997). Risk of Kaposi's sarcoma-associated herpes virus transmission from donor allografts among Italian posttransplant Kaposi's sarcoma patients. Blood 90(7), 2826–9.PubMedGoogle Scholar
  160. Pathmanathan, R., Prasad, U., Chandrika, G., Sadler, R., Flynn, K., and Raab-Traub, N. (1995). Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein-Barr virus-infected neoplasia. Am J Pathol 146(6), 1355–67.PubMedGoogle Scholar
  161. Paulose-Murphy, M., Ha, N. K., Xiang, C., Chen, Y., Gillim, L., Yarchoan, R., Meltzer, P., Bittner, M., Trent, J., and Zeichner, S. (2001). Transcription program of human herpesvirus 8 (kaposi's sarcoma-associated herpesvirus). J Virol 75(10), 4843–53.PubMedCrossRefGoogle Scholar
  162. Pearson, G. R., Henle, G., and Henle, W. (1971). Production of antigens associated with Epstein-Barr virus in experimentally infected lymphoblastoid cell lines. J Natl Cancer Inst 46(6), 1243–50.PubMedGoogle Scholar
  163. Penn, I. (2000). Cancers in renal transplant recipients. Adv Ren Replace Ther 7(2), 147–56.PubMedGoogle Scholar
  164. Pfuller, R., and Hammerschmidt, W. (1996). Plasmid-like replicative intermediates of the Epstein-Barr virus lytic origin of DNA replication. J Virol 70(6), 3423–31.PubMedGoogle Scholar
  165. Piolot, T., Tramier, M., Coppey, M., Nicolas, J. C., and Marechal, V. (2001). Close but distinct regions of human herpesvirus 8 latency-associated nuclear antigen 1 are responsible for nuclear targeting and binding to human mitotic chromosomes. J Virol 75(8), 3948–59.PubMedCrossRefGoogle Scholar
  166. Popescu, I., Macedo, C., Zeevi, A., Nellis, J., Patterson, K. R., Logar, A., Rowe, D., Reyes, J., Rao, A. S., Storkus, W. J., Fung, J. J., and Metes, D. (2003). Ex vivo priming of naive T cells into EBV-specific Th1/Tc1 effector cells by mature autologous DC loaded with apoptotic/necrotic LCL. Am J Transplant 3(11), 1369–77.PubMedCrossRefGoogle Scholar
  167. Radkov, S. A., Kellam, P., and Boshoff, C. (2000). The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat Med 6(10), 1121–7.PubMedCrossRefGoogle Scholar
  168. Raghavachar, A., Ganser, A., Freund, M., Heimpel, H., Herrmann, F., and Schrezenmeier, H. (1996). Long-term interleukin-3 and intensive immunosuppression in the treatment of aplastic anemia. Cytokines Mol Ther 2(4), 215–23.PubMedGoogle Scholar
  169. Rainbow, L., Platt, G. M., Simpson, G. R., Sarid, R., Gao, S. J., Stoiber, H., Herrington, C. S., Moore, P. S., and Schulz, T. F. (1997). The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71(8), 5915–21.PubMedGoogle Scholar
  170. Reedman, B. M., and Klein, G. (1973). Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int J Cancer 11(3), 499–520.PubMedCrossRefGoogle Scholar
  171. Reeves, R., and Beckerbauer, L. (2001). HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochim Biophys Acta 1519(1–2), 13–29.PubMedGoogle Scholar
  172. Reisman, D., Yates, J., and Sugden, B. (1985). A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol Cell Biol 5(8), 1822–32.PubMedGoogle Scholar
  173. Renne, R., Barry, C., Dittmer, D., Compitello, N., Brown, P. O., and Ganem, D. (2001). Modulation of cellular and viral gene expression by the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus. J Virol 75(1), 458–68.PubMedCrossRefGoogle Scholar
  174. Renne, R., Lagunoff, M., Zhong, W., and Ganem, D. (1996a). The size and conformation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected cells and virions. J Virol 70(11), 8151–4.Google Scholar
  175. Renne, R., Zhong, W., Herndier, B., McGrath, M., Abbey, N., Kedes, D., and Ganem, D. (1996b). Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2(3), 342–6.Google Scholar
  176. Rickabaugh, T. M., Brown, H. J., Wu, T. T., Song, M. J., Hwang, S., Deng, H., Mitsouras, K., and Sun, R. (2005). Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 RTA reactivates murine gammaherpesvirus 68 from latency. J Virol 79(5), 3217–22.PubMedCrossRefGoogle Scholar
  177. Rickinson, A. B., and Keiff, E. (2001). Epstein-Barr Virus. In Fields Virology, B. N. Fields, D. M. Knipe, and P. M. Howley (eds.), Lippincott-Raven Publishers, Philadelphia, 2575–2627.Google Scholar
  178. Rickinson, A. B., and Keiff, E. (2002). Epstein-Barr Virus. In Fields Virology, B. N. Fields, D. M. Knipe, and P. M. Howley (eds.), Lippincott-Raven Publishers, Philadelphia, 2575–2627.Google Scholar
  179. Rickinson, A. B., and Kieff, E. (1996). “Epstein-Barr Virus.” 3rd ed. Fields Virology, D. M. Knipe and P. M. Howley, (eds.), 2.2 vols. Lippincott-Raven, Philadelphia.Google Scholar
  180. Robertson, E., and Kieff, E. (1995). Reducing the complexity of the transforming Epstein-Barr virus genome to 64 kilobase pairs. J Virol 69(2), 983–93.PubMedGoogle Scholar
  181. Robertson, E. S., Grossman, S., Johannsen, E., Miller, C., Lin, J., Tomkinson, B., and Kieff, E. (1995). Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa. J Virol 69(5), 3108–16.PubMedGoogle Scholar
  182. Roizman, B. (1996). “Herpesviridae.” 3rd ed. Fields Virology, D. M. Knipe and P. M. Howley (eds.), 2.2 vols. Lippincott-Raven, Philadelphia.Google Scholar
  183. Rowe, M., Rowe, D. T., Gregory, C. D., Young, L. S., Farrell, P. J., Rupani, H., and Rickinson, A. B. (1987). Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lymphoma cells. Embo J 6(9), 2743–51.PubMedGoogle Scholar
  184. Russo, J. J., Bohenzky, R. A., Chien, M. C., Chen, J., Yan, M., Maddalena, D., Parry, J. P., Peruzzi, D., Edelman, I. S., Chang, Y., and Moore, P. S. (1996). Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 93(25), 14862–7.PubMedCrossRefGoogle Scholar
  185. Rymo, L. (1979). Identification of transcribed regions of Epstein-Barr virus DNA in Burkitt lymphoma-derived cells. J Virol 32(1), 8–18.PubMedGoogle Scholar
  186. Sadler, R. H., and Raab-Traub, N. (1995). The Epstein-Barr virus 3.5-kilobase latent membrane protein 1 mRNA initiates from a TATA-Less promoter within the first terminal repeat. J Virol 69(7), 4577–81.PubMedGoogle Scholar
  187. Sarid, R., Sato, T., Bohenzky, R. A., Russo, J. J., and Chang, Y. (1997). Kaposi's sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nat Med 3(3), 293–8.PubMedCrossRefGoogle Scholar
  188. Sarid, R., Wiezorek, J. S., Moore, P. S., and Chang, Y. (1999). Characterization and cell cycle regulation of the major Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) latent genes and their promoter. J Virol 73(2), 1438–46.PubMedGoogle Scholar
  189. Savoldo, B., Goss, J., Liu, Z., Huls, M. H., Doster, S., Gee, A. P., Brenner, M. K., Heslop, H. E., and Rooney, C. M. (2001). Generation of autologous Epstein-Barr virus-specific cytotoxic T cells for adoptive immunotherapy in solid organ transplant recipients. Transplantation 72(6), 1078–86.PubMedCrossRefGoogle Scholar
  190. Scala, G., Quinto, I., Ruocco, M. R., Mallardo, M., Ambrosino, C., Squitieri, B., Tassone, P., and Venuta, S. (1993). Epstein-Barr virus nuclear antigen 2 transactivates the long terminal repeat of human immunodeficiency virus type 1. J Virol 67(5), 2853–61.PubMedGoogle Scholar
  191. Schalling, M., Ekman, M., Kaaya, E. E., Linde, A., and Biberfeld, P. (1995). A role for a new herpes virus (KSHV) in different forms of Kaposi's sarcoma. Nat Med 1(7), 707–8.PubMedCrossRefGoogle Scholar
  192. Schepers, A., Ritzi, M., Bousset, K., Kremmer, E., Yates, J. L., Harwood, J., Diffley, J. F., and Hammerschmidt, W. (2001). Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. Embo J 20(16), 4588–602.PubMedCrossRefGoogle Scholar
  193. Schulte-Holthausen, H., and zur Hausen, H. (1970). Partial purification of the Epstein-Barr virus and some properties of its DNA. Virology 40(3), 776–9.PubMedCrossRefGoogle Scholar
  194. Schwam, D. R., Luciano, R. L., Mahajan, S. S., Wong, L., and Wilson, A. C. (2000). Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies. J Virol 74(18), 8532–40.PubMedCrossRefGoogle Scholar
  195. Sears, J., Kolman, J., Wahl, G. M., and Aiyar, A. (2003). Metaphase chromosome tethering is necessary for the DNA synthesis and maintenance of oriP plasmids but is insufficient for transcription activation by Epstein-Barr nuclear antigen 1. J Virol 77(21), 11767–80.PubMedCrossRefGoogle Scholar
  196. Sears, J., Ujihara, M., Wong, S., Ott, C., Middeldorp, J., and Aiyar, A. (2004). The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J Virol 78(21), 11487–505.PubMedCrossRefGoogle Scholar
  197. Shinohara, H., Fukushi, M., Higuchi, M., Oie, M., Hoshi, O., Ushiki, T., Hayashi, J., and Fujii, M. (2002). Chromosome binding site of latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus is essential for persistent episome maintenance and is functionally replaced by histone H1. J Virol 76(24), 12917–24.PubMedCrossRefGoogle Scholar
  198. Shire, K., Ceccarelli, D. F., Avolio-Hunter, T. M., and Frappier, L. (1999). EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance. J Virol 73(4), 2587–95.PubMedGoogle Scholar
  199. Si, H., and Robertson, E. S. (2006). Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen induces chromosomal instability through inhibition of p53 function. J Virol 80(2), 697–709.PubMedCrossRefGoogle Scholar
  200. Silvestris, N. (1999). AIDS-related Kaposi's sarcoma: principal pathogenic mechanisms. J Exp Clin Cancer Res 18(3), 311–5.PubMedGoogle Scholar
  201. Sinclair, A. J. (2003). bZIP proteins of human gammaherpesviruses. J Gen Virol 84(Pt 8), 1941–9.PubMedCrossRefGoogle Scholar
  202. Soulier, J., Grollet, L., Oksenhendler, E., Cacoub, P., Cazals-Hatem, D., Babinet, P., d'Agay, M. F., Clauvel, J. P., Raphael, M., Degos, L., et al. (1995). Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86(4), 1276–80.PubMedGoogle Scholar
  203. Starzl, T. E., Nalesnik, M. A., Porter, K. A., Ho, M., Iwatsuki, S., Griffith, B. P., Rosenthal, J. T., Hakala, T. R., Shaw, B. W., Jr., Hardesty, R. L., et al. (1984). Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet 1(8377), 583–7.PubMedCrossRefGoogle Scholar
  204. Stedman, W., Deng, Z., Lu, F., and Lieberman, P. M. (2004). ORC, MCM, and histone hyperacetylation at the Kaposi's sarcoma-associated herpesvirus latent replication origin. J Virol 78(22), 12566–75.PubMedCrossRefGoogle Scholar
  205. Stevenson, P. G. (2004). Immune evasion by gamma-herpesviruses. Curr Opin Immunol 16(4), 456–62.PubMedCrossRefGoogle Scholar
  206. Subklewe, M., Sebelin, K., Block, A., Meier, A., Roukens, A., Paludan, C., Fonteneau, J. F., Steinman, R. M., and Munz, C. (2005). Dendritic cells expand Epstein Barr virus specific CD8+ T cell responses more efficiently than EBV transformed B cells. Hum Immunol 66(9), 938–49.PubMedCrossRefGoogle Scholar
  207. Summers, H., Barwell, J. A., Pfuetzner, R. A., Edwards, A. M., and Frappier, L. (1996). Cooperative assembly of EBNA1 on the Epstein-Barr virus latent origin of replication. J Virol 70(2), 1228–31.PubMedGoogle Scholar
  208. Swanton, C., Mann, D. J., Fleckenstein, B., Neipel, F., Peters, G., and Jones, N. (1997). Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature 390(6656), 184–7.PubMedCrossRefGoogle Scholar
  209. Swinnen, L. J. (2001). Post-transplant lymphoproliferative disorders: implications for acquired immunodeficiency syndrome-associated malignancies. J Natl Cancer Inst Monogr (28), 38–43.PubMedGoogle Scholar
  210. Szekely, L., Kiss, C., Mattsson, K., Kashuba, E., Pokrovskaja, K., Juhasz, A., Holmvall, P., and Klein, G. (1999). Human herpesvirus-8-encoded LNA-1 accumulates in heterochromatin- associated nuclear bodies. J Gen Virol 80( Pt 11), 2889–900.PubMedGoogle Scholar
  211. Taylor, J. L., Bennett, H. N., Snyder, B. A., Moore, P. S., and Chang, Y. (2005). Transcriptional analysis of latent and inducible Kaposi's sarcoma-associated herpesvirus transcripts in the K4 to K7 region. J Virol 79(24), 15099–106.PubMedCrossRefGoogle Scholar
  212. Tellam, J., Sherritt, M., Thomson, S., Tellam, R., Moss, D. J., Burrows, S. R., Wiertz, E., and Khanna, R. (2001). Targeting of EBNA1 for rapid intracellular degradation overrides the inhibitory effects of the Gly-Ala repeat domain and restores CD8+ T cell recognition. J Biol Chem 276(36), 33353–60.PubMedCrossRefGoogle Scholar
  213. Terry, L. A., Stewart, J. P., Nash, A. A., and Fazakerley, J. K. (2000). Murine gammaherpesvirus-68 infection of and persistence in the central nervous system. J Gen Virol 81(Pt 11), 2635–43.PubMedGoogle Scholar
  214. Theate, I., Michaux, L., Squifflet, J. P., Martin, A., and Raphael, M. (2003). Human herpesvirus 8 and Epstein-Barr virus-related monotypic large B-cell lymphoproliferative disorder coexisting with mixed variant of Castleman's disease in a lymph node of a renal transplant recipient. Clin Transplant 17(5), 451–4.PubMedCrossRefGoogle Scholar
  215. Thomas, P. P., Jacob, C. K., Kirubakaran, M. G., and Shastry, J. C. (1990). Cyclosporine in the treatment of acute vascular rejection of renal allografts. Transplantation 50(3), 521–2.PubMedCrossRefGoogle Scholar
  216. Thorley-Lawson, D. A. (2001). Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1(1), 75–82.PubMedCrossRefGoogle Scholar
  217. Thorley-Lawson, D. A. (2005). EBV Persistence and latent infection in vivo. Epstein-Barr Virus, E. S. Robertson (eds.), Chapter 17, 309–357.Google Scholar
  218. Tomkinson, B., and Kieff, E. (1992). Second-site homologous recombination in Epstein-Barr virus: insertion of type 1 EBNA 3 genes in place of type 2 has no effect on in vitro infection. J Virol 66(2), 780–9.PubMedGoogle Scholar
  219. Tong, X., Wang, F., Thut, C. J., and Kieff, E. (1995). The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol 69(1), 585–8.PubMedGoogle Scholar
  220. Tsurumi, T., Fujita, M., and Kudoh, A. (2005). Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol 15(1), 3–15.PubMedCrossRefGoogle Scholar
  221. Verma, S., Frambach, G. E., Seilstad, K. H., Nuovo, G., Porcu, P., and Magro, C. M. (2005). Epstein–Barr virus-associated B-cell lymphoma in the setting of iatrogenic immune dysregulation presenting initially in the skin. J Cutan Pathol 32(7), 474–83.PubMedCrossRefGoogle Scholar
  222. Verma, S. C., Borah, S., and Robertson, E. S. (2004). Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus up-regulates transcription of human telomerase reverse transcriptase promoter through interaction with transcription factor Sp1. J Virol 78(19), 10348–59.PubMedCrossRefGoogle Scholar
  223. Verma, S. C., Choudhuri, T., Kaul, R., and Robertson, E. S. (2006a). Latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus interacts with origin recognition complexes at the LANA binding sequence within the terminal repeats. J Virol 80(5), 2243–56.Google Scholar
  224. Verma, S. C., Lan, K., Choudhuri, T., and Robertson, E. S. (2006b). Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen modulates K1 expression through its cis-acting elements within the terminal repeats. J Virol 80(7), 3445–58.Google Scholar
  225. Verma, S. C., Choudhuri, T., and Robertson, E. S. (2006c). The Minimal Replicator Element of KSHV Terminal Repeat Supports Replication in a Semi-Conservative and Cell Cycle Dependent Manner. J Virol 81(7), 3402–3413.Google Scholar
  226. Verma, S. C., Choudhuri, T., and Robertson, E. S. (2007). The minimal replicator element of the Kaposi's sarcoma-associated herpesvirus terminal repeat supports replication in a semiconservative and cell-cycle-dependent manner. J Virol 81(7), 3402–13.PubMedCrossRefGoogle Scholar
  227. Verma, S. C., Lan, K., and Robertson, E. (2007). Structure and function of latency-associated nuclear antigen. Curr Top Microbiol Immunol 312, 101–36.PubMedCrossRefGoogle Scholar
  228. Verma, S. C., Lan, K., Choudhuri, T., Cotter, M.A. and Robertson, E. S. (2007). An Autonomous Replicating Element in the KSHV Genome. Cell Host and Microbe 2(2), 106–118.Google Scholar
  229. Verma, S. C., and Robertson, E. S. (2003). Molecular biology and pathogenesis of Kaposi sarcoma-associated herpesvirus. FEMS Microbiol Lett 222(2), 155–63.PubMedCrossRefGoogle Scholar
  230. Viejo-Borbolla, A., Ottinger, M., Bruning, E., Burger, A., Konig, R., Kati, E., Sheldon, J. A., and Schulz, T. F. (2005). Brd2/RING3 interacts with a chromatin-binding domain in the Kaposi's Sarcoma-associated herpesvirus latency-associated nuclear antigen 1 (LANA-1) that is required for multiple functions of LANA-1. J Virol 79(21), 13618–29.PubMedCrossRefGoogle Scholar
  231. Waller, E. K., Ziemianska, M., Bangs, C. D., Cleary, M., Weissman, I., and Kamel, O. W. (1993). Characterization of posttransplant lymphomas that express T-cell-associated markers: immunophenotypes, molecular genetics, cytogenetics, and heterotransplantation in severe combined immunodeficient mice. Blood 82(1), 247–61.PubMedGoogle Scholar
  232. Wang, D., Liebowitz, D., and Kieff, E. (1985). An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43(3 Pt 2), 831–40.PubMedCrossRefGoogle Scholar
  233. Wang, F., Tsang, S. F., Kurilla, M. G., Cohen, J. I., and Kieff, E. (1990). Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol 64(7), 3407–16.PubMedGoogle Scholar
  234. Wang, L., Dittmer, D. P., Tomlinson, C. C., Fakhari, F. D., and Damania, B. (2006). Immortalization of primary endothelial cells by the K1 protein of Kaposi's sarcoma-associated herpesvirus. Cancer Res 66(7), 3658–66.PubMedCrossRefGoogle Scholar
  235. Wang, Y., and Yuan, Y. (2007). Essential role of RBP-Jkappa in activation of the K8 delayed-early promoter of Kaposi's sarcoma-associated herpesvirus by ORF50/RTA. Virology 359(1), 19–27.PubMedCrossRefGoogle Scholar
  236. Webster-Cyriaque, J., Duus, K., Cooper, C., and Duncan, M. (2006). Oral EBV and KSHV infection in HIV. Adv Dent Res 19(1), 91–5.PubMedCrossRefGoogle Scholar
  237. Weiner, D., Gibson, W., and Fields, K. L. (1985). Anti-complement immunofluorescence establishes nuclear localization of human cytomegalovirus matrix protein. Virology 147(1), 19–28.PubMedCrossRefGoogle Scholar
  238. Wen, W., Iwakiri, D., Yamamoto, K., Maruo, S., Kanda, T., and Takada, K. (2007). Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes. J Virol 81(2), 1037–42.PubMedCrossRefGoogle Scholar
  239. White, R. E., Wade-Martins, R., and James, M. R. (2002). Infectious delivery of 120-kilobase genomic DNA by an epstein-barr virus amplicon vector. Mol Ther 5(4), 427–35.PubMedCrossRefGoogle Scholar
  240. Widmer, I., Wernli, M., Bachmann, F., Gudat, F., Cathomas, G., and Erb, P. (2002). Differential expression of viral Bcl-2 encoded by Kaposi's sarcoma-associated herpesvirus and human Bcl-2 in primary effusion lymphoma cells and Kaposi's sarcoma lesions. J Virol 76(5), 2551–6.PubMedCrossRefGoogle Scholar
  241. Wolf, H., zur Hausen, H., and Becker, V. (1973). EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nat New Biol 244(138), 245–7.PubMedGoogle Scholar
  242. Wong, L. Y., and Wilson, A. C. (2005). Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen induces a strong bend on binding to terminal repeat DNA. J Virol 79(21), 13829–36.PubMedCrossRefGoogle Scholar
  243. Wu, H., Ceccarelli, D. F., and Frappier, L. (2000). The DNA segregation mechanism of Epstein-Barr virus nuclear antigen 1. EMBO Rep 1(2), 140–4.PubMedCrossRefGoogle Scholar
  244. Yates, J., Warren, N., Reisman, D., and Sugden, B. (1984). A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA 81(12), 3806–10.PubMedCrossRefGoogle Scholar
  245. Yates, J. L., Warren, N., and Sugden, B. (1985). Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313(6005), 812–5.PubMedCrossRefGoogle Scholar
  246. Yewdell, J. W. (2003). Immunology. Hide and seek in the peptidome. Science 301(5638), 1334–5.PubMedCrossRefGoogle Scholar
  247. Yin, Y., Manoury, B., and Fahraeus, R. (2003). Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science 301(5638), 1371–4.PubMedCrossRefGoogle Scholar
  248. Yu, F., Harada, J. N., Brown, H. J., Deng, H., Song, M. J., Wu, T. T., Kato-Stankiewicz, J., Nelson, C. G., Vieira, J., Tamanoi, F., Chanda, S. K., and Sun, R. (2007). Systematic identification of cellular signals reactivating Kaposi sarcoma-associated herpesvirus. PLoS Pathog 3(3), e44.PubMedCrossRefGoogle Scholar
  249. Yu, Y., Black, J. B., Goldsmith, C. S., Browning, P. J., Bhalla, K., and Offermann, M. K. (1999). Induction of human herpesvirus-8 DNA replication and transcription by butyrate and TPA in BCBL-1 cells. J Gen Virol 80(Pt 1), 83–90.PubMedGoogle Scholar
  250. Zhang, L., and Pagano, J. S. (1999). Interferon regulatory factor 2 represses the Epstein-Barr virus BamHI Q latency promoter in type III latency. Mol Cell Biol 19(4), 3216–23.PubMedGoogle Scholar
  251. Zhu, F. X., Cusano, T., and Yuan, Y. (1999). Identification of the immediate-early transcripts of Kaposi's sarcoma-associated herpesvirus. J Virol 73(7), 5556–67.PubMedGoogle Scholar
  252. zur Hausen, H. (2005). The early days of Epstein-Barr Virus research: The Henle years. Epstein-Barr Virus, E. S. Robertson (eds.), Chapter 2, 15–22.Google Scholar
  253. Zur Hausen, H., and Schulte-Holthausen, H. (1970). Presence of EB virus nucleic acid homology in a “virus-free” line of Burkitt tumour cells. Nature 227(5255), 245–8.PubMedCrossRefGoogle Scholar
  254. zur Hausen, H., Schulte-Holthausen, H., Klein, G., Henle, W., Henle, G., Clifford, P., and Santesson, L. (1970). EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228(5276), 1056–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Subhash C. Verma
  • Qiliang Cai
  • Bharat G. Bajaj
  • Erle S. Robertson
    • 1
  1. 1.Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer CenterUniversity of Pennsylvania, School of MedicinePhiladelphia

Personalised recommendations