Papillomaviruses: Biology, Diversity, and Pathogenesis



Long Control Region Common Wart Hoofed Animal Cutaneous Epithelium Viral Chromatin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ai, W., Toussaint, E., and Roman, A. (1999). CCAAT displacement protein binds to and negatively regulates human papillomavirus type 6 E6, E7, and E1 promoters. J. Virol. 73: 4220–4229.PubMedGoogle Scholar
  2. Ai, W., Narahari, J., and Roman, A. (2000). Yin yang 1 negatively regulates the differentiation-specific E1 promoter of human papillomavirus type 6. J. Virol. 74: 5198–5205.PubMedCrossRefGoogle Scholar
  3. Antonsson, A., Forslund, O., Ekberg, H., Sterner, G, and Hansson, B.G. (2000). The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J. Virol. 74: 11636–11641.PubMedCrossRefGoogle Scholar
  4. Antonsson, A., Erfurt, C., Hazard, K., Holmgren, V., Simon, M., Kataoka, A., Hossain, S., Hakangard., C, and Hansson, B.G.. (2003). Prevalence and type spectrum of human papillomaviruses in healthy skin samples collected in three continents. J. Gen. Virol. 84: 1881–1886.PubMedCrossRefGoogle Scholar
  5. Apt, D., Chong, T., Liu, Y., and Bernard, H.U. (1993). Nuclear factor I and epithelial cell specific transcription of human papillomavirus type 16. J. Virol. 67: 4455–4463.PubMedGoogle Scholar
  6. Apt, D., Watts, R.M., Suske, G., and Bernard, H.U. (1996). High Sp1/Sp3 ratios in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV-16 promoter. Virology 224: 281–291.PubMedCrossRefGoogle Scholar
  7. Arias-Pulido, H., Peyton, C.L., Joste, N.E., Vargas, H., and Wheeler, C.M. (2006). Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J. Clin. Microbiol. 44: 1755–1762.PubMedCrossRefGoogle Scholar
  8. Baker, C.C. and Calef. C. Maps of papillomavirus transcripts. In: Human papillomaviruses 1995 compendium. Edited by Myers, G., Bernard, H.U., Delius, H., Baker, C.C., Icenogle, J., Halpern, A., and Wheeler, C. Los Alamos National Laboratory, Los Alamos, New Mexico, part III-A, pp 3–19.Google Scholar
  9. Bernard, H.U. (1994). Coevolution of papillomaviruses and human populations. Trends Microbiol. 2: 140–143.PubMedCrossRefGoogle Scholar
  10. Bernard, H.U. (2002). Gene Expression of Genital Human Papillomaviruses and Potential Antiviral Approaches. Antivir. Ther. 7: 219–237.PubMedGoogle Scholar
  11. Bernard, H.U., Chan, S.Y., Manos, M.M., Ong, C.K., Villa, L.L., Delius, H., Bauer, H.M., Peyton, C., and Wheeler, C.M. (1994). Assessment of known and novel human papillomaviruses by polymerase chain reaction, restriction digest, nucleotide sequence, and phylogenetic algorithms. J. Inf. Dis. 170: 1077–1085.CrossRefGoogle Scholar
  12. Boxman, I.L., Mulder, L.H., Russell, A., Bouwes-Bavinck, J.N., Green, A., and Ter Schegget, J. (1999). Human papillomavirus type 5 is commonly present in immunosuppressed and immunocompetent individuals. Br. J. Dermatol. 141: 246–249.PubMedCrossRefGoogle Scholar
  13. Calleja-Macias, I.E., Kalantari, M., Allan, B., Williamson, A.L., Chung, L.P., Collins, R.J., Zuna, R.E., Dunn, S.T., Ortiz-Lopez, R., Barrera-Saldaña, H.A., Cubie, H.A., Villa, L.L., Bernard. H.U. (2005a). Papillomavirus subtypes are natural and old taxa: Phylogeny of the human papillomavirus (HPV) types 44/55 and 68a/b. J. Virol. 79: 6565–6569.Google Scholar
  14. Calleja-Macias, I.E., Kalantari, M., Villa, L.L., Prado, J.C., Allan, B., Williamson, A.L., Chung, L.P., Collins, R.C., Zuna, R. E.,, Dunn, S.T., Chu, T.Y., Cubie, H.A., Cuschieri, K., von Knebel-Doeberitz, M., Martins, C.R., Sanchez, G.I., Bosch, F.X., Munoz, N., Bernard, H.U. (2005b). Worldwide genomic diversity of the high-risk human papillomaviruses-31, 35, 52, and 58, which are closely related to HPV-16. J. Virol. 79: 13630–13640.Google Scholar
  15. Castle, P.E., Schiffman, M., Glass, A.G., Rush, B.B., Scott, D.R., Wacholder, S., Dunn. A., Burk, R.D. (2006). Human papillomavirus prevalence in women who have and have not undergone hysterectomies. J. Infect. Dis. 194: 1702–1705.PubMedCrossRefGoogle Scholar
  16. Chan, S. Y., Delius, H., Halpern, A.L., and Bernard, H.U. (1995). Analysis of genomic sequences of 95 papillomavirus types: Uniting typing, phylogeny, and taxonomy. J. Virol. 69: 3074–3083.PubMedGoogle Scholar
  17. Chan, S.Y., Bernard, H.U., Ratterree, M., Birkebak, T.A., Faras, A. J., and Ostrow, R. S. (1997). Genomic diversity and evolution of papillomaviruses in Rhesus monkeys. J. Virol. 71: 4938–4943.PubMedGoogle Scholar
  18. Chan, W.K., Klock, G., and H.U. Bernard. (1989). Progesterone and glucocorticoid response elements occur in the long control regions of several human papillomaviruses involved in anogenital neoplasia. J. Virol. 63: 3261–3269.PubMedGoogle Scholar
  19. Chan, W.K., Chong, T., Bernard, H.U., and Klock, G. (1990). Two AP1 sites in the long control region of human papillomavirus type 16 lead to phorbolester stimulation of the viral E6/E7 promoter. Nucleic Acids Res. 18: 763–769.PubMedCrossRefGoogle Scholar
  20. Chen, G., and Stenlund, A. (2001). The E1 initiator recognizes multiple overlapping sites in the papillomavirus origin of DNA replication. J. Virol. 75: 292–302.PubMedCrossRefGoogle Scholar
  21. Chen, Z., Schiffman, M., Herrero, R., Desalle, R., Burk, R.D. (2007). Human papillomavirus (HPV) types 101 and 103 isolated from cervicovaginal cells lack an E6 open reading frame (ORF) and are related to gamma-papillomaviruses. Virol. 360: 447–453.Google Scholar
  22. Chiang, C.M., Ustav, M., Stenlund, A., Ho, T.F., Broker, T.R., and Chow, L.T. (1992). Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc. Natl. Acad. Sci. USA 89: 5799–5803.Google Scholar
  23. Clertant, P, and Seif, I. (1984). A common function for polyoma virus large-T and papillomavirus E1 proteins? Nature 311: 276–279.PubMedCrossRefGoogle Scholar
  24. Collier, B., Oberg, D., Zhao, X., and Schwartz, S. (2002). Specific inactivation of inhibitory sequences in the 5′ end of the human papillomavirus type 16 L1 open reading frame results in production of high levels of L1 protein in human epithelial cells. J. Virol. 76: 2739–2752.PubMedCrossRefGoogle Scholar
  25. Da Costa, M.M., Hogeboom, C.J., Holly, E.A., and Palefsky, J.M. (2002). Increased risk of high-grade anal neoplasia associated with a human papillomavirus type 16 E6 sequence variant. J. Infect. Dis. 185: 1229–1937.PubMedCrossRefGoogle Scholar
  26. Daniel, B., Mukherjee, G., Seshadri, L., Vallikad, E., and Krishna, S. (1995). Changes in the physical state and expression of human papillomavirus type 16 in the progression of cervical intraepithelial neoplasia lesions analyzed by PCR. J. Gen. Virol. 76: 2589–2593.PubMedCrossRefGoogle Scholar
  27. Deau, M.C., Favre, M., Jablonska, S., Rueda, L.A., and Orth, G. (1993). Genetic heterogeneity of oncogenic human papillomavirus type 5 (HPV5) and phylogeny of HPV5 variants associated with epidermodysplasia verruciformis. J. Clin. Microbiol. 31: 2918–2926.PubMedGoogle Scholar
  28. DelMar-Pena, L.M., and Laimins, L.A. (2001). Differentiation-dependent chromatin rearrangement coincides with activation of human papillomavirus type 31 late gene expression. J. Virol. 75: 10005–10013.CrossRefGoogle Scholar
  29. DeMasi, J., Huh, K.W., Nakatani, Y., Munger, K., Howley, P.M. (2005). Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding. Proc. Natl. Acad. Sci. USA 102: 11486–11491.Google Scholar
  30. Demeret, C., Desaintes, C., Yaniv, M., and Thierry, F. (1997). Different mechanisms contribute to the E2 mediated transcriptional repression of human papillomavirus type 18 viral oncogenes. J. Virol. 71: 9343–9349.PubMedGoogle Scholar
  31. de Villiers, E.M., Fauquet, C., Broker, T.R., Bernard, H.U., and zur Hausen, H. (2004). Classification of papillomaviruses. Virology 324: 17–27.PubMedCrossRefGoogle Scholar
  32. Doorbar, J. (2005). The papillomavirus life cycle. J. Clin. Virol. 32 Suppl 1: S7–15.CrossRefGoogle Scholar
  33. Doorbar, J., Ely, S., Sterling, J., McLean, C., and Crawford, L. (1991). Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352: 824–827.PubMedCrossRefGoogle Scholar
  34. Farmer, A.D., Calef, C.E., Millman, K., and Myers, G.L. (1995). The human papillomavirus database. J. Biomed. Sci. 2, 90–104. (
  35. Florin, L., Becker, K.A., Lambert, C., Nowak, T., Sapp, C., Strand, D., Streeck, R.E., and Sapp, M. (2006). Identification of a dynein interacting domain in the papillomavirus minor capsid protein L2. J. Virol. 80: 6691–6696.PubMedCrossRefGoogle Scholar
  36. Freeman-Cook, L.L., DiMaio, D. (2005). Modulation of cell function by small transmembrane proteins modeled on the bovine papillomavirus E5 protein. Oncogene 24: 7756–7762.PubMedCrossRefGoogle Scholar
  37. Gissmann, L., deVilliers, E.M., zur Hausen, H. (1982). Analysis of human genital warts (condylomata acuminata) and other genital tumors for human papillomavirus type 6 DNA. Int. J. Cancer. 29: 143–146.Google Scholar
  38. Gloss, B., Bernard, H.U., Seedorf, K., and Klock, G. (1987). The upstream regulatory region of the human papillomavirus-16 contains an E2 protein independent enhancer, which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. EMBO J. 6: 3735–3743.PubMedGoogle Scholar
  39. Ho, L., Chan, S.Y., Burk, R.D., Das, B.C., Fujinaga, K., Icenogle, J.P., Kahn, T., Kiviat, N., Lancaster, W., Mavromara, P., Labropoulou, V., Mitrani-Rosenbaum, S., Norrild, B., Pillai, M.R., Stoerker, J., Syrjaenen, K., Syrjaenen, S., Tay, S.K., Villa, L.L., Wheeler, C.M., Williamson, A.L., and Bernard, H.U. (1993). The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and movement of ancient human populations. J. Virol. 67: 6413–6414.PubMedGoogle Scholar
  40. Jeon, S., and Lambert, P.F. (1995). Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc. Natl. Acad. Sci. USA 92: 1654–1658.Google Scholar
  41. Kalantari, M., Calleja-Macias, I.E., Tewari, D., Hagmar, B., Barrera-Saldana, H.A, Wiley, D.J., and Bernard, H.U. (2004). Conserved methylation patterns of human papillomavirus-16 DNA in asymptomatic infection and cervical neoplasia. J. Virol. 78: 12762–12772.PubMedCrossRefGoogle Scholar
  42. Kim, K., Garner-Hamrick, P.A., Fisher, C., Lee, D., and Lambert, P.F. (2003). Methylation patterns of papillomavirus DNA, its influence on E2 function, and implications in viral infection. J. Virol. 77: 12450–12459.PubMedCrossRefGoogle Scholar
  43. Lowy, D.R., and Schiller, J.T. (2006). Prophylactic human papillomavirus vaccines. J. Clin. Invest. 116: 1167–1173.PubMedCrossRefGoogle Scholar
  44. McBride, A.A., Romancsuk, H., and Howley, P.M. (1991). The papillomavirus E2 regulatory proteins. J. Biol. Chem. 266: 18411–18414.PubMedGoogle Scholar
  45. McPhillips, M.G., Ozato, K., and McBride, A.A. (2005). Interaction of bovine papillomavirus E2 protein with Brd4 stabilizes its association with chromatin. J. Virol. 79: 8920–8932.PubMedCrossRefGoogle Scholar
  46. Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., and Howley P.M. (1989). Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8: 4099–4105.PubMedGoogle Scholar
  47. Munoz, N., Bosch, F.X., de Sanjosé, S., Herrero, R., Castellsagué, X., Shah, K.V., Snijders, P. J.F., and Meijer, C.J.L.M. (2003). Epidemiological classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348: 518–527.PubMedCrossRefGoogle Scholar
  48. Narechania, A., Chen, Z., DeSalle, R., Burk, R.D. (2005). Phylogenetic incongruence among oncogenic genital alpha human papillomaviruses. J. Virol. 79: 15503–11550.PubMedCrossRefGoogle Scholar
  49. Oberg, D., Collier, B., Zhao, X., and Schwartz, S. (2003). Mutational inactivation of two distinct negative RNA elements in the human papillomavirus type 16 L2 coding region induces production of high levels of L2 in human cells. J. Virol. 77: 11674–11684.PubMedCrossRefGoogle Scholar
  50. O’Connor, M.J., Tan, S.H., Tan, C.H., and Bernard, H.U. (1996). YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity. J. Virol. 70: 6529–6539.PubMedGoogle Scholar
  51. O’Connor, M.J., Stünkel, W., Koh, C.H., Zimmermann, H., and Bernard, H.U. (2000). The differentiation-specific factor CDP/Cut represses transcription and replication of human papillomaviruses. J. Virol. 74: 401–410.PubMedCrossRefGoogle Scholar
  52. Ong, C.K., Chan, S.Y., Campo, M.S., Fujinaga, K., Mavromara, P., Labropoulou, V., Pfister, H., Tay, S.K., ter Meulen, J., Villa, L.L., and Bernard, H.U. (1993) Evolution of human papillomavirus type 18: An ancient phylogenetic root in Africa and intratype diversity reflect coevolution with human ethnic groups. J. Virol. 67: 6424–6431.PubMedGoogle Scholar
  53. Ozbun, M.A., and Meyers, C. (1997). Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J. Virol. 71: 5161–5172.PubMedGoogle Scholar
  54. Ozbun, M.A., and Meyers, C. (1998). Temporal usage of multiple promoters during the life cycle of human papillomavirus 31b. J. Virol. 72: 2715–2722.PubMedGoogle Scholar
  55. Parish, J.L., Bean, A.M., Park, R.B., and Androphy, E.J. (2006). ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol. Cell. 24: 867–876PubMedCrossRefGoogle Scholar
  56. Parker, J.N., Zhao, W., Askins, K.J., Broker, T.R., and Chow, L. T. (1997). Mutational analysis of differentiation-dependent human papillomavirus-18 enhancer elements in epithelial raft cultures of neonatal foreskin keratinocytes. Cell Growth Diff. 8: 751–762.PubMedGoogle Scholar
  57. Pattison, S., Skalnik, D.G., and Roman, A. (1997). CCAAT displacement protein, a regulator of differentiation-specific gene expression, binds a negative regulatory element within the 5′ end of the human papillomavirus type 6 log control region. J. Virol. 71: 2013–2022.PubMedGoogle Scholar
  58. Rebrikov, D.V., Bogdanova, E.A., Bulina, M.E., and Lukyanov, S.A. (2002). A new planarian extrachromosomal virus-like element revealed by subtractive hybridization. Mol. Biol. 36: 813–820.CrossRefGoogle Scholar
  59. Rector, A., Bossart, G.D., Ghim, S.J., Sundberg, J.P., Jenson, A.B., and Van Ranst, M. (2004). Characterization of a novel close-to-root papillomavirus from a Florida manatee by using multiply primed rolling-circle amplification: Trichechus manatus latirostris papillomavirus type 1. J. Virol. 78: 12698–12702.PubMedCrossRefGoogle Scholar
  60. Rehtanz, M., Ghim, S.J., Rector, A., Van Ranst, M., Fair, P.A., Bossart, G.D., and Jenson, A.B. (2006). Isolation and characterization of the first American bottlenose dolphin papillomavirus: Tursiops truncatus papillomavirus type 2. J. Gen. Virol. 87: 3559–3565.PubMedCrossRefGoogle Scholar
  61. Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J., and Howley, P.M. (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.PubMedCrossRefGoogle Scholar
  62. Selinka, H.C., Giroglou, T., Sapp, M. (2002). Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology 299: 279–287.PubMedCrossRefGoogle Scholar
  63. Stewart, A.C., Eriksson, A.M., Manos, M.M., Munoz, N., Bosch, F.X., Peto, J., and Wheeler, C.M. (1996). Intratype variation in 12 human papillomavirus types: a worldwide perspective. J. Virol. 70: 3127–3136.PubMedGoogle Scholar
  64. Stacey, S.N., Jordan, D., Williamson, A.J., Brown, M., Coote, J.H., and Arrand, J.R. (2000). Leaky scanning is the predominant mechanism for translation of human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. J. Virol. 74: 7284–7297.PubMedCrossRefGoogle Scholar
  65. Stoler, M.H., Rhodes, C.R., Whitbeck, A., Wolinsky, S.M., Chow, L.T, and Broker, T.R. (1992). Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum. Pathol. 23: 117–128.PubMedCrossRefGoogle Scholar
  66. Stünkel, W., Huang, Z., Tan, S.H., O’Connor, M, and Bernard, H.U. (2000). Nuclear matrix attachment regions of human papillomavirus-16 repress or activate the E6 promoter depending on the physical state of the viral DNA. J. Virol. 74: 2489–2501.PubMedCrossRefGoogle Scholar
  67. Stünkel, W., and Bernard, H.U. (1999). The chromatin structure of the long control region of human papillomavirus type 16 represses viral oncoprotein expression. J. Virol. 73: 1918–1930.PubMedGoogle Scholar
  68. Suprynowicz, F.A., Disbrow, G.L., Simic, V., Schlegel, R. (2005). Are transforming properties of the bovine papillomavirus E5 protein shared by E5 from high-risk human papillomavirus type 16? Virology 332: 102–113PubMedCrossRefGoogle Scholar
  69. Tan, S.H., Leong, L. E.C., Walker, P.A., and Bernard, H.U. (1994). The human papillomavirus type 16 transcription factor E2 binds with low cooperativity to two flanking binding sites and represses the E6 promoter through displacement of Sp1 and TFIID. J. Virol. 68: 6411–6420.PubMedGoogle Scholar
  70. Tang, S., Tao, M., McCoy, J.P. Jr., Zheng, Z.M. (2006). The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J. Virol. 80: 4249–4263.PubMedCrossRefGoogle Scholar
  71. Terai, M., DeSalle, R., and Burk, R.D. (2002). Lack of canonical E6 and E7 open reading frames in bird papillomaviruses: Fringilla coelebs papillomavirus and Psittacus erithacus papillomavirus. J. Virol. 76: 10020–10023.PubMedCrossRefGoogle Scholar
  72. Thierry, F., Spyrou, G., Yaniv, M., and Howley, P. (1992). Two AP1 sites binding JunB are essential for human papillomavirus type 18 transcription in keratinocytes. J. Virol. 66: 3740–3748.PubMedGoogle Scholar
  73. Van Ranst, M., Kaplan, J.B., and Burk, R.D. (1992). Phylogenetic classification of human papillomaviruses: correlation with clinical manifestations. J. Gen. Virol. 73: 2653–2660.PubMedCrossRefGoogle Scholar
  74. Van Tine, B.A., Knops, J., Broker, T.R., Chow, L.T., and Moen, P.T. (2001). In situ analysis of the transcriptional activity of integrated viral DNA using tyramide-FISH. Dev. Biol. (Basel) 106: 381–385.Google Scholar
  75. Varsani, A., van der Walt, E., Heath, L., Rybicki, E.P., Williamson, A.L., and Martin, D.P. (2006). Evidence of ancient papillomavirus recombination. J. Gen. Virol. 87: 2527–2531.PubMedCrossRefGoogle Scholar
  76. Villa, L.L., Sichero, L., Rahal, P., Caballero, O., Ferenczy, A., Rohan, T., Franco, E.L. (2000). Molecular variants of human papillomavirus types 16 and 18 preferentially associated with cervical neoplasia. J. Gen. Virol. 81: 2959–2968.PubMedGoogle Scholar
  77. Wu, S.Y., Lee, A.Y., Hou, S.Y., Kemper, J.K., Erdjument-Bromage, H., Tempst, P., and Chiang, C.M. (2006). Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev. 20: 2383–2396.PubMedCrossRefGoogle Scholar
  78. Xi, L.F., Koutsky, L.A., Galloway, D.A., Kuypers, J., Hughes, J.P., Wheeler, C.M., Holmes, K.K., and Kiviat, N.B. (1997). Genomic variation of human papillomavirus type 16 and risk for high grade cervical intraepithelial neoplasia. J. Natl. Cancer Inst. 89: 796–802.PubMedCrossRefGoogle Scholar
  79. Yamada, T., Manos, M.M., Peto, J., Greer, C.E., Munoz, N., Bosch, F.X., and Wheeler, C.M. (1997). Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. J Virol. 71: 2463–2472.PubMedGoogle Scholar
  80. Zhao, W., Noya, F., Chen, W.Y., Townes, T.M., Chow, L.T., and Broker, T.R. (1999). Trichostatin A up-regulates human papillomavirus type 11 upstream regulatory region-E6 promoter activity in undifferentiated primary human keratinocytes. J. Virol. 73: 5026–5033.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular Biology and BiochemistryUniversity of California IrvineIrvineUSA

Personalised recommendations