Advertisement

Papillomavirus Transformation

  • Kimberly Johung
  • Daniel DiMaio
Chapter

Abstract

Papillomaviruses are small DNA tumor viruses that induce benign and malignant epithelial tumors. The most prevalent malignant tumor associated with human papillomaviruses (HPV) infection is cervical cancer. The oncogenic potential of papillomaviruses is reflected in their ability to immortalize and transform cells growing in culture. Analysis of these activities has identified three viral oncogenes: E5, E6, and E7. The E5 gene induces transformation by modulating the activity of cell membrane proteins such as growth factor receptors, whereas the E6 and E7 genes target nuclear tumor suppressor proteins such as p53 and the retinoblastoma protein. Studies of these interactions have provided important insights into cell cycle control and signal transduction and may suggest novel strategies to combat papillomavirus-induced cancer.

Keywords

Cervical Cancer hTERT Promoter Primary Human Keratinocytes Rodent Fibroblast Chronic Estrogen Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Work carried out in the authors’ laboratory is supported by grants from the NIH (CA16038 and CA37157). K.J. was supported by the MSTP training grant to Yale University. We thank J. Zulkeski for assistance in preparing this manuscript.

References

  1. Adam, J.L., Briggs, M.W., and McCance, D.J. (2000) A mutagenic analysis of the E5 protein of human papillomavirus type 16 reveals that E5 binding to the vacuolar H+-ATPase is not sufficient for biological activity, using mammalian and yeast expression systems. Virology 272, 315–325.PubMedGoogle Scholar
  2. Arbeit, J.M., Howley, P.M., and Hanahan, D. (1996) Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc. Natl. Acad. Sci. USA 93, 2930–2935.PubMedGoogle Scholar
  3. Ashby, A.D.M., Meagher, L., Campo, M.S., and Finbow, M.E. (2001) E5 transforming proteins of papillomaviruses do not disturb the activity of the vacuolar H+-ATPase. J. Gen. Virol. 82, 2353–2362.PubMedGoogle Scholar
  4. Ashrafi, G.H., Pitts, J.D., Faccini, A., McLean, P., O Brien, P.M., Finbow, M.E., and Campo, M.S. (2000) Binding of bovine papillomavirus type 4 E8 to ductin (16 K proteolipid), down-regulation of gap junction intercellular communication and full cell transformation are independent events. J. Gen. Virol. 81, 689–694.PubMedGoogle Scholar
  5. Balsitis, S.J., Dick, F., Lee, D., Farrell, L., Kyde, R.K., Griep, A.E., Dyson, N., and Lambert, P.F. (2005) Examination of the pRb-dependent and pRb-independent functions of E7 in vivo. J. Virol. 79, 11392–11402.PubMedGoogle Scholar
  6. Balsitis, S.J., Sage, J., Duensing, S., Munger, K., Jacks, T., and Lambert, P.F. (2003) Recapitulation of the effects of the human papillomavirus type 16 E7 oncogene on mouse epithelium by somatic Rb deletion and detection of pRb-independent effects of E7 in vivo. Mol. Cell. Biol. 23, 9094–9103.PubMedGoogle Scholar
  7. Band, V., DeCaprio, J.A., Delmolino, L., Kulesa, V., and Sager, R. (1991) Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells. J. Virol. 65, 6671–6676.PubMedGoogle Scholar
  8. Banks, L., Edmonds, C., and Vousden, K.H. (1990) Ability of the HPV16 E7 protein to bind RB and induce DNA synthesis is not sufficient for efficient transforming activity in NIH3T3 cells. Oncogene 5, 1383–1389.PubMedGoogle Scholar
  9. Barbosa, M.S., Edmonds, C., Fisher, C., Schiller, J.T., Lowy, D.R., and Vousden, K.H. (1990) The region of the HPV E7 oncoprotein homologous to adenovirus E1a and SV40 large Tantigen contains separate domains for Rb binding and casein kinase II. EMBO J. 9, 153–160.PubMedGoogle Scholar
  10. Barbosa, M.S., Vass, W.C., Lowy, D.R., and Schiller, J.T. (1991) In vitro biological activities of the E6 and E7 genes vary among human papillomaviruses of different oncogenic potential. J. Virol. 65, 292–298.PubMedGoogle Scholar
  11. Bedell, M.A., Jones, K.H., Grossman, S.R., and Laimins, L.A. (1989) Identification of human papillomavirus type 18 transforming genes in immortalized and primary cells. J. Virol. 63, 1247–1255.PubMedGoogle Scholar
  12. Berezutskaya, E., Yu, B., Morozov, A., Raychaudhuri, P., and Bagchi, S. (1997) Differential regulation of the pocket domains of the retinoblastoma family proteins by the HPV16 E7 oncoprotein. Cell Growth Differ. 8, 1277–1286.PubMedGoogle Scholar
  13. Bernard, B.A., Bailly, C., Lenoir, M.-C., Darmon, M., Thierry, F., and Yaniv, M. (1989) The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes. J. Virol. 63, 4317–4324.PubMedGoogle Scholar
  14. Boshart, M., Gissmann, L., Ikenberg, H., Kleinheinz, A., Scheurlen, W., and zur Hausen, H. (1984) A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 3, 1151–1157.PubMedGoogle Scholar
  15. Bouvard, V., Storey, A., Pim, D., and Banks, L. (1994) Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. EMBO J. 13, 5451–5459.PubMedGoogle Scholar
  16. Boyer, S.N., Wazer, D.E., and Band, V. (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res. 56, 4620–4624.PubMedGoogle Scholar
  17. Brehm, A., Nielsen, S.J., Miska, E.A., McCance, D.J., Reid, J.L., Bannister, A.J., and Kouzarides, T. (1999) The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 18, 2449–2458.PubMedGoogle Scholar
  18. Briggs, M.W., Adam, J.L., and McCance, D.J. (2001) The human papillomavirus type 16 E5 protein alters vacuolar H+-ATPase function and stability in Saccharomyces cerevisiae. Virology 280, 169–175.PubMedGoogle Scholar
  19. Burgers, W.A., Blanchon, L., Pradhan, S., Launoit, Y.D., Kouzarides, T., and Fuks, F. (2006) Viral oncoproteins target the DNA methyltransferases. Oncogene (ePub PMID 16983344).Google Scholar
  20. Burkhardt, A., Willingham, M., Gay, C., Jeang, K.-T., and Schlegel, R. (1989) The E5 oncoprotein of bovine papillomavirus is oriented asymmetrically in Golgi and plasma membranes. Virology 170, 334–339.PubMedGoogle Scholar
  21. Chang, J.L., Tsao, Y.P., Liu, D.W., Huang, S.J., Lee, W.H., and Chen, S.L. (2001) The expression of HPV-16 E5 protein in squamous neoplastic changes in the uterine cervix. J. Biomed. Sci. 8, 206–213.PubMedGoogle Scholar
  22. Chellappan, S., Kraus, V.B., Kroger, B., Munger, K., Howley, P.M., Phelps, W.C., and Nevins, J.R. (1992) Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between the transcription factor E2F and the retinoblastoma gene product. Proc. Natl. Acad. Sci. USA 89, 4549–4553.PubMedGoogle Scholar
  23. Chen, J.J., Reid, C.E., Band, V., and Androphy, E.J. (1995) Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 269, 529–531.PubMedGoogle Scholar
  24. Cheng, S., Schmidt-Grimminger, D.C., Murant, T., Broker, T.R., and Chow, L.T. (1995) Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev. 9, 2335–2349.PubMedGoogle Scholar
  25. Cohen, B.D., Lowy, D.R., and Schiller, J.T. (1993) The conserved C-terminal domain of the bovine papillomavirus E5 oncoprotein can associate with an alpha-adaptin-like molecule: a possible link between growth factor receptors and viral transformation. Mol. Cell. Biol. 13, 6462–6468.PubMedGoogle Scholar
  26. Conrad, M., Bubb, V.J., and Schlegel, R. (1993) The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein. J. Virol. 67, 6170–6178.PubMedGoogle Scholar
  27. Crusius, K., Auvinen, E., and Alonso, A. (1997) Enhancement of EGF- and PMA-mediated MAP kinase activation in cells expressing the human papillomavirus type 16 E5 protein. Oncogene 15, 1437–1444.PubMedGoogle Scholar
  28. Crusius, K., Auvinen, E., Steuer, B., Gaissert, H., and Alonso, A. (1998) The human papillomavirus type 16 E5-protein modulates ligand-dependent activation of the EGF receptor family in the human epithelial cell line HaCaT. Exp. Cell Res. 241, 76–83.PubMedGoogle Scholar
  29. DeFilippis, R.A., Goodwin, E.C., Wu, L., and DiMaio, D. (2003) Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J. Virol. 77, 1551–1563.PubMedGoogle Scholar
  30. Demers, G.W., Foster, S.A., Halbert, C.L., and Galloway, D.A. (1994) Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc. Natl. Acad. Sci. USA 91, 4382–4386.PubMedGoogle Scholar
  31. Dickson, M.A., Hahn, W.C., Ino, Y., Ronfard, V., Wu, J.Y., Weinberg, R.A., Louis, D.N., Li, F.P., and Rheinwald, J.G. (2000) Human keratinocytes that express hTERT and also bypass a p16INK4a-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20, 1436–1447.PubMedGoogle Scholar
  32. Disbrow, G.L., Hanover, J.A., and Schlegel, R. (2005) Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. J. Virol. 79, 5839–5846.PubMedGoogle Scholar
  33. Dowhanick, J.J., McBride, A.A., and Howley, P.M. (1995) Suppression of cellular proliferation by the papillomavirus E2 protein. J. Virol. 69, 7791–7799.PubMedGoogle Scholar
  34. Drummond-Barbosa, D.A., Vaillancourt, R.R., Kazlauskas, A., and DiMaio, D. (1995) Ligand-independent activation of the platelet-derived growth factor beta receptor: requirements for bovine papillomavirus E5-induced mitogenic signaling. Mol. Cell. Biol. 15, 2570–2581.PubMedGoogle Scholar
  35. Duensing, S., Duensing, A., Crum, C.P., and Munger, K. (2001) Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 61, 2356–2360.PubMedGoogle Scholar
  36. Duensing, S., Duensing, A., Flores, E.R., Do, A., Lambert, P.F., and Munger, K. (2001) Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J. Virol. 75, 7712–7716.PubMedGoogle Scholar
  37. Duensing, S., Lee, L.Y., Duensing, A., Basile, J., Piboonniyom, S.O., Gonzalez, S.L., Crum, C.P., and Munger, K. (2000) The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc. Natl. Acad. Sci. USA 97, 10002–10007.PubMedGoogle Scholar
  38. Duensing, S. and Munger, K. (2002) The human papillomavirus type 16 E6 and E7 oncoproteins independently induce numerical and structural chromosome instability. Cancer Res. 62, 7075–7082.PubMedGoogle Scholar
  39. Duensing, S. and Munger, K. (2003) Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of retinoblastoma protein family members. J. Virol. 77, 12331–12335.PubMedGoogle Scholar
  40. Durst, M., Dzarlieva-Petrusevska, R.T., Boukamp, P., Fusenig, N.E., and Gissmann, L. (1987) Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. Oncogene 1, 251–256.PubMedGoogle Scholar
  41. Durst, M., Gallahan, D., Jay, G., and Rhim, J.S. (1989) Glucocorticoid-enhanced neoplastic transformation of human keratinocytes by human papillomavirus type 16 and an activated ras oncogene. Virology 173, 767–771.PubMedGoogle Scholar
  42. Durst, M., Gissmann, L., Ikenberg, H., and zur Hausen, H. (1983) A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc. Natl. Acad. Sci. USA 80, 3812–3815.PubMedGoogle Scholar
  43. Dyson, N., Howley, P., Munger, K., and Harlow, E. (1989) The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–936.PubMedGoogle Scholar
  44. Edmonds, C. and Vousden, K.H. (1989) A point mutational analysis of human papillomavirus type 16 E7 protein. J. Virol. 63, 2650–2656.PubMedGoogle Scholar
  45. Faccini, A.M., Cairney, M., Ashrafi, G.H., Finbow, M.E., Campo, M.S., and Pitts, J.D. (1996) The bovine papillomavirus type 4 E8 protein binds to ductin and causes loss of gap junctional intercellular communication in primary fibroblasts. J. Virol. 70, 9041–9045.PubMedGoogle Scholar
  46. Favre-Bonvin, A., Reynaud, C., Kretz-Remy, C., and Jalinot, P. (2005) Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome. J. Virol. 79, 4229–4237.PubMedGoogle Scholar
  47. Fehrmann, F., Klumpp, D.J., and Laimins, L.A. (2003) Human papillomavirus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J. Virol. 77, 2819–2831.PubMedGoogle Scholar
  48. Flores, E.R., Allen-Hoffmann, B.L., Lee, D., and Lambert, P.F. (2000) The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle. J. Virol. 74, 6622–6631.PubMedGoogle Scholar
  49. Foster, A.S., Demers, G.W., Etscheid, B.G., and Galloway, D.A. (1994) The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. J. Virol. 68, 5698–5705.PubMedGoogle Scholar
  50. Foster, S.A. and Galloway, D.A. (1996) Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12, 1773–1779.PubMedGoogle Scholar
  51. Francis, D.A., Schmid, S.I., and Howley, P.M. (2000) Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J. Virol. 74, 2679–2686.PubMedGoogle Scholar
  52. Funk, J.O., Waga, S., Harry, J.B., Espling, E., Stillman, B., and Galloway, D.A. (1997) Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11, 2090–2100.PubMedGoogle Scholar
  53. Gage, J.R., Meyers, C., and Wettstein, F.O. (1990) The E7 proteins of the nononcogenic human papillomavirus type 6b (HPV-6b) and of the oncogenic HPV-16 differ in retinoblastoma protein binding and other properties. J. Virol. 64, 723–730.PubMedGoogle Scholar
  54. Gao, Q., Singh, L., Kumar, A., Srinivasan, S., Wazer, D.E., and Band, V. (2001) Human papillomavirus type 16 E6-induced degradation of E6TP1 correlates with its ability to immortalize human mammary epithelial cells. J. Virol. 75, 4459–4466.PubMedGoogle Scholar
  55. Garcea, R.L. and DiMaio, D. (2007) The Papillomaviruses. In: DNA Tumor Viruses, Pipas, J. and Damania, B., eds. Springer, New York.Google Scholar
  56. Genther, S.M., Sterling, S., Duensing, S., Munger, K., Sattler, C., and Lambert, P.F. (2003) Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J. Virol. 77, 2832–2842.PubMedGoogle Scholar
  57. Genther Williams, S.M., Disbrow, G.L., Schlegel, R., Lee, D., Threadgill, D.W., and Lambert, P.F. (2005) Requirement of epidermal growth factor receptor for hyperplasia induced by E5, a high-risk human papillomavirus oncogene. Cancer Res. 65, 6534–6542.PubMedGoogle Scholar
  58. Gewin, L., Myers, H., Kiyono, T., and Galloway, D.A. (2004) Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 18, 2269–2282.PubMedGoogle Scholar
  59. Gissmann, L., Wolnik, L., Ikenberg, H., Koldovsky, U., Schnurch, H.G., and zur Hausen, H. (1983) Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc. Natl. Acad. Sci. USA 80, 560–563.PubMedGoogle Scholar
  60. Glaunsinger, B.A., Lee, S.S., Thomas, M., Banks, L., and Javier, R. (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19, 5270–5280.PubMedGoogle Scholar
  61. Goldstein, D.J., Andresson, T., Sparkowski, J.J., and Schlegel, R. (1992) The BPV-1 E5 protein, the 16 kDa membrane pore-forming protein and the PDGF receptor exist in a complex that is dependent on hydrophobic transmembrane interactions. EMBO J. 11, 4851–4859.PubMedGoogle Scholar
  62. Goldstein, D.J., Finbow, M.E., Andresson, T., McLean, P., Smith, K., Bubb, V., and Schlegel, R. (1991) Bovine papillomavirus E5 oncoprotein binds to the 16 K component of vacuolar H(+)-ATPases. Nature 352, 347–349.PubMedGoogle Scholar
  63. Goldstein, D.J., Li, W., Wang, L.-M., Heidaran, M.A., Aaronson, S.A., Shinn, R., Schlegel, R., and Pierce, J.H. (1994) The bovine papillomavirus type 1 E5 transforming protein specifically binds and activates the beta-type receptor for platelet-derived growth factor but not other tyrosine kinase-containing receptors to induce cellular transformation. J. Virol. 68, 4432–4441.PubMedGoogle Scholar
  64. Gonzalez, S.L., Stremlau, M., He, X., Basile, J.R., and Munger, K. (2001) Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 E7 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J. Virol. 75, 7583–7591.PubMedGoogle Scholar
  65. Goodwin, E.C. and DiMaio, D. (2000) Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. Proc. Natl. Acad. Sci. USA 97, 12513–12518.PubMedGoogle Scholar
  66. Goodwin, E.C., Yang, E., Lee, C.-J., Lee, H.-W., DiMaio, D., and Hwang, E.-S. (2000) Rapid induction of senescence in human cervical carcinoma cells. Proc. Natl. Acad. Sci. USA 97, 10978–10983.PubMedGoogle Scholar
  67. Gu, Z.-M. and Matlashewski, G. (1995) Effect of human papillomavirus type 16 oncogenes on MAP kinase activity. J. Virol. 69, 8051–8056.PubMedGoogle Scholar
  68. Halbert, C.L., Demers, G.W., and Galloway, D.A. (1991) The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol. 65, 473–478.PubMedGoogle Scholar
  69. Harbour, J.W. and Dean, D.C. (2000) Chromatin remodeling and Rb activity. Curr. Opin. Cell Biol. 12, 685–689.PubMedGoogle Scholar
  70. Hawley-Nelson, P., Vousden, K.H., Hubbert, N.L., Lowy, D.R., and Schiller, J.T. (1989) HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 8, 3905–3910.PubMedGoogle Scholar
  71. Heck, D.V., Yee, C.L., Howley, P.M., and Munger, K. (1992) Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc. Natl. Acad. Sci. USA 89, 4442–4446.PubMedGoogle Scholar
  72. Helt, A.-M., Funk, J.O., and Galloway, D.A. (2002) Inactivation of both the retinoblastoma tumor suppressor and p21 by the human papillomavirus type 16 E7 oncoprotein is necessary to inhibit cell cycle arrest in human epithelial cells. J. Virol. 76, 10559–10568.PubMedGoogle Scholar
  73. Helt, A.M. and Galloway, D.A. (2001) Destabilization of the retinoblastoma tumor suppressor by human papillomavirus type 16 E7 is not sufficient to overcome cell cycle arrest in human keratinocytes. J. Virol. 75, 6737–6747.PubMedGoogle Scholar
  74. Herber, R., Liem, A., Pitot, H.C., and Lambert, P.F. (1996) Squamous epithelial hyperplasia and carcinoma in mice transgenic for the human papillomavirus type 16 E7 oncogene. J. Virol. 70, 1873–1881.PubMedGoogle Scholar
  75. Hickman, E.S., Picksley, S.M., and Vousden, K.H. (1994) Cells expressing HPV16 E7 continue cell cycle progression following DNA damage induced p53 activation. Oncogene 9, 2177–2181.PubMedGoogle Scholar
  76. Horner, S.M., DeFilippis, R.A., Manuelidis, L., and DiMaio, D. (2004) Repression of the human papillomavirus E6 gene initiates p53-dependent, telomerase-independent senescence and apoptosis in HeLa cervical carcinoma cells. J. Virol. 78, 4063–4073.PubMedGoogle Scholar
  77. Horwitz, B.H., Burkhardt, A.L., Schlegel, R., and DiMaio, D. (1988) 44-amino-acid E5 transforming protein of bovine papillomavirus requires a hydrophobic core and specific carboxyl-terminal amino acids. Mol. Cell. Biol. 8, 4071–4078.PubMedGoogle Scholar
  78. Hudson, J.B., Bedell, M.A., McCance, D.J., and Laimins, L.A. (1990) Immortalization and altered differentiation of human keratinocytes in vitro by the E6 and E7 open reading frames of human papillomavirus type 18. J. Virol. 64, 519–526.PubMedGoogle Scholar
  79. Huh, K.W., DeMasi, J., Ogawa, H., Nakatani, Y., Howley, P.M., and Munger, K. (2005) Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc. Natl. Acad. Sci. USA 102, 11492–11497.PubMedGoogle Scholar
  80. Hwang, E.-S., Nottoli, T., and DiMaio, D. (1995) The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology 211, 227–233.PubMedGoogle Scholar
  81. Hwang, E.-S., Riese II, D.J., Settleman, J., Nilson, L.A., Honig, J., Flynn, S., and DiMaio, D. (1993) Inhibition of cervical carcinoma cell line proliferation by introduction of a bovine papillomavirus regulatory gene. J. Virol. 67, 3720–3729.PubMedGoogle Scholar
  82. Jeon, S., Allen, H.B., and Lambert, P.F. (1995) Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J. Virol. 69, 2989–2997.PubMedGoogle Scholar
  83. Jewers, R.J., Hildebrandt, P., Ludlow, J.W., Kell, B., and McCance, D.J. (1992) Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes. J. Virol. 66, 1329–1335.PubMedGoogle Scholar
  84. Johung, K., Goodwin, E.C., and DiMaio, D. (2007) Human papillomavirus E7 repression in cervical carcinoma cells initiates a transcriptional cascade driven by the retinoblastoma family, resulting in senescence. J. Virol. 81, 2102–2116.PubMedGoogle Scholar
  85. Jones, D.L., Alani, R.M., and Munger, K. (1997a) The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 11, 2101–2111.Google Scholar
  86. Jones, D.L., Thompson, D.A., and Munger, K. (1997b) Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 239, 97–107.Google Scholar
  87. Kaur, P. and McDougall, J.K. (1989) HPV-18 immortalization of human keratinocytes. Virology 173, 302–310.PubMedGoogle Scholar
  88. Kaur, P., McDougall, J.K., and Cone, R. (1989) Immortalization of primary human epithelial cells by cloned cervical carcinoma DNA containing human papillomavirus type 16 E6/E7 open reading frames. J. Gen. Virol. 70, 1261–1266.PubMedGoogle Scholar
  89. Kessis, T.D., Slebos, R.J.C., Nelson, W.G., Kastan, M.B., Plunkett, B.S., Han, S.M., Lorincz, A.T., Hedrick, L., and Cho, K.R. (1993) Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 90, 3988–3992.PubMedGoogle Scholar
  90. Kiyono, T., Foster, S.A., Koop, J.I., McDougall, J.K., Galloway, D.A., and Kleingelhutz, A.J. (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88.PubMedGoogle Scholar
  91. Kiyono, T., Hiraiwa, A., Fujita, M., Hayashi, Y., Akiyama, T., and Ishibashi, M. (1997) Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad. Sci. USA 94, 1s1612–11616.Google Scholar
  92. Klein, O., Kegler-Ebo, D., Su, J., Smith, S.O., and DiMaio, D. (1999) The bovine papillomavirus E5 protein requires a juxtamembrane negative charge for activation of the platelet-derived growth factor β receptor and transformation of C127 cells. J. Virol. 73, 3264–3272.PubMedGoogle Scholar
  93. Klein, O., Polack, G.W., Surti, T., Kegler-Ebo, D., Smith, S.O., and DiMaio, D. (1998) Role of glutamine 17 of the bovine papillomavirus E5 protein in platelet-derived growth factor beta receptor activation and cell transformation. J. Virol. 72, 8921–8932.PubMedGoogle Scholar
  94. Klingelhutz, A.J., Foster, S.A., and McDougall, J.K. (1996) Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature 380, 79–82.PubMedGoogle Scholar
  95. Lai, C.-C., Edwards, A.P.B., and DiMaio, D. (2005) Productive interaction between transmembrane mutants of the bovine papillomavirus E5 protein and the platelet-derived growth factor β receptor. J. Virol. 79, 1924–1929.PubMedGoogle Scholar
  96. Lai, C.-C., Henningson, C., and DiMaio, D. (1998) Bovine papillomavirus E5 protein induces oligomerization and trans-phosphorylation of the platelet-derived growth factor β receptor. Proc. Natl. Acad. Sci. USA 95, 15241–15246.PubMedGoogle Scholar
  97. Lambert, P.F., Pan, H., Pitot, H., Liem, A., Jackson, M., and Griep, A. (1993) Epidermal cancer associated with expression of human papillomavirus type 16 E6 and E7 oncogenes in the skin of transgenic mice. Proc. Natl. Acad. Sci. USA 90, 5583–5587.PubMedGoogle Scholar
  98. Lee, C.J., Suh, E.J., Kang, H.T., Im, J.S., Um, S.J., Park, J.S., and Hwang, E.-S. (2002a) Induction of senescence-like state and suppression of telomerase activity through inhibition of HPV E6/E7 gene expression in cells immortalized by HPV16 DNA. Exp. Cell Res. 277, 173–182.Google Scholar
  99. Lee, D., Lim, C., Seo, T., Kwon, H., Min, H., and Choe, J. (2002b) The viral oncogene human papillomavirus E7 deregulates transcriptional silencing by Brm-related gene 1 via molecular interactions. J. Biol. Chem. 277, 48842–48848.Google Scholar
  100. Lee, S.S., Glaunsinger, B., Mantovani, F., Banks, L., and Javier, R.T. (2000) Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J. Virol. 74, 9680–9693.PubMedGoogle Scholar
  101. Lee, S.S., Weiss, R.S., and Javier, R.T. (1997) Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad. Sci. USA 94, 6670–6675.PubMedGoogle Scholar
  102. Leechanachai, P., Banks, L., Moreau, F., and Matlashewski, G. (1992) The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene 7, 19–25.PubMedGoogle Scholar
  103. Leptak, C., Ramon y Cajal, S., Kulke, R., Horwitz, B.H., Riese II, D.J., Dotto, G.P., and DiMaio, D. (1991) Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16. J. Virol. 65, 7078–7083.PubMedGoogle Scholar
  104. Liu, X., Yuan, H., Fu, B., Disbrow, G.L., Apolinario, T., Tomaic, V., Kelley, M.L., Baker, C.C., Huibregtse, J., and Schlegel, R. (2005) The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J. Biol. Chem. 280, 10807–10816.PubMedGoogle Scholar
  105. Liu, Y., Chen, J.J., Gao, Q., Dalal, S., Hong, Y., Mansur, C.P., Band, V., and Androphy, E.J. (1999) Multiple functions of human papillomavirus type 16 E6 contribute to the immortalization of mammary epithelial cells. J. Virol. 73, 7297–7307.PubMedGoogle Scholar
  106. Liu, Z., Ghai, J., Ostrow, R.S., McGlennen, R.C., and Faras, A.J. (1994) The E6 gene of human papillomavirus type 16 is sufficient for transformation of baby rat kidney cells in cotransfection with activated Ha-ras. Virology 201, 388–396.PubMedGoogle Scholar
  107. Longworth, M.S. and Laimins, L.A. (2004) The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J. Virol. 78, 3533–3541.PubMedGoogle Scholar
  108. Mantovani, F. and Banks, L. (2001) The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene 20, 7874–7887.PubMedGoogle Scholar
  109. Matlashewski, G., Schneider, J., Banks, L., Jones, N., Murray, A., and Crawford, L. (1987) Human papillomavirus type 16 cooperates with activated ras in transforming primary cells. EMBO J. 6, 1741–1746.PubMedGoogle Scholar
  110. Mattoon, D., Gupta, K., Doyon, J., Loll, P.J., and DiMaio, D. (2001) Identification of the transmembrane dimer interface of the bovine papillomavirus E5 protein. Oncogene 20, 3824–3834.PubMedGoogle Scholar
  111. May, M., Dong, X.P., Beyer-Finkler, E., Stubenrauch, F., Fuchs, P.G., and Pfister, H. (1994) The E6/E7 promoter of extrachromosomal HPV16 DNA in cervical cancers escapes from cellular repression by mutation of target sequences for YY1. EMBO J. 13, 1460–1466.PubMedGoogle Scholar
  112. McCance, D.J., Kopan, R., Fuchs, E., and Laimins, L.A. (1988) Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. Proc. Natl. Acad. Sci. USA 85, 7169–7173.PubMedGoogle Scholar
  113. Meyer, A.N., Xu, Y.-F., Webster, M.K., Smith, A.S., and Donoghue, D.J. (1994) Cellular transformation by a transmembrane peptide: structural requirements for the bovine papillomavirus E5 oncoprotein. Proc. Natl. Acad. Sci. USA 91, 4634–4638.PubMedGoogle Scholar
  114. Munger, K., Basile, J.R., Duensing, S., Eichten, A., Gonzalez, S.L., Grace, M., and Zacny, V.L. (2001) Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 20, 7888–7898.PubMedGoogle Scholar
  115. Munger, K., Phelps, W.C., Bubb, V., Howley, P.M., and Schlegel, R. (1989a) The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63, 4417–4421.Google Scholar
  116. Munger, K., Werness, B.A., Dyson, N., Phelps, W.C., Harlow, E., and Howley, P.M. (1989b) Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099–4105.Google Scholar
  117. Naeger, L.K., Goodwin, E.C., Hwang, E.-S., DeFilippis, R.A., Zhang, H., and DiMaio, D. (1999) Bovine papillomavirus E2 protein activates a complex growth-inhibitory program in p53-negative HT-3 cervical carcinoma cells that includes repression of cyclin A and cdc25A phosphatase genes and accumulation of hypophosphorylated retinoblastoma protein. Cell Growth Differ. 10, 413–422.PubMedGoogle Scholar
  118. Nakagawa, S. and Huibregtse, J.M. (2000) Human scribble (vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol. Cell. Biol. 20, 8244–8253.PubMedGoogle Scholar
  119. Nappi, V.M. and Petti, L.M. (2002) Multiple transmembrane amino acid requirements suggest a highly specific interaction between the bovine papillomavirus E5 oncoprotein and the platelet-derived growth factor beta receptor. J. Virol. 76, 7976–7986.PubMedGoogle Scholar
  120. Nguyen, M.L., Nguyen, M.M., Lee, D., Griep, A.E., and Lambert, P.F. (2003) The PDZ ligand domain of the human papillomavirus type 16 E6 protein is required for E6 s induction of epithelial hyperplasia in vivo. J. Virol. 77, 6957–6964.PubMedGoogle Scholar
  121. Nilson, L.A. and DiMaio, D. (1993) Platelet-derived growth factor receptor can mediate tumorigenic transformation by the bovine papillomavirus E5 protein. Mol. Cell. Biol. 13, 4137–45.PubMedGoogle Scholar
  122. Nilson, L.A., Gottlieb, R.L., Polack, G.W., and DiMaio, D. (1995) Mutational analysis of the interaction between the bovine papillomavirus E5 transforming protein and the endogenous beta receptor for platelet-derived growth factor in mouse C127 cells. J. Virol. 69, 5869–5874.PubMedGoogle Scholar
  123. Oh, S.T., Kyo, S., and Laimins, L.A. (2001) Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J. Virol. 75, 5559–5566.PubMedGoogle Scholar
  124. Orth, G., Jablonska, S., Jarzabek-Chorzelska, M., Obalek, S., Rzesa, G., Favre, M., and Croissant, O. (1979) Characteristics of the lesions and risk of malignant conversion associated with the type of human papillomavirus involved in epidermodysplasia verruciformis. Cancer Res. 39, 1074–1082.PubMedGoogle Scholar
  125. Pan, H. and Griep, A.E. (1995) Temporally distinct patterns of p53-dependent and p53-independent apoptosis during mouse lens development. Genes Dev. 9, 2157–2169.PubMedGoogle Scholar
  126. Patel, D., Huang, S.M., Baglia, L.A., and McCance, D.J. (1999) The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 18, 5061–5072.PubMedGoogle Scholar
  127. Pecoraro, G., Lee, M., Morgan, D., and Defendi, V. (1991) Evolution of in vitro transformation and tumorigenesis of HPV16 and HPV18 immortalized primary cervical epithelial cells. Am. J. Pathol. 138, 1–8.Google Scholar
  128. Pei, X.F., Sherman, L., Sun, Y.H., and Schlegel, R. (1998) HPV-16 E7 protein bypasses keratinocyte growth inhibition by serum and calcium. Carcinogenesis 19, 1481–1486.PubMedGoogle Scholar
  129. Petti, L. and DiMaio, D. (1992) Stable association between the bovine papillomavirus E5 transforming protein and activated platelet-derived growth factor receptor in transformed mouse cells. Proc. Natl. Acad. Sci USA 89, 6736–6740.PubMedGoogle Scholar
  130. Petti, L., Nilson, L.A., and DiMaio, D. (1991) Activation of the platelet-derived growth factor receptor by the bovine papillomavirus E5 transforming protein. EMBO J. 10, 845–855.PubMedGoogle Scholar
  131. Petti, L.M., Reddy, V., Smith, S.O., and DiMaio, D. (1997) Identification of amino acids in the transmembrane and juxtamembrane domains of the platelet-derived growth factor receptor required for productive interaction with the bovine papillomavirus E5 protein. J. Virol. 71, 7318–7327.PubMedGoogle Scholar
  132. Phelps, W.C., Munger, K., Yee, C.L., Barnes, J.A., and Howley, P.M. (1992) Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J. Virol. 66, 2418–2427.PubMedGoogle Scholar
  133. Phelps, W.C., Yee, C.L., Munger, K., and Howley, P.M. (1988) The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to adenovirus E1a. Cell 53, 539–547.PubMedGoogle Scholar
  134. Pim, D., Collins, M., and Banks, L. (1992) Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene 7, 27–32.PubMedGoogle Scholar
  135. Pim, D., Storey, A., Thomas, M., Massimi, P., and Banks, L. (1994) Mutational analysis of HPV-18 E6 identifies domains required for p53 degradation in vitro, abolition of p53 transactivation in vivo and immortalization of primary BMK cells. Oncogene 9, 1869–1876.PubMedGoogle Scholar
  136. Pirisi, L., Creek, K.E., Doniger, J., and DiPaolo, J.A. (1988) Continuous cell lines with altered growth and differentiation properties originate after transfection of human keratinocytes with human papillomavirus type 16 DNA. Carcinogenesis 9, 1573–1579.PubMedGoogle Scholar
  137. Pirisi, L., Yasumoto, S., Feller, M., Doniger, J., and DiPaolo, J.A. (1987) Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA. J. Virol. 61, 1061–1066.PubMedGoogle Scholar
  138. Psyrri, A., DeFilippis, R.A., Edwards, A.P.B., Yates, K.E., Manuelidis, L., and DiMaio, D. (2004) Role of the retinoblastoma pathway in senescence triggered by repression of the human papillomavirus E7 protein in cervical carcinoma cells. Cancer Res. 64, 3079–3086.PubMedGoogle Scholar
  139. Rey, O., Lee, S., and Park, N.H. (1999) Impaired nucleotide excision repair in UV-irradiated human oral keratinocytes immortalized with type 16 human papillomavirus genome. Oncogene 18, 6997–7001.PubMedGoogle Scholar
  140. Reznikoff, C.A., Belair, C., Savelieva, E., Zhai, Y., Pfeifer, K., Yeager, T., Thompson, K.J., DeVries, S., Bindley, C., and Newton, M.A. (1994) Long-term genome stability and minimal genotypic and phenotypic alterations in HPV-16 E7-, but not E6-immortalized human uroepithelial cells. Genes Dev. 8, 2227–2240.PubMedGoogle Scholar
  141. Rous, P. and Beard, J.W. (1935) The progression to carcinoma of virus-induced rabbit papillomas (Shope). J. Exp. Med. 62, 523–U96.PubMedGoogle Scholar
  142. Schapiro, F., Sparkowski, J., Adduci, A., Suprynowicz, F., Schlegel, R., and Grinstein, S. (2000) Golgi alkalinization by the papillomavirus E5 oncoprotein. J. Cell Biol. 148. 305–315.PubMedGoogle Scholar
  143. Scheffner, M., Huibregtse, J.M., Vierstra, R.D., and Howley, P.M. (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505.PubMedGoogle Scholar
  144. Scheffner, M., Werness, B.A., Huibregtse, J.M., Levine, A.J., and Howley, P.M. (1990) The E6 oncoprotein encoded by human papillomavirus type 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136.PubMedGoogle Scholar
  145. Schiller, J.T., Vass, W.C., and Lowy, D.R. (1984) Identification of a second transforming region in bovine papillomavirus DNA. Proc. Natl. Acad. Sci. USA 81, 7880–7884.PubMedGoogle Scholar
  146. Schlegel, R., Wade-Glass, M., Rabson, M.S., and Yang, Y.-C. (1986) The E5 transforming gene of bovine papillomavirus encodes a small hydrophobic protein. Science 233, 464–467.PubMedGoogle Scholar
  147. Schneider-Maunoury, S., Croissant, O., and Orth, G. (1987) Integration of human papillomavirus type 16 DNA sequences: a possible early event in the progression of genital tumors. J. Virol. 61, 3295–3298.PubMedGoogle Scholar
  148. Schwarz, E., Freese, U.K., Gissmann, L., Mayer, W., Roggenbuck, B., Stremlau, A., and zur Hausen, H. (1985) Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314, 111–114.PubMedGoogle Scholar
  149. Sherman, L., Itzhaki, H., Jackman, A., Chen, J.J., Koval, D., and Schlegel, R. (2002) Inhibition of serum- and calcium-induced terminal differentiation of human keratinocytes by HPV 16 E6: study of the association with p53 degradation, inhibition of p53 transactivation, and binding to E6BP. Virology 292, 309–320.PubMedGoogle Scholar
  150. Slebos, R.J.C., Lee, M.H., Plunkett, B.S., Kessis, T.D., Williams, B.O., Jacks, T., Hedrick, L., Kastan, M.B., and Cho, K.R. (1994) p53-dependent G(1) arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc. Natl. Acad. Sci. USA 91, 5320–5324.PubMedGoogle Scholar
  151. Song, S., Gulliver, G.A., and Lambert, P.F. (1998) Human papillomavirus type 16 E6 and E7 oncogenes abrogate radiation-induced DNA damage responses in vivo through p53-dependent and p53-independent pathways. Proc. Natl. Acad. Sci. USA 95, 2290–2295.PubMedGoogle Scholar
  152. Song, S., Pitot, H.C., and Lambert, P.F. (1999) The human papillomavirus type 16 E6 alone is sufficient to induce carcinomas in transgenic animals. J. Virol. 73, 5887–5893.PubMedGoogle Scholar
  153. Southern, S.A., Lewis, M.H., and Herrington, C.S. (2004) Induction of tetrasomy by human papillomavirus type 16 E7 protein is independent of pRb binding and disruption of differentiation. Br. J. Cancer 90, 1949–1954.PubMedGoogle Scholar
  154. Sparkowski, J., Mense, M., Anders, M., and Schlegel, R. (1996) E5 oncoprotein transmembrane mutants dissociate fibroblast transforming activity from 16-kilodalton protein binding and platelet-derived growth factor receptor binding and phosphorylation. J. Virol. 70, 2420–2430.PubMedGoogle Scholar
  155. Staebler, A., Pierce, J.H., Brazinski, S., Heidaran, M.A., Li, W., Schlegel, R., and Goldstein, D.J. (1995) Mutational analysis of the beta-type platelet-derived growth factor receptor defines the site of interaction with the bovine papillomavirus type 1 E5 transforming protein. J. Virol. 69, 6507–6517.PubMedGoogle Scholar
  156. Stevaux, O. and Dyson, N.J. (2002) A revised picture of the E2F transcriptional network and RB function. Curr. Opin. Cell Biol. 14, 684–691.PubMedGoogle Scholar
  157. Storey, A. and Banks, L. (1993) Human papillomavirus type 16 E6 gene cooperates with EJ-ras to immortalize primary mouse cells. Oncogene 8, 919–924.PubMedGoogle Scholar
  158. Straight, S.W., Herman, B., and McCance, D.J. (1995) The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J. Virol. 69, 3185–3192.PubMedGoogle Scholar
  159. Straight, S.W., Hinkle, P.M., Jewers, R.J., and McCance, D.J. (1993) The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J. Virol. 67, 4521–4532.PubMedGoogle Scholar
  160. Suprynowicz, F.A., Baege, A., Sunitha, I., and Schlegel, R. (2002) c-Src activation by the E5 oncoprotein enables transformation independently of PDGF receptor activation. Oncogene 21, 1695–1706.PubMedGoogle Scholar
  161. Suprynowicz, F.A., Sparkowski, J., Baege, A., and Schlegel, R. (2000) E5 oncoprotein mutants activate phosphoinositide 3′ -kinase independently of platelet-derived growth factor receptor activation. J. Biol. Chem. 275, 5111–5119.PubMedGoogle Scholar
  162. Surti, T., Klein, O., Aschheim, K., DiMaio, D., and Smith, S.O. (1998) Structural models of the bovine papillomavirus E5 protein. Proteins 33, 601–612.PubMedGoogle Scholar
  163. Thierry, F. and Yaniv, M. (1987) The BPV1-E2 trans-acting protein can be either an activator or a repressor of the HPV18 regulatory region. EMBO J. 6, 3391–3397.PubMedGoogle Scholar
  164. Thomas, J.T., Hubert, W.G., Ruesch, M.N., and Laimins, L.A. (1999) Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. Proc. Natl. Acad. Sci. USA 96, 8449–8454.PubMedGoogle Scholar
  165. Thomas, J.T. and Laimins, L.A. (1998) Human papillomavirus oncoproteins E6 and E7 independently abrogate the mitotic spindle checkpoint. J. Virol. 72, 1131–1137.PubMedGoogle Scholar
  166. Thompson, D.A. and Belinsky, G. (1997) The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene 15, 3025–3036.PubMedGoogle Scholar
  167. Thomsen, P., van Deurs, B., Norrild, B., and Kayser, L. (2000) The HPV16 E5 oncogene inhibits endocytic trafficking. Oncogene 19, 6023–6032.PubMedGoogle Scholar
  168. Tomakidi, P., Cheng, H., Kohl, A., Komposch, G., and Alonso, A. (2000) Modulation of the epidermal growth factor receptor by the human papillomavirus type 16 E5 protein in raft cultures of human keratinocytes. Eur. J. Cell Biol. 79, 407–412.PubMedGoogle Scholar
  169. Tommasino, M., Adamczewski, J.P., Carlotti, F., Barth, C.F., Manetti, R., Contorni, M., Cavalieri, F., Hunt, T., and Crawford, L. (1993) HPV16 E7 protein associates with the protein kinase p33CDK2 and cyclin A. Oncogene 8, 195–202.PubMedGoogle Scholar
  170. Tong, X. and Howley, P.M. (1997) The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 94, 4412–4417.PubMedGoogle Scholar
  171. Tsunokawa, Y., Takebe, N., Kasamatsu, T., Terada, M., and Sugimura, T. (1986) Transforming activity of human papillomavirus type 16 DNA sequence in a cervical cancer. Proc. Natl. Acad. Sci. USA 83, 2200–2203.PubMedGoogle Scholar
  172. Veldman, T., Horikawa, I., Barrett, J.C., and Schlegel, R. (2001) Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J. Virol. 75, 4467–4472.PubMedGoogle Scholar
  173. Veldman, T., Liu, X., Yuan, H., and Schlegel, R. (2003) Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc. Natl. Acad. Sci. USA 100, 8211–8216.PubMedGoogle Scholar
  174. von Knebel Doeberitz, M., Oltersdorf, T., Schwarz, E., and Gissmann, L. (1988) Correlation of modified human papilloma virus early gene expression with altered growth properties in C4-1 cervical carcinoma cells. Cancer Res. 48, 3780–3786.Google Scholar
  175. Vousden, K.H., Doninger, J., DiPaolo, J.A., and Lowy, D.R. (1988) The E7 open reading frame of human papillomavirus type 16 encodes a transforming gene. Oncogene Res. 3, 167–175.PubMedGoogle Scholar
  176. Walboomers, J.M., Jacobs, M.V., Manos, M.M., Bosch, F.X., Kummer, J.A., Shah, K.V., Snijders, P.J., Peto, J., Meijer, C.J., and Munoz, N. (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. Pathology 189, 12–19.Google Scholar
  177. Wells, S.I., Francis, D.A., Karpova, A.Y., Dowhanick, J.J., Benson, J.D., and Howley, P.M. (2000) Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21CIP-dependent pathways. EMBO J. 19, 5762–5771.PubMedGoogle Scholar
  178. Werness, B.A., Levine, A.J., and Howley, P.M. (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76–79.PubMedGoogle Scholar
  179. White, A.E., Livanos, E.M., and Tlsty, T.D. (1994) Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 8, 666–677.PubMedGoogle Scholar
  180. Yasumoto, S., Burkhardt, A.L., Doninger, J., and DiPaolo, J. (1986) Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells. J. Virol. 57, 572–577.PubMedGoogle Scholar
  181. Zerfass-Thome, K., Zwerschke, W., Mannhardt, B., Tindle, R., Botz, J.W., and Jansen-Durr, P. (1996) Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene 13, 2323–2330.PubMedGoogle Scholar
  182. Zhang, B., Chen, W., and Roman, A. (2006) The E7 proteins of low- and high-risk human papillomaviruses share the ability to target the pRB family member p130 for degradation. Proc. Natl. Acad. Sci. USA 103, 437–442.PubMedGoogle Scholar
  183. Zhang, B., Srirangam, A., Potter, D.A., and Roman, A. (2005) HPV16 E5 protein disrupts the c-Cbl-EGFR interaction and EGFR ubiquitination in human foreskin keratinocytes. Oncogene 24, 2585–2588.PubMedGoogle Scholar
  184. Zheng, Z.M. and Baker, C.C. (2006) Papillomavirus genome structure, expression, and post-transcriptional regulation. Front. Biosci. 11, 2286–2302.PubMedGoogle Scholar
  185. Zimmermann, H., Degenkolbe, R., Bernard, H.U., and O Connor, M.J. (1999) The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J. Virol. 73, 6209–6219.PubMedGoogle Scholar
  186. zur Hausen, H. (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2, 342–350.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Genetics; Department of Molecular Biophysics; Biochemistry; Department of Therapeutic RadiologyYale UniversityNew HavenUSA

Personalised recommendations