Skip to main content

Papillomaviruses: Biology, Diversity, and Pathogenesis

  • Chapter
  • First Online:
  • 1215 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ai, W., Toussaint, E., and Roman, A. (1999). CCAAT displacement protein binds to and negatively regulates human papillomavirus type 6 E6, E7, and E1 promoters. J. Virol. 73: 4220–4229.

    PubMed  CAS  Google Scholar 

  • Ai, W., Narahari, J., and Roman, A. (2000). Yin yang 1 negatively regulates the differentiation-specific E1 promoter of human papillomavirus type 6. J. Virol. 74: 5198–5205.

    Article  PubMed  CAS  Google Scholar 

  • Antonsson, A., Forslund, O., Ekberg, H., Sterner, G, and Hansson, B.G. (2000). The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J. Virol. 74: 11636–11641.

    Article  PubMed  CAS  Google Scholar 

  • Antonsson, A., Erfurt, C., Hazard, K., Holmgren, V., Simon, M., Kataoka, A., Hossain, S., Hakangard., C, and Hansson, B.G.. (2003). Prevalence and type spectrum of human papillomaviruses in healthy skin samples collected in three continents. J. Gen. Virol. 84: 1881–1886.

    Article  PubMed  CAS  Google Scholar 

  • Apt, D., Chong, T., Liu, Y., and Bernard, H.U. (1993). Nuclear factor I and epithelial cell specific transcription of human papillomavirus type 16. J. Virol. 67: 4455–4463.

    PubMed  CAS  Google Scholar 

  • Apt, D., Watts, R.M., Suske, G., and Bernard, H.U. (1996). High Sp1/Sp3 ratios in epithelial cells during epithelial differentiation and cellular transformation correlate with the activation of the HPV-16 promoter. Virology 224: 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Arias-Pulido, H., Peyton, C.L., Joste, N.E., Vargas, H., and Wheeler, C.M. (2006). Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. J. Clin. Microbiol. 44: 1755–1762.

    Article  PubMed  CAS  Google Scholar 

  • Baker, C.C. and Calef. C. Maps of papillomavirus transcripts. In: Human papillomaviruses 1995 compendium. Edited by Myers, G., Bernard, H.U., Delius, H., Baker, C.C., Icenogle, J., Halpern, A., and Wheeler, C. Los Alamos National Laboratory, Los Alamos, New Mexico, part III-A, pp 3–19.

    Google Scholar 

  • Bernard, H.U. (1994). Coevolution of papillomaviruses and human populations. Trends Microbiol. 2: 140–143.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, H.U. (2002). Gene Expression of Genital Human Papillomaviruses and Potential Antiviral Approaches. Antivir. Ther. 7: 219–237.

    PubMed  CAS  Google Scholar 

  • Bernard, H.U., Chan, S.Y., Manos, M.M., Ong, C.K., Villa, L.L., Delius, H., Bauer, H.M., Peyton, C., and Wheeler, C.M. (1994). Assessment of known and novel human papillomaviruses by polymerase chain reaction, restriction digest, nucleotide sequence, and phylogenetic algorithms. J. Inf. Dis. 170: 1077–1085.

    Article  CAS  Google Scholar 

  • Boxman, I.L., Mulder, L.H., Russell, A., Bouwes-Bavinck, J.N., Green, A., and Ter Schegget, J. (1999). Human papillomavirus type 5 is commonly present in immunosuppressed and immunocompetent individuals. Br. J. Dermatol. 141: 246–249.

    Article  PubMed  CAS  Google Scholar 

  • Calleja-Macias, I.E., Kalantari, M., Allan, B., Williamson, A.L., Chung, L.P., Collins, R.J., Zuna, R.E., Dunn, S.T., Ortiz-Lopez, R., Barrera-Saldaña, H.A., Cubie, H.A., Villa, L.L., Bernard. H.U. (2005a). Papillomavirus subtypes are natural and old taxa: Phylogeny of the human papillomavirus (HPV) types 44/55 and 68a/b. J. Virol. 79: 6565–6569.

    Google Scholar 

  • Calleja-Macias, I.E., Kalantari, M., Villa, L.L., Prado, J.C., Allan, B., Williamson, A.L., Chung, L.P., Collins, R.C., Zuna, R. E.,, Dunn, S.T., Chu, T.Y., Cubie, H.A., Cuschieri, K., von Knebel-Doeberitz, M., Martins, C.R., Sanchez, G.I., Bosch, F.X., Munoz, N., Bernard, H.U. (2005b). Worldwide genomic diversity of the high-risk human papillomaviruses-31, 35, 52, and 58, which are closely related to HPV-16. J. Virol. 79: 13630–13640.

    Google Scholar 

  • Castle, P.E., Schiffman, M., Glass, A.G., Rush, B.B., Scott, D.R., Wacholder, S., Dunn. A., Burk, R.D. (2006). Human papillomavirus prevalence in women who have and have not undergone hysterectomies. J. Infect. Dis. 194: 1702–1705.

    Article  PubMed  Google Scholar 

  • Chan, S. Y., Delius, H., Halpern, A.L., and Bernard, H.U. (1995). Analysis of genomic sequences of 95 papillomavirus types: Uniting typing, phylogeny, and taxonomy. J. Virol. 69: 3074–3083.

    PubMed  CAS  Google Scholar 

  • Chan, S.Y., Bernard, H.U., Ratterree, M., Birkebak, T.A., Faras, A. J., and Ostrow, R. S. (1997). Genomic diversity and evolution of papillomaviruses in Rhesus monkeys. J. Virol. 71: 4938–4943.

    PubMed  CAS  Google Scholar 

  • Chan, W.K., Klock, G., and H.U. Bernard. (1989). Progesterone and glucocorticoid response elements occur in the long control regions of several human papillomaviruses involved in anogenital neoplasia. J. Virol. 63: 3261–3269.

    PubMed  CAS  Google Scholar 

  • Chan, W.K., Chong, T., Bernard, H.U., and Klock, G. (1990). Two AP1 sites in the long control region of human papillomavirus type 16 lead to phorbolester stimulation of the viral E6/E7 promoter. Nucleic Acids Res. 18: 763–769.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., and Stenlund, A. (2001). The E1 initiator recognizes multiple overlapping sites in the papillomavirus origin of DNA replication. J. Virol. 75: 292–302.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Schiffman, M., Herrero, R., Desalle, R., Burk, R.D. (2007). Human papillomavirus (HPV) types 101 and 103 isolated from cervicovaginal cells lack an E6 open reading frame (ORF) and are related to gamma-papillomaviruses. Virol. 360: 447–453.

    Google Scholar 

  • Chiang, C.M., Ustav, M., Stenlund, A., Ho, T.F., Broker, T.R., and Chow, L.T. (1992). Viral E1 and E2 proteins support replication of homologous and heterologous papillomaviral origins. Proc. Natl. Acad. Sci. USA 89: 5799–5803.

    Google Scholar 

  • Clertant, P, and Seif, I. (1984). A common function for polyoma virus large-T and papillomavirus E1 proteins? Nature 311: 276–279.

    Article  PubMed  CAS  Google Scholar 

  • Collier, B., Oberg, D., Zhao, X., and Schwartz, S. (2002). Specific inactivation of inhibitory sequences in the 5′ end of the human papillomavirus type 16 L1 open reading frame results in production of high levels of L1 protein in human epithelial cells. J. Virol. 76: 2739–2752.

    Article  PubMed  CAS  Google Scholar 

  • Da Costa, M.M., Hogeboom, C.J., Holly, E.A., and Palefsky, J.M. (2002). Increased risk of high-grade anal neoplasia associated with a human papillomavirus type 16 E6 sequence variant. J. Infect. Dis. 185: 1229–1937.

    Article  PubMed  Google Scholar 

  • Daniel, B., Mukherjee, G., Seshadri, L., Vallikad, E., and Krishna, S. (1995). Changes in the physical state and expression of human papillomavirus type 16 in the progression of cervical intraepithelial neoplasia lesions analyzed by PCR. J. Gen. Virol. 76: 2589–2593.

    Article  PubMed  CAS  Google Scholar 

  • Deau, M.C., Favre, M., Jablonska, S., Rueda, L.A., and Orth, G. (1993). Genetic heterogeneity of oncogenic human papillomavirus type 5 (HPV5) and phylogeny of HPV5 variants associated with epidermodysplasia verruciformis. J. Clin. Microbiol. 31: 2918–2926.

    PubMed  CAS  Google Scholar 

  • DelMar-Pena, L.M., and Laimins, L.A. (2001). Differentiation-dependent chromatin rearrangement coincides with activation of human papillomavirus type 31 late gene expression. J. Virol. 75: 10005–10013.

    Article  CAS  Google Scholar 

  • DeMasi, J., Huh, K.W., Nakatani, Y., Munger, K., Howley, P.M. (2005). Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding. Proc. Natl. Acad. Sci. USA 102: 11486–11491.

    Google Scholar 

  • Demeret, C., Desaintes, C., Yaniv, M., and Thierry, F. (1997). Different mechanisms contribute to the E2 mediated transcriptional repression of human papillomavirus type 18 viral oncogenes. J. Virol. 71: 9343–9349.

    PubMed  CAS  Google Scholar 

  • de Villiers, E.M., Fauquet, C., Broker, T.R., Bernard, H.U., and zur Hausen, H. (2004). Classification of papillomaviruses. Virology 324: 17–27.

    Article  PubMed  Google Scholar 

  • Doorbar, J. (2005). The papillomavirus life cycle. J. Clin. Virol. 32 Suppl 1: S7–15.

    Article  Google Scholar 

  • Doorbar, J., Ely, S., Sterling, J., McLean, C., and Crawford, L. (1991). Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352: 824–827.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, A.D., Calef, C.E., Millman, K., and Myers, G.L. (1995). The human papillomavirus database. J. Biomed. Sci. 2, 90–104. (http://hpv-web.lanl.gov/stdgen/virus/hpv/compendium/htdocs/).

  • Florin, L., Becker, K.A., Lambert, C., Nowak, T., Sapp, C., Strand, D., Streeck, R.E., and Sapp, M. (2006). Identification of a dynein interacting domain in the papillomavirus minor capsid protein L2. J. Virol. 80: 6691–6696.

    Article  PubMed  CAS  Google Scholar 

  • Freeman-Cook, L.L., DiMaio, D. (2005). Modulation of cell function by small transmembrane proteins modeled on the bovine papillomavirus E5 protein. Oncogene 24: 7756–7762.

    Article  PubMed  CAS  Google Scholar 

  • Gissmann, L., deVilliers, E.M., zur Hausen, H. (1982). Analysis of human genital warts (condylomata acuminata) and other genital tumors for human papillomavirus type 6 DNA. Int. J. Cancer. 29: 143–146.

    CAS  Google Scholar 

  • Gloss, B., Bernard, H.U., Seedorf, K., and Klock, G. (1987). The upstream regulatory region of the human papillomavirus-16 contains an E2 protein independent enhancer, which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. EMBO J. 6: 3735–3743.

    PubMed  CAS  Google Scholar 

  • Ho, L., Chan, S.Y., Burk, R.D., Das, B.C., Fujinaga, K., Icenogle, J.P., Kahn, T., Kiviat, N., Lancaster, W., Mavromara, P., Labropoulou, V., Mitrani-Rosenbaum, S., Norrild, B., Pillai, M.R., Stoerker, J., Syrjaenen, K., Syrjaenen, S., Tay, S.K., Villa, L.L., Wheeler, C.M., Williamson, A.L., and Bernard, H.U. (1993). The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and movement of ancient human populations. J. Virol. 67: 6413–6414.

    PubMed  CAS  Google Scholar 

  • Jeon, S., and Lambert, P.F. (1995). Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc. Natl. Acad. Sci. USA 92: 1654–1658.

    Google Scholar 

  • Kalantari, M., Calleja-Macias, I.E., Tewari, D., Hagmar, B., Barrera-Saldana, H.A, Wiley, D.J., and Bernard, H.U. (2004). Conserved methylation patterns of human papillomavirus-16 DNA in asymptomatic infection and cervical neoplasia. J. Virol. 78: 12762–12772.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K., Garner-Hamrick, P.A., Fisher, C., Lee, D., and Lambert, P.F. (2003). Methylation patterns of papillomavirus DNA, its influence on E2 function, and implications in viral infection. J. Virol. 77: 12450–12459.

    Article  PubMed  CAS  Google Scholar 

  • Lowy, D.R., and Schiller, J.T. (2006). Prophylactic human papillomavirus vaccines. J. Clin. Invest. 116: 1167–1173.

    Article  PubMed  CAS  Google Scholar 

  • McBride, A.A., Romancsuk, H., and Howley, P.M. (1991). The papillomavirus E2 regulatory proteins. J. Biol. Chem. 266: 18411–18414.

    PubMed  CAS  Google Scholar 

  • McPhillips, M.G., Ozato, K., and McBride, A.A. (2005). Interaction of bovine papillomavirus E2 protein with Brd4 stabilizes its association with chromatin. J. Virol. 79: 8920–8932.

    Article  PubMed  CAS  Google Scholar 

  • Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., and Howley P.M. (1989). Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8: 4099–4105.

    PubMed  CAS  Google Scholar 

  • Munoz, N., Bosch, F.X., de Sanjosé, S., Herrero, R., Castellsagué, X., Shah, K.V., Snijders, P. J.F., and Meijer, C.J.L.M. (2003). Epidemiological classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348: 518–527.

    Article  PubMed  Google Scholar 

  • Narechania, A., Chen, Z., DeSalle, R., Burk, R.D. (2005). Phylogenetic incongruence among oncogenic genital alpha human papillomaviruses. J. Virol. 79: 15503–11550.

    Article  PubMed  CAS  Google Scholar 

  • Oberg, D., Collier, B., Zhao, X., and Schwartz, S. (2003). Mutational inactivation of two distinct negative RNA elements in the human papillomavirus type 16 L2 coding region induces production of high levels of L2 in human cells. J. Virol. 77: 11674–11684.

    Article  PubMed  Google Scholar 

  • O’Connor, M.J., Tan, S.H., Tan, C.H., and Bernard, H.U. (1996). YY1 represses human papillomavirus type 16 transcription by quenching AP-1 activity. J. Virol. 70: 6529–6539.

    PubMed  Google Scholar 

  • O’Connor, M.J., Stünkel, W., Koh, C.H., Zimmermann, H., and Bernard, H.U. (2000). The differentiation-specific factor CDP/Cut represses transcription and replication of human papillomaviruses. J. Virol. 74: 401–410.

    Article  PubMed  Google Scholar 

  • Ong, C.K., Chan, S.Y., Campo, M.S., Fujinaga, K., Mavromara, P., Labropoulou, V., Pfister, H., Tay, S.K., ter Meulen, J., Villa, L.L., and Bernard, H.U. (1993) Evolution of human papillomavirus type 18: An ancient phylogenetic root in Africa and intratype diversity reflect coevolution with human ethnic groups. J. Virol. 67: 6424–6431.

    PubMed  CAS  Google Scholar 

  • Ozbun, M.A., and Meyers, C. (1997). Characterization of late gene transcripts expressed during vegetative replication of human papillomavirus type 31b. J. Virol. 71: 5161–5172.

    PubMed  CAS  Google Scholar 

  • Ozbun, M.A., and Meyers, C. (1998). Temporal usage of multiple promoters during the life cycle of human papillomavirus 31b. J. Virol. 72: 2715–2722.

    PubMed  CAS  Google Scholar 

  • Parish, J.L., Bean, A.M., Park, R.B., and Androphy, E.J. (2006). ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol. Cell. 24: 867–876

    Article  PubMed  CAS  Google Scholar 

  • Parker, J.N., Zhao, W., Askins, K.J., Broker, T.R., and Chow, L. T. (1997). Mutational analysis of differentiation-dependent human papillomavirus-18 enhancer elements in epithelial raft cultures of neonatal foreskin keratinocytes. Cell Growth Diff. 8: 751–762.

    PubMed  CAS  Google Scholar 

  • Pattison, S., Skalnik, D.G., and Roman, A. (1997). CCAAT displacement protein, a regulator of differentiation-specific gene expression, binds a negative regulatory element within the 5′ end of the human papillomavirus type 6 log control region. J. Virol. 71: 2013–2022.

    PubMed  CAS  Google Scholar 

  • Rebrikov, D.V., Bogdanova, E.A., Bulina, M.E., and Lukyanov, S.A. (2002). A new planarian extrachromosomal virus-like element revealed by subtractive hybridization. Mol. Biol. 36: 813–820.

    Article  CAS  Google Scholar 

  • Rector, A., Bossart, G.D., Ghim, S.J., Sundberg, J.P., Jenson, A.B., and Van Ranst, M. (2004). Characterization of a novel close-to-root papillomavirus from a Florida manatee by using multiply primed rolling-circle amplification: Trichechus manatus latirostris papillomavirus type 1. J. Virol. 78: 12698–12702.

    Article  PubMed  CAS  Google Scholar 

  • Rehtanz, M., Ghim, S.J., Rector, A., Van Ranst, M., Fair, P.A., Bossart, G.D., and Jenson, A.B. (2006). Isolation and characterization of the first American bottlenose dolphin papillomavirus: Tursiops truncatus papillomavirus type 2. J. Gen. Virol. 87: 3559–3565.

    Article  PubMed  CAS  Google Scholar 

  • Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J., and Howley, P.M. (1990). The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63: 1129–1136.

    Article  PubMed  CAS  Google Scholar 

  • Selinka, H.C., Giroglou, T., Sapp, M. (2002). Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology 299: 279–287.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, A.C., Eriksson, A.M., Manos, M.M., Munoz, N., Bosch, F.X., Peto, J., and Wheeler, C.M. (1996). Intratype variation in 12 human papillomavirus types: a worldwide perspective. J. Virol. 70: 3127–3136.

    PubMed  CAS  Google Scholar 

  • Stacey, S.N., Jordan, D., Williamson, A.J., Brown, M., Coote, J.H., and Arrand, J.R. (2000). Leaky scanning is the predominant mechanism for translation of human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. J. Virol. 74: 7284–7297.

    Article  PubMed  CAS  Google Scholar 

  • Stoler, M.H., Rhodes, C.R., Whitbeck, A., Wolinsky, S.M., Chow, L.T, and Broker, T.R. (1992). Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum. Pathol. 23: 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Stünkel, W., Huang, Z., Tan, S.H., O’Connor, M, and Bernard, H.U. (2000). Nuclear matrix attachment regions of human papillomavirus-16 repress or activate the E6 promoter depending on the physical state of the viral DNA. J. Virol. 74: 2489–2501.

    Article  PubMed  Google Scholar 

  • Stünkel, W., and Bernard, H.U. (1999). The chromatin structure of the long control region of human papillomavirus type 16 represses viral oncoprotein expression. J. Virol. 73: 1918–1930.

    PubMed  Google Scholar 

  • Suprynowicz, F.A., Disbrow, G.L., Simic, V., Schlegel, R. (2005). Are transforming properties of the bovine papillomavirus E5 protein shared by E5 from high-risk human papillomavirus type 16? Virology 332: 102–113

    Article  PubMed  CAS  Google Scholar 

  • Tan, S.H., Leong, L. E.C., Walker, P.A., and Bernard, H.U. (1994). The human papillomavirus type 16 transcription factor E2 binds with low cooperativity to two flanking binding sites and represses the E6 promoter through displacement of Sp1 and TFIID. J. Virol. 68: 6411–6420.

    PubMed  CAS  Google Scholar 

  • Tang, S., Tao, M., McCoy, J.P. Jr., Zheng, Z.M. (2006). The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J. Virol. 80: 4249–4263.

    Article  PubMed  CAS  Google Scholar 

  • Terai, M., DeSalle, R., and Burk, R.D. (2002). Lack of canonical E6 and E7 open reading frames in bird papillomaviruses: Fringilla coelebs papillomavirus and Psittacus erithacus papillomavirus. J. Virol. 76: 10020–10023.

    Article  PubMed  CAS  Google Scholar 

  • Thierry, F., Spyrou, G., Yaniv, M., and Howley, P. (1992). Two AP1 sites binding JunB are essential for human papillomavirus type 18 transcription in keratinocytes. J. Virol. 66: 3740–3748.

    PubMed  CAS  Google Scholar 

  • Van Ranst, M., Kaplan, J.B., and Burk, R.D. (1992). Phylogenetic classification of human papillomaviruses: correlation with clinical manifestations. J. Gen. Virol. 73: 2653–2660.

    Article  PubMed  Google Scholar 

  • Van Tine, B.A., Knops, J., Broker, T.R., Chow, L.T., and Moen, P.T. (2001). In situ analysis of the transcriptional activity of integrated viral DNA using tyramide-FISH. Dev. Biol. (Basel) 106: 381–385.

    Google Scholar 

  • Varsani, A., van der Walt, E., Heath, L., Rybicki, E.P., Williamson, A.L., and Martin, D.P. (2006). Evidence of ancient papillomavirus recombination. J. Gen. Virol. 87: 2527–2531.

    Article  PubMed  CAS  Google Scholar 

  • Villa, L.L., Sichero, L., Rahal, P., Caballero, O., Ferenczy, A., Rohan, T., Franco, E.L. (2000). Molecular variants of human papillomavirus types 16 and 18 preferentially associated with cervical neoplasia. J. Gen. Virol. 81: 2959–2968.

    PubMed  CAS  Google Scholar 

  • Wu, S.Y., Lee, A.Y., Hou, S.Y., Kemper, J.K., Erdjument-Bromage, H., Tempst, P., and Chiang, C.M. (2006). Brd4 links chromatin targeting to HPV transcriptional silencing. Genes Dev. 20: 2383–2396.

    Article  PubMed  CAS  Google Scholar 

  • Xi, L.F., Koutsky, L.A., Galloway, D.A., Kuypers, J., Hughes, J.P., Wheeler, C.M., Holmes, K.K., and Kiviat, N.B. (1997). Genomic variation of human papillomavirus type 16 and risk for high grade cervical intraepithelial neoplasia. J. Natl. Cancer Inst. 89: 796–802.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, T., Manos, M.M., Peto, J., Greer, C.E., Munoz, N., Bosch, F.X., and Wheeler, C.M. (1997). Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. J Virol. 71: 2463–2472.

    PubMed  CAS  Google Scholar 

  • Zhao, W., Noya, F., Chen, W.Y., Townes, T.M., Chow, L.T., and Broker, T.R. (1999). Trichostatin A up-regulates human papillomavirus type 11 upstream regulatory region-E6 promoter activity in undifferentiated primary human keratinocytes. J. Virol. 73: 5026–5033.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Ulrich Bernard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Bernard, HU. (2009). Papillomaviruses: Biology, Diversity, and Pathogenesis. In: Damania, B., Pipas, J.M. (eds) DNA Tumor Viruses. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68945-6_6

Download citation

Publish with us

Policies and ethics