Advertisement

Adenovirus Transformation

  • Patrick Hearing
Chapter

Introduction

Adenoviruses (Ad) were first isolated by Rowe and colleagues in 1953 following the culture of primary cells from human adenoids (Rowe et al. 1953). Virus spread within these cultures was evident by a characteristic cytopathic effect of rounded and clumped cells detaching from the plate. The following year, Hilleman and Werner observed a similar type of cytopathic effect in cultured cells exposed to respiratory secretions from Army recruit with acute respiratory disease (Hilleman and Werner 1954). Common Ad infections are associated with pharyngitis, conjunctivitis and gastroenteritis. These infections are usually resolved quickly, resulting in lifelong immunity to the virus. Acute respiratory disease is a more severe pneumonia-like infection most often found in the military which results in significant morbidity. The adenovirus family is large and contains members that infect a wide range of animals, including monkeys, livestock, mice, birds, and humans. All these viruses...

Keywords

Cellular Gene Expression LXCXE Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I thank for colleagues for many helpful discussions. This work was supported by NIH grant CA122677.

References

  1. Arany, Z., Newsome, D., Oldread, E., Livingston, D.M. and Eckner, R. (1995) A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374, 81–4.PubMedCrossRefGoogle Scholar
  2. Baker, A., Rohleder, K.J., Hanakahi, L.A. and Ketner, G. (2007) The adenovirus E4 34 k and E1b 55 k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol. epub ahead of print.Google Scholar
  3. Baluchamy, S., Rajabi, H.N., Thimmapaya, R., Navaraj, A. and Thimmapaya, B. (2003) Repression of c-Myc and inhibition of G1 exit in cells conditionally overexpressing p300 that is not dependent on its histone acetyltransferase activity. Proc. Natl. Acad. Sci. USA 100, 9524–9.Google Scholar
  4. Baluchamy, S., Sankar, N., Navaraj, A., Moran, E. and Thimmapaya, B. (2007) Relationship between E1A binding to cellular proteins, c-myc activation and S-phase induction. Oncogene 26, 781–787.PubMedCrossRefGoogle Scholar
  5. Berk, A.J. (2005) Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24, 7673–7685.PubMedCrossRefGoogle Scholar
  6. Bondesson, M., Ohman, K., Manervik, M., Fan, S. and Akusjarvi, G. (1996) Adenovirus E4 open reading frame 4 protein autoregulates E4 transcription by inhibiting E1A transactivation of the E4 promoter. J. Virol. 70, 3844–3851.PubMedGoogle Scholar
  7. Boyd, J.M., Subramanian, T., Schaeper, U., La Regina, M., Bayley, S. and Chinnadurai, G. (1993) A region in the C-terminus of adenovirus 2/5 E1a protein is required for association with a cellular phosphoprotein and important for the negative modulation of T24-ras mediated transformation, tumorigenesis and metastasis. EMBO J. 12, 469–478.PubMedGoogle Scholar
  8. Chinnadurai, G. (1998) Control of apoptosis by human adenovirus genes. Semin. Virol. 8, 399–408.CrossRefGoogle Scholar
  9. Chinnadurai, G. (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mo.l Cell 9, 213–224.CrossRefGoogle Scholar
  10. Chinnadurai, G. (2006) CtIP, a candidate tumor susceptibility gene is a team player with luminaries. Biochim. Biophys. Acta 1765, 67–73.Google Scholar
  11. D’Amours, D. and Jackson, S.P. (2002) The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat. Rev. Mol. Cell. Biol. 3, 317–327.PubMedCrossRefGoogle Scholar
  12. de Stanchina, E., McCurrach, M.E., Zindy, F., Shieh, S.Y., Ferbeyre, G., Samuelson, A. V., Prives, C., Roussel, M. F., Sherr, C. J. and Lowe, S. W. (1998) E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12, 2434–2442.PubMedCrossRefGoogle Scholar
  13. Deleu, L., Shellard, S., Alevizopoulos, K., Amati, B. and Land, H. (2001) Recruitment of TRRAP required for oncogenic transformation by E1A. Oncogene 20, 8270–8275.PubMedCrossRefGoogle Scholar
  14. Dimova, D.K. and Dyson, N.J. (2005) The E2F transcriptional network: old acquaintances with new faces. Oncogene 24, 2810–2826.PubMedCrossRefGoogle Scholar
  15. Dobner, T., Horikoshi, N., Rubenwolf, S. and Shenk, T. (1996) Blockage by adenovirus E4orf6 of transcriptional activation by the p53 tumor suppressor. Science 272, 1470–1473.PubMedCrossRefGoogle Scholar
  16. Doucas, V., Ishov, A.M., Romo, A., Juguilon, H., Weitzman, M.D., Evans, R.M. and Maul, G.G. (1996) Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev. 10, 196–207.PubMedCrossRefGoogle Scholar
  17. Endter, C. and Dobner, T. (2004) Cell transformation by human adenoviruses. Curr. Top. Microbiol. Immunol. 273, 163–214.PubMedGoogle Scholar
  18. Endter, C., Kzhyshkowska, J., Stauber, R. and Dobner, T. (2001) SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc. Natl. Acad. Sci. USA 98, 11312–11317.Google Scholar
  19. Evans, J.D. and Hearing, P. (2005) Relocalization of the Mre11-Rad50-Nbs1 complex by the adenovirus E4 ORF3 protein is required for viral replication. J. Virol. 79, 6207–6215.PubMedCrossRefGoogle Scholar
  20. Frank, S.R., Parisi, T., Taubert, S., Fernandez, P., Fuchs, M., Chan, H.M., Livingston, D.M. and Amati, B. (2003) MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep. 4, 575–580.PubMedCrossRefGoogle Scholar
  21. Frese, K.K., Latorre, I.J., Chung, S.H., Caruana, G., Bernstein, A., Jones, S.N., Donehower, L.A., Justice, M.J., Garner, C.C. and Javier, R. T. (2006) Oncogenic function for the Dlg1 mammalian homolog of the Drosophila discs-large tumor suppressor. EMBO J. 25, 1406–1417.PubMedCrossRefGoogle Scholar
  22. Frese, K.K., Lee, S.S., Thomas, D.L., Latorre, I J., Weiss, R.S., Glaunsinger, B.A. and Javier, R.T. (2003) Selective PDZ protein-dependent stimulation of phosphatidylinositol 3-kinase by the adenovirus E4-ORF1 oncoprotein. Oncogene 22, 710–721.PubMedCrossRefGoogle Scholar
  23. Frisch, S.M. and Mymryk, J.S. (2002) Adenovirus-5 E1A: paradox and paradigm. Nat. Rev. Mo.l Cell. Biol. 3, 441–452.CrossRefGoogle Scholar
  24. Fuchs, M., Gerber, J., Drapkin, R., Sif, S., Ikura, T., Ogryzko, V., Lane, W.S., Nakatani, Y. and Livingston, D.M. (2001) The p400 complex is an essential E1A transformation target. Cell 106, 297–307.PubMedCrossRefGoogle Scholar
  25. Glaunsinger, B.A., Lee, S.S., Thomas, M., Banks, L. and Javier, R. (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19, 5270–5280.PubMedCrossRefGoogle Scholar
  26. Glaunsinger, B.A., Weiss, R.S., Lee, S.S. and Javier, R. (2001) Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2. EMBO J. 20, 5578–5586.PubMedCrossRefGoogle Scholar
  27. Harada, J.N., Shevchenko, A., Shevchenko, A., Pallas, D.C. and Berk, A.J. (2002) Analysis of the adenovirus E1B-55 K-anchored proteome reveals its link to ubiquitination machinery. J. Virol. 76, 9194–9206.PubMedCrossRefGoogle Scholar
  28. Hilleman, M.W.J. and Werner, J.H. (1954) Recovery of new agents from patients with acute respiratory illness. Proc. Soc. Exp. Biol. Med. 85, 183–188.Google Scholar
  29. Huang, M.M. and Hearing, P. (1989) The adenovirus early region 4 open reading frame 6/7 protein regulates the DNA binding activity of the cellular transcription factor, E2F, through a direct complex. Genes Dev. 3, 1699–1710.PubMedCrossRefGoogle Scholar
  30. Javier, R.T. (1994) Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats. J. Virol. 68, 3917–3924.PubMedGoogle Scholar
  31. Jelsma, T.N., Howe, J.A., Mymryk, J.S., Evelegh, C.M., Cunniff, N.F. and Bayley, S.T. (1989) Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of a transcriptional enhancer, and induction of proliferating cell nuclear antigen. Virol. 171, 120–130.CrossRefGoogle Scholar
  32. Kleinberger, T. and Shenk, T. (1993) Adenovirus E4orf4 protein binds to protein phosphatase 2A, and the complex down regulates E1A-enhanced junB transcription. J. Virol. 67, 7556–7560.PubMedGoogle Scholar
  33. Kolli, S., Buchmann, A.M., Williams, J., Weitzman, S. and Thimmapaya, B. (2001) Antisense-mediated depletion of p300 in human cells leads to premature G1 exit and up-regulation of c-MYC. Proc. Natl. Acad. Sci. USA 98, 4646–4651.Google Scholar
  34. Konig, C., Roth, J. and Dobbelstein, M. (1999) Adenovirus type 5 E4orf3 protein relieves p53 inhibition by E1B-55-kilodalton protein. J. Virol. 73, 2253–2262.PubMedGoogle Scholar
  35. Kovesdi, I., Reichel, R. and Nevins, J.R. (1986) Identification of a cellular transcription factor involved in E1A trans-Activation. Cell 45, 219–228.PubMedCrossRefGoogle Scholar
  36. Kulesza, C.A., Van Buskirk, H.A., Cole, M.D., Reese, J.C., Smith, M.M. and Engel, D.A. (2002) Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1. Oncogene 21, 1411–1422.PubMedCrossRefGoogle Scholar
  37. Lang, S.E. and Hearing, P. (2003) The adenovirus E1A oncoprotein recruits the cellular TRRAP/GCN5 histone acetyltransferase complex. Oncogene 22, 2836–2841.PubMedCrossRefGoogle Scholar
  38. Latorre, I.J., Roh, M.H., Frese, K.K., Weiss, R.S., Margolis, B. and Javier, R.T. (2005) Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J. Cell Sci. 118, 4283–4293.PubMedCrossRefGoogle Scholar
  39. Lavoie, J.N., Champagne, C., Gingras, M.C. and Robert, A. (2000) Adenovirus E4 open reading frame 4-induced apoptosis involves dysregulation of Src family kinases. J. Cell Biol. 150, 1037–1056.PubMedCrossRefGoogle Scholar
  40. Lavoie, J.N., Nguyen, M., Marcellus, R.C., Branton, P. E. and Shore, G. C. (1998) E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J. Cell Biol. 140, 637–645.PubMedCrossRefGoogle Scholar
  41. Lee, C.W., Sorensen, T.S., Shikama, N. and LaThangue, N.B. (1998) Functional interplay between p53 and E2F through coactivator p300. Oncogene 16, 2695–2710.PubMedCrossRefGoogle Scholar
  42. Lee, S.S., Glaunsinger, B., Mantovani, F., Banks, L. and Javier, R.T. (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J. Virol. 74, 9680–9693.PubMedCrossRefGoogle Scholar
  43. Lee, S.S., Weiss, R.S.,and Javier, R.T. (1997) Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad .Sci. USA 94, 6670–6675.Google Scholar
  44. Liu, Y., Colosimo, A. L., Yang, X.J. and Liao, D. (2000) Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF. Mol. Cell. Biol. 20, 5540–5553.PubMedCrossRefGoogle Scholar
  45. Livne, A., Shtrichman, R. and Kleinberger, T. (2001) Caspase activation by adenovirus e4orf4 protein is cell line specific and Is mediated by the death receptor pathway. J. Virol. 75, 789–798.PubMedCrossRefGoogle Scholar
  46. Lundblad, J.R., Kwok, R.P., Laurance, M.E., Harter, M.L. and Goodman, R.H. (1995) Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374, 85–88.PubMedCrossRefGoogle Scholar
  47. Macaluso, M., Montanari, M. and Giordano, A. (2006) Rb family proteins as modulators of gene expression and new aspects regarding the interaction with chromatin remodeling enzymes. Oncogene 25, 5263–5267.PubMedCrossRefGoogle Scholar
  48. Marcellus, R.C., Chan, H., Paquette, D., Thirlwell, S., Boivin, D. and Branton, P.E. (2000) Induction of p53-independent apoptosis by the adenovirus E4orf4 protein requires binding to the Balpha subunit of protein phosphatase 2A. J. Virol. 74, 7869–7877.PubMedCrossRefGoogle Scholar
  49. Marcellus, R.C., Lavoie, J.N., Boivin, D., Shore, G.C., Ketner, G. and Branton, P.E. (1998) The early region 4 orf4 protein of human adenovirus type 5 induces p53-independent cell death by apoptosis. J. Virol. 72, 7144–7153.PubMedGoogle Scholar
  50. Martin, M.E. and Berk, A.J. (1998) Adenovirus E1B 55 K represses p53 activation in vitro. J. Virol. 72, 3146–3154.PubMedGoogle Scholar
  51. Martin, M.E. and Berk, A.J. (1999) Corepressor required for adenovirus E1B 55,000-molecular-weight protein repression of basal transcription. Mol. Cell. Biol. 19, 3403–3414.PubMedGoogle Scholar
  52. McMahon, S.B., Van Buskirk, H.A., Dugan, K.A., Copeland, T.D. and Cole, M.D. (1998) The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374.PubMedCrossRefGoogle Scholar
  53. McMahon, S.B., Wood, M.A. and Cole, M.D. (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556–562.PubMedCrossRefGoogle Scholar
  54. Meloni, A.R., Smith, E.J. and Nevins, J.R. (1999) A mechanism for Rb/p130-mediated transcription repression involving recruitment of the CtBP corepressor. Proc. Natl. Acad. Sci. USA 96, 9574–9579.Google Scholar
  55. Nevels, M., Rubenwolf, S., Spruss, T., Wolf, H. and Dobner, T. (2000) Two distinct activities contribute to the oncogenic potential of the adenovirus type 5 E4orf6 protein. J. Virol. 74, 5168–5181.PubMedCrossRefGoogle Scholar
  56. Nevels, M., Spruss, T., Wolf, H. and Dobner, T. (1999a) The adenovirus E4orf6 protein contributes to malignant transformation by antagonizing E1A-induced accumulation of the tumor suppressor protein p53. Oncogene 18, 9–17.Google Scholar
  57. Nevels, M., Tauber, B., Kremmer, E., Spruss, T., Wolf, H. and Dobner, T. (1999b) Transforming potential of the adenovirus type 5 E4orf3 protein. J. Virol. 73, 1591–1600.Google Scholar
  58. Nevels, M., Tauber, B., Spruss, T., Wolf, H. and Dobner, T. (2001).“Hit-and-run” transformation by adenovirus oncogenes. J. Virol. 75, 3089–3094.PubMedCrossRefGoogle Scholar
  59. O’Connor, R J. and Hearing, P. (2000) The E4-6/7 protein functionally compensates for the loss of E1A expression in adenovirus infection. J. Virol. 74, 5819–5824.PubMedCrossRefGoogle Scholar
  60. Perez, D. and White, E. (1998) E1B 19 K inhibits Fas-mediated apoptosis through FADD-dependent sequestration of FLICE. J. Cell Biol. 141, 1255–1266.PubMedCrossRefGoogle Scholar
  61. Querido, E., Blanchette, P., Yan, Q., Kamura, T., Morrison, M., Boivin, D., Kaelin, W.G., Conaway, R.C., Conaway, J.W. and Branton, P.E. (2001) Degradation of p53 by adenovirus E4orf6 and E1B55 K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev. 15, 3104–3117.PubMedCrossRefGoogle Scholar
  62. Querido, E., Marcellus, R. C., Lai, A., Charbonneau, R., Teodoro, J.G., Ketner, G. and Branton, P.E. (1997) Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells. J. Virol. 71, 3788–3798.PubMedGoogle Scholar
  63. Roth, S.Y., Denu, J.M. and Allis, C.D. (2001) Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120.CrossRefGoogle Scholar
  64. Rowe, W., Huebner, R.J., Gilmore, L.K., Parrott, R.H., and Ward, T.G. (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc. Soc. Exp. Biol. Med. 84, 570–573.Google Scholar
  65. Ruley, H.E. (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304, 602–606.PubMedCrossRefGoogle Scholar
  66. Samuelson, A.V., Narita, M., Chan, H.M., Jin, J., de Stanchina, E., McCurrach, M.E., Narita, M., Fuchs, M., Livingston, D.M. and Lowe, S.W. (2005) p400 is required for E1A to promote apoptosis. J. Biol. Chem. 280, 21915–21923.PubMedCrossRefGoogle Scholar
  67. Schaeper, U., Subramanian, T., Lim, L., Boyd, J.M. and Chinnadurai, G. (1998) Interaction between a cellular protein that binds to the C-terminal region of adenovirus E1A (CtBP) and a novel cellular protein is disrupted by E1A through a conserved PLDLS motif. .J Biol. Chem. 273, 8549–8552.PubMedCrossRefGoogle Scholar
  68. Schaley, J., O’Connor, R.J., Taylor, L J., Bar-Sagi, D. and Hearing, P. (2000) Induction of the cellular E2F-1 promoter by the adenovirus E4-6/7 protein [In Process Citation]. J. Virol. 74, 2084–2093.PubMedCrossRefGoogle Scholar
  69. Schaley, J.E., Polonskaia, M. and Hearing, P. (2005) The adenovirus E4-6/7 protein directs nuclear localization of E2F-4 via an arginine-rich motif. J. Virol. 79, 2301–2308.PubMedCrossRefGoogle Scholar
  70. Seeler, J.S. and Dejean, A. (1999) The PML nuclear bodies: actors or extras? Curr. Opin. Genet. Dev. 9, 362–367.PubMedCrossRefGoogle Scholar
  71. Shi, Y., Sawada, J., Sui, G., Affarel, B., Whetstine, J. R., Lan, F., Ogawa, H., Luke, M.P., Nakatani, Y. and Shi, Y. (2003) Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422, 735–738.PubMedCrossRefGoogle Scholar
  72. Shtrichman, R. and Kleinberger, T. (1998) Adenovirus type 5 E4 open reading frame 4 protein induces apoptosis in transformed cells. J. Virol. 72, 2975–2982.PubMedGoogle Scholar
  73. Shtrichman, R., Sharf, R., Barr, H., Dobner, T. and Kleinberger, T. (1999) Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. Proc. Natl. Acad. Sci. USA 96, 10080–10085.Google Scholar
  74. Shtrichman, R., Sharf, R. and Kleinberger, T. (2000) Adenovirus E4orf4 protein interacts with both Balpha and B’ subunits of protein phosphatase 2A, but E4orf4-induced apoptosis is mediated only by the interaction with Balpha. Oncogene 19, 3757–3765.PubMedCrossRefGoogle Scholar
  75. Sieber, T. and Dobner, T. (2007) Adenovirus type 5 early region 1B 156R protein promotes cell transformation independently of repression of p53-stimulated transcription. J. Virol. 81, 95–105.PubMedCrossRefGoogle Scholar
  76. Sollerbrant, K., Chinnadurai, G. and Svensson, C. (1996) The CtBP binding domain in the adenovirus E1A protein controls CR1-dependent transactivation. Nucl. Acids Res. 24, 2578–2584.PubMedCrossRefGoogle Scholar
  77. Steegenga, W.T., Riteco, N., Jochemsen, A.G., Fallaux, F.J. and Bos, J L. (1998) The large E1B protein together with the E4orf6 protein target p53 for active degradation in adenovirus infected cells. Oncogene 16, 349–357.PubMedCrossRefGoogle Scholar
  78. Stracker, T.H., Carson, C.T. and Weitzman, M.D. (2002) Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418, 348–352.PubMedCrossRefGoogle Scholar
  79. Stracker, T.H., Lee, D.V., Carson, C.T., Araujo, F.D., Ornelles, D.A. and Weitzman, M.D. (2005) Serotype-specific reorganization of the Mre11 complex by adenoviral E4orf3 proteins. J. Virol. 79, 6664–6673.PubMedCrossRefGoogle Scholar
  80. Subramanian, T. and Chinnadurai, G. (2003) Association of class I histone deacetylases with transcriptional corepressor CtBP. FEBS Lett. 540, 255–258.PubMedCrossRefGoogle Scholar
  81. Subramanian, T., La Regina, M. and Chinnadurai, G. (1989) Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. Oncogene 4, 415–420.PubMedGoogle Scholar
  82. Tauber, B. and Dobner, T. (2001) Adenovirus early E4 genes in viral oncogenesis. Oncogene 20, 7847–7854.PubMedCrossRefGoogle Scholar
  83. Trentin, J., Yabe, Y., Taylor, G (1962) The quest for human cancer viruses. Science 137, 835–849.PubMedCrossRefGoogle Scholar
  84. Trouche, D., Cook, A. and Kouzarides, T. (1996) The CBP co-activator stimulates E2F1/DP1 activity. Nucl. Acids Res. 24, 4139–4145.PubMedCrossRefGoogle Scholar
  85. Turnell, A.S. and Mymryk, J.S. (2006) Roles for the coactivators CBP and p300 and the APC/C E3 ubiquitin ligase in E1A-dependent cell transformation. Br. J. Cancer 95, 555–560.PubMedCrossRefGoogle Scholar
  86. Turnell, A.S., Stewart, G.S., Grand, R.J., Rookes, S.M., Martin, A., Yamano, H., Elledge, S.J. and Gallimore, P.H. (2005) The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature 438, 690–695.PubMedCrossRefGoogle Scholar
  87. Wang, H.G., Rikitake, Y., Carter, M.C., Yaciuk, P., Abraham, S.E., Zerler, B. and Moran, E. (1993) Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J. Virol. 67, 476–488.PubMedGoogle Scholar
  88. Weiss, R.S., McArthur, M.J. and Javier, R.T. (1996) Human adenovirus type 9 E4 open reading frame 1 encodes a cytoplasmic transforming protein capable of increasing the oncogenicity of CREF cells. J. Virol. 70, 862–872.PubMedGoogle Scholar
  89. Whalen, S.G., Marcellus, R.C., Whalen, A., Ahn, N.G., Ricciardi, R.P. and Branton, P.E. (1997) Phosphorylation within the transactivation domain of adenovirus E1A protein by mitogen-activated protein kinase regulates expression of early region 4. J. Virol. 71, 3545–3553.PubMedGoogle Scholar
  90. White, E. (1998) Regulation of apoptosis by E1A and E1B. Semin. Virol. 8, 505–513.CrossRefGoogle Scholar
  91. White, E. (2006) Mechanisms of apoptosis regulation by viral oncogenes in infection and tumorigenesis. Cell Death Differ. 13, 1371–1377.PubMedCrossRefGoogle Scholar
  92. Yamano, S., Tokino, T., Yasuda, M., Kaneuchi, M., Takahashi, M., Niitsu, Y., Fujinaga, K. and Yamashita, T. (1999) Induction of transformation and p53-dependent apoptosis by adenovirus type 5 E4orf6/7 cDNA. J. Virol. 73, 10095–10103.PubMedGoogle Scholar
  93. Zhang, Q., Yao, H., Vo, N. and Goodman, R.H. (2000) Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc. Natl. Acad. Sci. USA 97, 14323–14328.Google Scholar
  94. Zhao, L.Y., Colosimo, A.L., Liu, Y., Wan, Y. and Liao, D. (2003a). Adenovirus E1B 55-kilodalton oncoprotein binds to Daxx and eliminates enhancement of p53-dependent transcription by Daxx. J. Virol. 77, 11809–1821.Google Scholar
  95. Zhao, L.Y. and Liao, D. (2003b) Sequestration of p53 in the cytoplasm by adenovirus type 12 E1B 55-kilodalton oncoprotein is required for inhibition of p53-mediated apoptosis. J. Virol. 77, 13171–13181.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular Genetics and MicrobiologySchool of Medicine, Stony Brook UniversityStony BrookUSA

Personalised recommendations