Advertisement

Murine Gammaherpesvirus 68 Infection of Mice: A Small Animal Model for Characterizing Basic Aspects of Gammaherpesvirus Pathogenesis

  • James Craig Forrest
  • Laurie T. Krug
  • Samuel H. Speck
Chapter

Abstract

The human gammaherpesviruses, EBV and KSHV, have a narrow host range, limiting development of small animal models for characterizing aspects of EBV and KSHV pathogenesis. As such, over the past 15 years there has been increasing interest in studying murine gammaherpesvirus 68 (γHV68, MHV68) infection of inbred strains of laboratory mice. In this chapter, we review advances in this model system and how these findings may offer insights into EBV and KSHV infections in humans.

Keywords

Idiopathic Pulmonary Fibrosis Latency Reservoir Lytic Replication Intranasal Infection MHV68 Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adler, B., Schaadt, E., Kempkes, B., Zimber-Strobl, U., Baier, B., and Bornkamm, G. W. (2002). Control of Epstein-Barr virus reactivation by activated CD40 and viral latent membrane protein 1. Proc Natl Acad Sci U S A 99, 437–442.PubMedCrossRefGoogle Scholar
  2. Alber, D. G., Powell, K. L., Vallance, P., Goodwin, D. A., and Grahame-Clarke, C. (2000). Herpesvirus infection accelerates atherosclerosis in the apolipoprotein E-deficient mouse. Circulation 102, 779–785.PubMedGoogle Scholar
  3. Alexander, J. M., Nelson, C. A., van Berkel, V., Lau, E. K., Studts, J. M., Brett, T. J., Speck, S. H., Handel, T. M., Virgin, H. W., and Fremont, D. H. (2002). Structural basis of chemokine sequestration by a herpesvirus decoy receptor. Cell 111, 343–356.PubMedCrossRefGoogle Scholar
  4. Allen, R. D., 3rd, Dezalia, M. N., and Speck, S. H. (2007). Identification of an Rta responsive promoter involved in driving gammaHV68 v-cyclin expression during virus replication. Virology.Google Scholar
  5. Allen, R. D., 3rd, Dickerson, S., and Speck, S. H. (2006). Identification of spliced gammaherpesvirus 68 LANA and v-cyclin transcripts and analysis of their expression in vivo during latent infection. J Virol 80, 2055–2062.PubMedCrossRefGoogle Scholar
  6. Arumugaswami, V., Wu, T. T., Martinez-Guzman, D., Jia, Q., Deng, H., Reyes, N., and Sun, R. (2006). ORF18 is a transfactor that is essential for late gene transcription of a gammaherpesvirus. J Virol80, 9730–9740.PubMedCrossRefGoogle Scholar
  7. Arico, E., Robertson, K., Allen, D., Ferrantini, M., Belardelli, F., and Nash, A. A. (2002). Humoral immune response and protection from viral infection in mice vaccinated with inactivated MHV-68: effects of type I interferon. J Interferon Cytokine Res 22, 1081–1088.Google Scholar
  8. Arico, E., Robertson, K. A., Belardelli, F., Ferrantini, M., and Nash, A. A. (2004). Vaccination with inactivated murine gammaherpesvirus 68 strongly limits viral replication and latency and protects type I IFN receptor knockout mice from a lethal infection. Vaccine 22, 1433–1440.PubMedCrossRefGoogle Scholar
  9. Bais, C., Santomasso, B., Coso, O., Arvanitakis, L., Raaka, E. G., Gutkind, J. S., Asch, A. S., Cesarman, E., Gershengorn, M. C., and Mesri, E. A. (1998). G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391, 86–89.PubMedCrossRefGoogle Scholar
  10. Barton, E. S., Lutzke, M. L., Rochford, R., and Virgin, H. W. (2005). Alpha/beta interferons regulate murine gammaherpesvirus latent gene expression and reactivation from latency. J Virol 79, 14149–14160.PubMedCrossRefGoogle Scholar
  11. Bellows, D. S., Chau, B. N., Lee, P., Lazebnik, Y., Burns, W. H., and Hardwick, J. M. (2000). Antiapoptotic herpesvirus Bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins. J Virol 74, 5024–5031.PubMedCrossRefGoogle Scholar
  12. Belz, G. T., Stevenson, P. G., Castrucci, M. R., Altman, J. D., and Doherty, P. C. (2000). Postexposure vaccination massively increases the prevalence of gamma-herpesvirus-specific CD8+ T cells but confers minimal survival advantage on CD4-deficient mice. Proc Natl Acad Sci U S A 97, 2725–2730.PubMedCrossRefGoogle Scholar
  13. Bennett, N. J., May, J. S., and Stevenson, P. G. (2005). Gamma-Herpesvirus Latency Requires T Cell Evasion during Episome Maintenance. PLoS Biol 3, e120.PubMedCrossRefGoogle Scholar
  14. Blasdell, K., McCracken, C., Morris, A., Nash, A. A., Begon, M., Bennett, M., and Stewart, J. P. (2003). The wood mouse is a natural host for Murid herpesvirus 4. J Gen Virol 84, 111–113.PubMedCrossRefGoogle Scholar
  15. Blaskovic, D., Stancekova, M., Svobodova, J., and Mistrikova, J. (1980). Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol 24, 468.PubMedGoogle Scholar
  16. Boname, J. M., Coleman, H. M., May, J. S., and Stevenson, P. G. (2004a). Protection against wild-type murine gammaherpesvirus-68 latency by a latency-deficient mutant. J Gen Virol 85, 131–135.Google Scholar
  17. Boname, J. M., de Lima, B. D., Lehner, P. J., and Stevenson, P. G. (2004b). Viral degradation of the MHC class I peptide loading complex. Immunity 20, 305–317.Google Scholar
  18. Boname, J. M., and Stevenson, P. G. (2001). MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15, 627–636.PubMedCrossRefGoogle Scholar
  19. Boname, J. M., May, J. S., and Stevenson, P. G. (2005). The murine gamma-herpesvirus-68 MK3 protein causes TAP degradation independent of MHC class I heavy chain degradation. Eur J Immunol35, 171–179.PubMedCrossRefGoogle Scholar
  20. Bowie, A. G., Zhan, J., and Marshall, W. L. (2004). Viral appropriation of apoptotic and NF-kappaB signaling pathways. J Cell Biochem 91, 1099–1108.PubMedCrossRefGoogle Scholar
  21. Braaten, D. C., McClellan, J. S., Messaoudi, I., Tibbetts, S. A., McClellan, K. B., Nikolich-Zugich, J., and Virgin, H. W. (2006). Effective control of chronic gamma-herpesvirus infection by unconventional MHC Class Ia-independent CD8 T cells. PLoS Pathog 2, e37.PubMedCrossRefGoogle Scholar
  22. Braaten, D. C., Sparks-Thissen, R. L., Kreher, S., Speck, S. H., and Virgin, H. W. (2005). An optimized CD8+ T-cell response controls productive and latent gammaherpesvirus infection. J Virol 79, 2573–2583.PubMedCrossRefGoogle Scholar
  23. Bridgeman, A., Stevenson, P. G., Simas, J. P., and Efstathiou, S. (2001). A secreted chemokine binding protein encoded by murine gammaherpesvirus-68 is necessary for the establishment of a normal latent load. J Exp Med 194, 301–312.PubMedCrossRefGoogle Scholar
  24. Brooks, J. W., Hamilton-Easton, A. M., Christensen, J. P., Cardin, R. D., Hardy, C. L., and Doherty, P. C. (1999). Requirement for CD40 ligand, CD4(+) T cells, and B cells in an infectious mononucleosis-like syndrome. J Virol 73, 9650–9654.PubMedGoogle Scholar
  25. Brown, H. J., Song, M. J., Deng, H., Wu, T. T., Cheng, G., and Sun, R. (2003). NF-kappaB inhibits gammaherpesvirus lytic replication. Virol 77, 8532–8540.CrossRefGoogle Scholar
  26. Cadillac, J. M., Sigler, R. E., Weinberg, J. B., Lutzke, M. L., and Rochford, R. (2005). Gammaherpesvirus-induced lung pathology is altered in the absence of macrophages. Lung 183, 239–251.PubMedCrossRefGoogle Scholar
  27. Card, G. L., Knowles, P., Laman, H., Jones, N., and McDonald, N. Q. (2000). Crystal structure of a gamma-herpesvirus cyclin-cdk complex. Embo J 19, 2877–2888.PubMedCrossRefGoogle Scholar
  28. Cardin, R. D., Brooks, J. W., Sarawar, S. R., and Doherty, P. C. (1996). Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J Exp Med 184, 863–871.PubMedCrossRefGoogle Scholar
  29. Chastel, C., Beaucournu, J. P., Chastel, O., Legrand, M. C., and Le Goff, F. (1994). A herpesvirus from an European shrew (Crocidura russula). Acta Virol 38, 309.PubMedGoogle Scholar
  30. Chen, G., Tai, A. K., Lin, M., Chang, F., Terhorst, C., and Huber, B. T. (2005). Signaling lymphocyte activation molecule-associated protein is a negative regulator of the CD8 T cell response in mice. J Immunol 175, 2212–2218.Google Scholar
  31. Christensen, J. P., and Doherty, P. C. (1999). Quantitative analysis of the acute and long-term CD4(+) T-cell response to a persistent gammaherpesvirus. J Virol 73, 54279–4283.Google Scholar
  32. Clambey, E. T., Virgin, H. W., and Speck, S. H. (2000). Disruption of the murine gammaherpesvirus 68 M1 open reading frame leads to enhanced reactivation from latency. J Virol 74, 1973–1984.PubMedCrossRefGoogle Scholar
  33. Clambey, E. T., Virgin, H. W., and Speck, S. H. (2002). Characterization of a spontaneous 9.5-kilobase-deletion mutant of murine gammaherpesvirus 68 reveals tissue-specific genetic requirements for latency. J Virol 76, 6532–6544.PubMedCrossRefGoogle Scholar
  34. Coleman, H. M., de Lima, B., Morton, V., and Stevenson, P. G. (2003). Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol77, 2410–2417.PubMedCrossRefGoogle Scholar
  35. Coleman, H. M., Efstathiou, S., and Stevenson, P. G. (2005). Transcription of the murine gammaherpesvirus 68 ORF73 from promoters in the viral terminal repeats. J Gen Virol 86, 561–574.PubMedCrossRefGoogle Scholar
  36. Cool, C. D., Rai, P. R., Yeager, M. E., Hernandez-Saavedra, D., Serls, A. E., Bull, T. M., Geraci, M. W., Brown, K. K., Routes, J. M., Tuder, R. M., and Voelkel, N. F. (2003). Expression of human herpesvirus 8 in primary pulmonary hypertension. N Engl J Med 349, 1113–1122.Google Scholar
  37. Coppola, M. A., Flano, E., Nguyen, P., Hardy, C. L., Cardin, R. D., Shastri, N., Woodland, D. L., and Blackman, M. A. (1999). Apparent MHC-independent stimulation of CD8+ T cells in vivo during latent murine gammaherpesvirus infection. J Immunol 163, 1481–1489.PubMedGoogle Scholar
  38. Czar, M. J., Kersh, E. N., Mijares, L. A., Lanier, G., Lewis, J., Yap, G., Chen, A., Sher, A., Duckett, C. S., Ahmed, R., and Schwartzberg, P. L. (2001). Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proc Natl Acad Sci U S A 98, 7449–7454.PubMedCrossRefGoogle Scholar
  39. Dal Canto, A. J., Swanson, P. E., O'Guin, A. K., Speck, S. H., and Virgin, H. W. (2001). IFN-gamma action in the media of the great elastic arteries, a novel immunoprivileged site. J Clin Invest 107, R15–22.PubMedCrossRefGoogle Scholar
  40. Dal Canto, A. J., Virgin, H. W., and Speck, S. H. (2000). Ongoing viral replication is required for gammaherpesvirus 68-induced vascular damage. J Virol 74, 11304–11310.PubMedCrossRefGoogle Scholar
  41. Damania, B. (2004). Oncogenic gamma-herpesviruses: comparison of viral proteins involved in tumorigenesis. Nat Rev Microbiol 2, 656–668.PubMedCrossRefGoogle Scholar
  42. Damania, B., Choi, J. K., and Jung, J. U. (2000). Signaling activities of gammaherpesvirus membrane proteins. J Virol 74, 1593–1601.PubMedCrossRefGoogle Scholar
  43. Davis, J. E., and Moss, D. J. (2004). Treatment options for post-transplant lymphoproliferative disorder and other Epstein-Barr virus-associated malignancies. Tissue Antigens 63, 285–292.PubMedCrossRefGoogle Scholar
  44. de Lima, B. D., May, J. S., Marques, S., Simas, J. P., and Stevenson, P. G. (2005). Murine gammaherpesvirus 68 bcl-2 homologue contributes to latency establishment in vivo. J Gen Virol 86, 31–40.PubMedCrossRefGoogle Scholar
  45. Doherty, P. C., Christensen, J. P., Belz, G. T., Stevenson, P. G., and Sangster, M. Y. (2001). Dissecting the host response to a gamma-herpesvirus. Philos Trans R Soc Lond B Biol Sci 356, 581–593.PubMedCrossRefGoogle Scholar
  46. Doran, P., and Egan, J. J. (2005). Herpesviruses: a cofactor in the pathogenesis of idiopathic pulmonary fibrosis? Am J Physiol Lung Cell Mol Physiol 289, L709–710.PubMedCrossRefGoogle Scholar
  47. Dragani, T. A. (2003). 10 years of mouse cancer modifier loci: human relevance. Cancer Res 63, 3011–3018.PubMedGoogle Scholar
  48. Dutia, B. M., Allen, D. J., Dyson, H., and Nash, A. A. (1999). Type I interferons and IRF-1 play a critical role in the control of a gammaherpesvirus infection. Virology 261, 173–179.PubMedCrossRefGoogle Scholar
  49. Dutia, B. M., Clarke, C. J., Allen, D. J., and Nash, A. A. (1997). Pathological changes in the spleens of gamma interferon receptor-deficient mice infected with murine gammaherpesvirus: a role for CD8 T cells. J Virol 71, 4278–4283.Google Scholar
  50. Ebrahimi, B., Dutia, B. M., Brownstein, D. G., and Nash, A. A. (2001). Murine gammaherpesvirus-68 infection causes multi-organ fibrosis and alters leukocyte trafficking in interferon-gamma receptor knockout mice. Am J Pathol 158, 2117–2125.PubMedCrossRefGoogle Scholar
  51. Efstathiou, S., Ho, Y. M., Hall, S., Styles, C. J., Scott, S. D., and Gompels, U. A. (1990a). Murine herpesvirus 68 is genetically related to the gammaherpesviruses Epstein-Barr virus and herpesvirus saimiri. J Gen Virol 71 (Pt 6), 1365–1372.Google Scholar
  52. Efstathiou, S., Ho, Y. M., and Minson, A. C. (1990b). Cloning and molecular characterization of the murine herpesvirus 68 genome. J Gen Virol 71 (Pt 6), 1355–1364.Google Scholar
  53. Ehtisham, S., Sunil-Chandra, N. P., and Nash, A. A. (1993). Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J Virol 67, 5247–5252.PubMedGoogle Scholar
  54. Elsawa, S. F., and Bost, K. L. (2004). Murine gamma-herpesvirus-68-induced IL-12 contributes to the control of latent viral burden, but also contributes to viral-mediated leukocytosis. J Immunol 172, 516–524.PubMedGoogle Scholar
  55. Evans, A. G., Moorman, N. J., Willer, D. O., and Speck, S. H. (2006). The M4 gene of gammaHV68 encodes a secreted glycoprotein and is required for the efficient establishment of splenic latency. Virology344, 520–531.PubMedCrossRefGoogle Scholar
  56. Evans, A. G., Moser, J. M., Krug, L. T., Pozharskaya, V., mora, A. L., and Speck, S. H. (2008). A gammaherpesvirus-secreted activator of Vbeta4+ CD8+ T cells regulates chronic infection and immunopathology. J. Exp. Med. 205, 669–684.Google Scholar
  57. Flano, E., Hardy, C. L., Kim, I. J., Frankling, C., Coppola, M. A., Nguyen, P., Woodland, D. L., and Blackman, M. A. (2004). T cell reactivity during infectious mononucleosis and persistent gammaherpesvirus infection in mice. J Immunol 172, 3078–3085.PubMedGoogle Scholar
  58. Flano, E., Husain, S. M., Sample, J. T., Woodland, D. L., and Blackman, M. A. (2000). Latent murine gamma-herpesvirus infection is established in activated B cells, dendritic cells, and macrophages. J Immunol 165, 1074–1081.PubMedGoogle Scholar
  59. Flano, E., Jia, Q., Moore, J., Woodland, D. L., Sun, R., and Blackman, M. A. (2005). Early establishment of gamma-herpesvirus latency: implications for immune control. J Immunol174, 4972–4978.PubMedGoogle Scholar
  60. Flano, E., Kim, I. J., Moore, J., Woodland, D. L., and Blackman, M. A. (2003). Differential gamma-herpesvirus distribution in distinct anatomical locations and cell subsets during persistent infection in mice. J Immunol 170, 3828–3834.PubMedGoogle Scholar
  61. Flano, E., Kim, I. J., Woodland, D. L., and Blackman, M. A. (2002a). Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196, 1363–1372.Google Scholar
  62. Flano, E., Woodland, D. L., and Blackman, M. A. (1999). Requirement for CD4+ T cells in V beta 4+CD8+ T cell activation associated with latent murine gammaherpesvirus infection. J Immunol 163, 3403–3408.PubMedGoogle Scholar
  63. Flano, E., Woodland, D. L., and Blackman, M. A. (2002b). A mouse model for infectious mononucleosis. Immunol Res 25, 201–217.Google Scholar
  64. Flano, E., Woodland, D. L., Blackman, M. A., and Doherty, P. C. (2001). Analysis of virus-specific CD4(+) t cells during long-term gammaherpesvirus infection. J Virol 75, 7744–7748.PubMedCrossRefGoogle Scholar
  65. Flore, O., Rafii, S., Ely, S., O'Leary, J. J., Hyjek, E. M., and Cesarman, E. (1998). Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature 394, 588–592.PubMedCrossRefGoogle Scholar
  66. Forrest, J. C., Paden, C. R., Allen, R. D., Collins, J. and Speck, S.H. (2008). ORF73-null murine gammaherpesvirus 68 reveals roles for mLANA and p53 in virus replication. J. Virol. 81, 11957–11971.Google Scholar
  67. Fowler, P., and Efstathiou, S. (2004). Vaccine potential of a murine gammaherpesvirus-68 mutant deficient for ORF73. J Gen Virol 85, 609–613.PubMedCrossRefGoogle Scholar
  68. Fowler, P., Marques, S., Simas, J. P., and Efstathiou, S. (2003). ORF73 of murine herpesvirus-68 is critical for the establishment and maintenance of latency. J Gen Virol 84, 3405–3416.PubMedCrossRefGoogle Scholar
  69. Fuse, S., Bellfy, S., Yagita, H., and Usherwood, E. J. (2007). CD8+ T Cell Dysfunction and Increase in Murine Gammaherpesvirus Latent Viral Burden in the Absence of 4-1BB Ligand. J Immunol 178, 5227–5236.PubMedGoogle Scholar
  70. Fuse, S., Obar, J. J., Bellfy, S., Leung, E. K., Zhang, W., and Usherwood, E. J. (2006). CD80 and CD86 control antiviral CD8+ T-cell function and immune surveillance of murine gammaherpesvirus 68. J Virol 80, 9159–9170.PubMedCrossRefGoogle Scholar
  71. Gangappa, S., Kapadia, S. B., Speck, S. H., and Virgin, H. W. (2002a). Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76, 11460–11468.Google Scholar
  72. Gangappa, S., van Dyk, L. F., Jewett, T. J., Speck, S. H., and Virgin, H. W. (2002b). Identification of the in vivo role of a viral bcl-2. J Exp Med 195, 931–940.Google Scholar
  73. Gasper-Smith, N., and Bost, K. L. (2004). Initiation of the host response against murine gammaherpesvirus infection in immunocompetent mice. Viral Immunol 17, 473–480.PubMedCrossRefGoogle Scholar
  74. Gasper-Smith, N., Singh, S., and Bost, K. L. (2006). Limited IL-6 production following infection with murine gammaherpesvirus 68. Arch Virol.Google Scholar
  75. Geere, H. M., Ligertwood, Y., Templeton, K. M., Bennet, I., Gangadharan, B., Rhind, S. M., Nash, A. A., and Dutia, B. M. (2006). The M4 gene of murine gammaherpesvirus 68 modulates latent infection. J Gen Virol87, 803–807.PubMedCrossRefGoogle Scholar
  76. Geng, Y., Lee, Y. M., Welcker, M., Swanger, J., Zagozdzon, A., Winer, J. D., Roberts, J. M., Kaldis, P., Clurman, B. E., and Sicinski, P. (2007). Kinase-independent function of cyclin E. Mol Cell 25, 127–139.PubMedCrossRefGoogle Scholar
  77. Giannoni, F., Lyon, A. B., Wareing, M. D., Dias, P. B., and Sarawar, S. R. (2005). Protein kinase C theta is not essential for T-cell-mediated clearance of murine gammaherpesvirus 68. J Virol 79, 6808–6813.PubMedCrossRefGoogle Scholar
  78. Gillet, L., May, J. S., Colaco, S., and Stevenson, P. G. (2007). Glycoprotein L disruption reveals two functional forms of the murine gammaherpesvirus 68 glycoprotein H. J Virol81, 280–291.PubMedCrossRefGoogle Scholar
  79. Hausler, M., Sellhaus, B., Scheithauer, S., Engler, M., Alberg, E., Teubner, A., Ritter, K., and Kleines, M. (2005). Murine gammaherpesvirus-68 infection of mice: A new model for human cerebral Epstein-Barr virus infection. Ann Neurol 57, 600–603.PubMedCrossRefGoogle Scholar
  80. Herskowitz, J., Jacoby, M. A., and Speck, S. H. (2005). The murine gammaherpesvirus 68 M2 gene is required for efficient reactivation from latently infected B cells. J Virol 79, 2261–2273.PubMedCrossRefGoogle Scholar
  81. Herskowitz, J. H., Siegel, A. M., Jacoby, M. A., and Speck, S. H. (2008). Systematic mutagenesis of the murine gammaherpesvirus 68 M2 protein identifies domains important for chronic infection. J. Virol. 82, 3295–32310.Google Scholar
  82. Hoge, A. T., Hendrickson, S. B., and Burns, W. H. (2000). Murine gammaherpesvirus 68 cyclin D homologue is required for efficient reactivation from latency. J Virol 74, 7016–7023.PubMedCrossRefGoogle Scholar
  83. Hsiao, F. C., Lin, M., Tai, A., Chen, G., and Huber, B. T. (2006). Cutting edge: Epstein-Barr virus transactivates the HERV-K18 superantigen by docking to the human complement receptor 2 (CD21) on primary B cells. J Immunol 177, 2056–2060.PubMedGoogle Scholar
  84. Husain, S. M., Usherwood, E. J., Dyson, H., Coleclough, C., Coppola, M. A., Woodland, D. L., Blackman, M. A., Stewart, J. P., and Sample, J. T. (1999). Murine gammaherpesvirus M2 gene is latency-associated and its protein a target for CD8(+) T lymphocytes. Proc Natl Acad Sci U S A 96, 7508–7513.PubMedCrossRefGoogle Scholar
  85. Israel, E. J., Wilsker, D. F., Hayes, K. C., Schoenfeld, D., and Simister, N. E. (1996). Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 89, 573–578.PubMedCrossRefGoogle Scholar
  86. Jacoby, M. A., Virgin, H. W., and 1Speck, S. H. (2002). Disruption of the M2 gene of murine gammaherpesvirus 68 alters splenic latency following intranasal, but not intraperitoneal, inoculation. J Virol 76, 1790–1801.Google Scholar
  87. Jia, Q., Wu, T. T., Liao, H. I., Chernishof, V., and Sun, R. (2004). Murine gammaherpesvirus 68 open reading frame 31 is required for viral replication. J Virol78, 6610–6620.PubMedCrossRefGoogle Scholar
  88. Kamel, O. W. (1997). Iatrogenic lymphoproliferative disorders in nontransplantation settings. Semin Diagn Pathol 14, 27–34.PubMedGoogle Scholar
  89. Kapadia, S. B., Levine, B., Speck, S. H., and Virgin, H. W. (2002). Critical role of complement and viral evasion of complement in acute, persistent, and latent gamma-herpesvirus infection. Immunity 17, 143–155.PubMedCrossRefGoogle Scholar
  90. Kapadia, S. B., Molina, H., van Berkel, V., Speck, S. H., and Virgin, H. W. (1999). Murine gammaherpesvirus 68 encodes a functional regulator of complement activation. J Virol 73, 7658–7670.PubMedGoogle Scholar
  91. Kawabe, T., Naka, T., Yoshida, K., Tanaka, T., Fujiwara, H., Suematsu, S., Yoshida, N., Kishimoto, T., and Kikutani, H. (1994). The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178.PubMedCrossRefGoogle Scholar
  92. Kim, I. J., Burkum, C. E., Cookenham, T., Schwartzberg, P. L., Woodland, D. L., and Blackman, M. A. (2007). Perturbation of B cell activation in SLAM-associated protein-deficient mice is associated with changes in gammaherpesvirus latency reservoirs. J Immunol 178, 1692–1701.PubMedGoogle Scholar
  93. Kim, I. J., Flano, E., Woodland, D. L., and Blackman, M. A. (2002). Antibody-mediated control of persistent gamma-herpesvirus infection. J Immunol 168, 3958–3964.PubMedGoogle Scholar
  94. Kim, I. J., Flano, E., Woodland, D. L., Lund, F. E., Randall, T. D., and Blackman, M. A. (2003). Maintenance of long term gamma-herpesvirus B cell latency is dependent on CD40-mediated development of memory B cells. J Immunol 171, 886–892.PubMedGoogle Scholar
  95. Krug, L. T., Moser, J. M., Dickerson, S. M., and Speck, S. H. (2007). Inhibition of NF-kappaB activation in vivo impairs establishment of gammaherpesvirus latency. PLoS Pathog 3, e11.PubMedCrossRefGoogle Scholar
  96. Kulkarni, A. B., Holmes, K. L., Fredrickson, T. N., Hartley, J. W., and Morse, H. C., 3rd (1997). Characteristics of a murine gammaherpesvirus infection immunocompromised mice. In Vivo 11, 281–291.PubMedGoogle Scholar
  97. Kurz, S., Steffens, H. P., Mayer, A., Harris, J. R., and Reddehase, M. J. (1997). Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71, 2980–2987.PubMedGoogle Scholar
  98. Lam, N., and Sugden, B. (2003) CD40 and its vial mimic, LMP1: similar means to different ends. Cell Signal. 15, 9–16.PubMedCrossRefGoogle Scholar
  99. Lee, B. J., Giannoni, F., Lyon, A., Yada, S., Lu, B., Gerard, C., and Sarawar, S. R. (2005). Role of CXCR3 in the immune response to murine gammaherpesvirus 68. J Virol 79, 9351–9355.PubMedCrossRefGoogle Scholar
  100. Lee, B. J., Koszinowski, U. H., Sarawar, S. R., and Adler, H. (2003). A gammaherpesvirus G protein-coupled receptor homologue is required for increased viral replication in response to chemokines and efficient reactivation from latency. J Immunol 170, 243–251.PubMedGoogle Scholar
  101. Lee, B. J., Reiter, S. K., Anderson, M., and Sarawar, S. R. (2002). CD28(-/-) mice show defects in cellular and humoral immunity but are able to control infection with murine gammaherpesvirus 68. J Virol 76, 3049–3053.PubMedCrossRefGoogle Scholar
  102. Lee, B. J., Santee, S., Von Gesjen, S., Ware, C. F., and Sarawar, S. R. (2000). Lymphotoxin-alpha-deficient mice can clear a productive infection with murine gammaherpesvirus 68 but fail to develop splenomegaly or lymphocytosis. J Virol 74, 2786–2792.PubMedCrossRefGoogle Scholar
  103. Lenschow, D. J., Lai, C., Frias-Staheli, N., Giannakopoulos, N. V., Lutz, A., Wolff, T., Osiak, A., Levine, B., Schmidt, R. E., Garcia-Sastre, A., et al. (2007). IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci U S A 104, 1371–1376.PubMedCrossRefGoogle Scholar
  104. Liang, C., Feng, P., Ku, B., Dotan, I., Canaani, D., Oh, B. H., and Jung, J. U. (2006a). Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8, 688–699.Google Scholar
  105. Liang, X., Pickering, M. T., Cho, N. H., Chang, H., Volkert, M. R., Kowalik, T. F., and Jung, J. U. (2006b). Deregulation of DNA damage signal transduction by herpesvirus latency-associated M2. J Virol 80, 5862–5874.Google Scholar
  106. Liang, X., Shin, Y. C., Means, R. E., and Jung, J. U. (2004). Inhibition of interferon-mediated antiviral activity by murine gammaherpesvirus 68 latency-associated M2 protein. J Virol 78, 12416–12427.PubMedCrossRefGoogle Scholar
  107. Liu, H., Andreansky, S., Diaz, G., Hogg, T., and Doherty, P. C. (2002). Reduced functional capacity of CD8+ T cells expanded by post-exposure vaccination of gamma-herpesvirus-infected CD4-deficient mice. J Immunol 168, 3477–3483.PubMedGoogle Scholar
  108. Liu, L., Usherwood, E. J., Blackman, M. A., and Woodland, D. L. (1999). T-cell vaccination alters the course of murine herpesvirus 68 infection and the establishment of viral latency in mice. J Virol 73, 9849–9857.PubMedGoogle Scholar
  109. Liu, S., Pavlova, I. V., Virgin, H. W., and Speck, S. H. (2000). Characterization of gammaherpesvirus 68 gene 50 transcription. J Virol 74, 2029–2037.PubMedCrossRefGoogle Scholar
  110. Loh, J., Huang, Q., Petros, A. M., Nettesheim, D., van Dyk, L. F., Labrada, L., Speck, S. H., Levine, B., Olejniczak, E. T., and Virgin, H. W. (2005). A surface groove essential for viral Bcl-2 function during chronic infection in vivo. PLoS Pathog 1, e10.PubMedCrossRefGoogle Scholar
  111. Loh, J., Thomas, D. A., Revell, P. A., Ley, T. J., and Virgin, H. W. (2004). Granzymes and caspase 3 play important roles in control of gammaherpesvirus latency. J Virol 78, 12519–12528.PubMedCrossRefGoogle Scholar
  112. Lok, S. S., Haider, Y., Howell, D., Stewart, J. P., Hasleton, P. S., and Egan, J. J. (2002). Murine gammaherpes virus as a cofactor in the development of pulmonary fibrosis in bleomycin resistant mice. Eur Respir J 20, 1228–1232.PubMedCrossRefGoogle Scholar
  113. Lyon, A. B., and Sarawar, S. R. (2006). Differential requirement for CD28 and CD80/86 pathways of costimulation in the long-term control of murine gammaherpesvirus-68. Virology 356, 50–56.PubMedCrossRefGoogle Scholar
  114. Macrae, A. I., Dutia, B. M., Milligan, S., Brownstein, D. G., Allen, D. J., Mistrikova, J., Davison, A. J., Nash, A. A., and Stewart, J. P. (2001). Analysis of a novel strain of murine gammaherpesvirus reveals a genomic locus important for acute pathogenesis. J Virol 75, 5315–5327.PubMedCrossRefGoogle Scholar
  115. Madureira, P. A., Matos, P., Soeiro, I., Dixon, L. K., Simas, J. P., and Lam, E. W. (2005). Murine gamma-herpesvirus 68 latency protein M2 binds to Vav signaling proteins and inhibits B-cell receptor-induced cell cycle arrest and apoptosis in WEHI-231 B cells. J Biol Chem 280, 37310–37318.PubMedCrossRefGoogle Scholar
  116. Mariette, X., Cazals-Hatem, D., Warszawki, J., Liote, F., Balandraud, N., and Sibilia, J. (2002). Lymphomas in rheumatoid arthritis patients treated with methotrexate: a 3-year prospective study in France. Blood 99, 3909–3915.PubMedCrossRefGoogle Scholar
  117. Marques, S., Efstathiou, S., Smith, K. G., Haury, M., and Simas, J. P. (2003). Selective gene expression of latent murine gammaherpesvirus 68 in B lymphocytes. J Virol 77, 7308–7318.PubMedCrossRefGoogle Scholar
  118. Martinez-Guzman, D., Rickabaugh, T., Wu, T. T., Brown, H., Cole, S., Song, M. J., Tong, L., and Sun, R. (2003). Transcription program of murine gammaherpesvirus 68. J Virol 77, 10488–10503.PubMedCrossRefGoogle Scholar
  119. May, J. S., Coleman, H. M., Smillie, B., Efstathiou, S., and Stevenson, P. G. (2004). Forced lytic replication impairs host colonization by a latency-deficient mutant of murine gammaherpesvirus-68. J Gen Virol 85, 137–146.PubMedCrossRefGoogle Scholar
  120. May, J. S., Colaco, S., and Stevenson, P. G. (2005a). Glycoprotein M is an essential lytic replication protein of the murine gammaherpesvirus 68. J Virol79, 3459–3467.Google Scholar
  121. May, J. S., Coleman, H. M., Boname, J. M., and Stevenson, P. G. (2005b). Murine gammaherpesvirus-68 ORF28 encodes a non-essential virion glycoprotein. J Gen Virol86, 919–928.Google Scholar
  122. May, J. S., Walker, J., Colaco, S., and Stevenson, P. G. (2005c). The Murine Gammaherpesvirus 68 ORF27 Gene Product Contributes to Intercellular Viral Spread. J Virol79, 5059–5068.Google Scholar
  123. McClellan, J. S., Tibbetts, S. A., Gangappa, S., Brett, K. A., and Virgin, H. W. (2004). Critical role of CD4 T cells in an antibody-independent mechanism of vaccination against gammaherpesvirus latency. J Virol 78, 6836–6845.PubMedCrossRefGoogle Scholar
  124. McClellan, K. B., Gangappa, S., Speck, S. H., and Virgin, H. W. (2006). Antibody-independent control of gamma-herpesvirus latency via B cell induction of anti-viral T cell responses. PLoS Pathog 2, e58.PubMedCrossRefGoogle Scholar
  125. Mercer, J. A., Wiley, C. A., and Spector, D. H. (1988). Pathogenesis of murine cytomegalovirus infection: identification of infected cells in the spleen during acute and latent infections. J Virol 62, 987–997.PubMedGoogle Scholar
  126. Mistrikova, J., Blaskovicova, J., Pappova, M., and Hricova, M. (2006a). Establishment and characterization of a tumor cell line derived from a mouse infected with murine gammaherpesvirus 78. Acta Virol 50, 223–227.Google Scholar
  127. Mistrikova, J., Hricova, M., and Supolikova, M. (2006b). Contribution to the problem of infection of humans with a murine gammaherpesvirus. Acta Virol 50, 71x2013;72.Google Scholar
  128. Mistrikova, J., Raslova, H., Mrmusova, M., and Kudelova, M. (2000). A murine gammaherpesvirus. Acta Virol 44, 211–226.PubMedGoogle Scholar
  129. Moorman, N. J., Lin, C. Y., and Speck, S. H. (2004) Identification of candidate gammaherpesvirus 68 gene required for virus replication by signature-tagged tansposon mutagenesis. J Virol 78, 10282–10290.PubMedCrossRefGoogle Scholar
  130. Moorman, N. J., Virgin, H. W., and Speck, S. H. (2003a). Disruption of the gene encoding the gammaHV68 v-GPCR leads to decreased efficiency of reactivation from latency. Virology 307, 179–190.Google Scholar
  131. Moorman, N. J., Willer, D. O., and Speck, S. H. (2003b). The gammaherpesvirus 68 latency-associated nuclear antigen homolog is critical for the establishment of splenic latency. J Virol 77, 10295–10303.Google Scholar
  132. Mora, A. L., Torres-Gonzalez, E., Rojas, M., Xu, J., Ritzenthaler, J., Speck, S. H., Roman, J., Brigham, K., and Stecenko, A. (2007). Control of Virus Reactivation Arrests Pulmonary Herpesvirus Induced Fibrosis in IFN{gamma}R Deficient Mice. Am J Respir Crit Care Med.Google Scholar
  133. Mora, A. L., Woods, C. R., Garcia, A., Xu, J., Rojas, M., Speck, S. H., Roman, J., Brigham, K., and Stecenko, A. A. (2005). Lung Infection with Gamma Herpesvirus Induces Progressive Pulmonary Fibrosis in Th2 Biased Mice. Am J Physiol Lung Cell Mol Physiol.Google Scholar
  134. Moser, J. M., Farrell, M. L., Krug, L. T., Upton, J. W., and Speck, S. H. (2006). A gammaherpesvirus 68 gene 50 null mutant establishes long-term latency in the lung but fails to vaccinate against a wild-type virus challenge. J Virol 80, 1592–1598.PubMedCrossRefGoogle Scholar
  135. Moser, J. M., Upton, J. W., Allen, R. D., 3rd, Wilson, C. B., and Speck, S. H. (2005a). Role of B-cell proliferation in the establishment of gammaherpesvirus latency. J Virol 79, 9480–9491.Google Scholar
  136. Moser, J. M., Upton, J. W., Gray, K. S., and Speck, S. H. (2005b). Ex vivo stimulation of B cells latently infected with gammaherpesvirus 68 triggers reactivation from latency. J Virol 79, 5227–5231.Google Scholar
  137. Nash, A. A., Dutia, B. M., Stewart, J. P., and Davison, A. J. (2001). Natural history of murine gamma-herpesvirus infection. Philos Trans R Soc Lond B Biol Sci 356, 569–579.PubMedCrossRefGoogle Scholar
  138. Obar, J. J., Donovan, D. C., Crist, S. G., Silvia, O., Stewart, J. P., and Usherwood, E. J. (2004). T-cell responses to the M3 immune evasion protein of murid gammaherpesvirus 68 are partially protective and induced with lytic antigen kinetics. J Virol 78, 10829–10832.PubMedCrossRefGoogle Scholar
  139. Olivadoti, M., Toth, L. A., Weinberg, J., and Opp, M. R. (2007). Murine gammaherpesvirus 68: a model for the study of Epstein-Barr virus infections and related diseases. Comp Med 57, 44–50.PubMedGoogle Scholar
  140. Pappova, M., Stancekova, M., Spissakova, I., Durmanova, V., and Mistrikova, J. (2004). Pathogenetical characterization of isolate MHV-60 of mouse herpesvirus strain 68. Acta Virol 48, 91–96.PubMedGoogle Scholar
  141. Parry, C. M., Simas, J. P., Smith, V. P., Stewart, C. A., Minson, A. C., Efstathiou, S., and Alcami, A. (2000). A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med 191, 573–578.PubMedCrossRefGoogle Scholar
  142. Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D., and Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939.PubMedCrossRefGoogle Scholar
  143. Paulson, E. J., and Speck, S. H. (1999). Differential methylation of Epstein-Barr virus latency promoters facilitates viral persistence in healthy seropositive individuals. J Virol 73, 9959–9968.PubMedGoogle Scholar
  144. Pavlova, I., Lin, C. Y., and Speck, S. H. (2005). Murine gammaherpesvirus 68 Rta-dependent activation of the gene 57 promoter. Virology 333, 169–179.PubMedCrossRefGoogle Scholar
  145. Pavlova, I. V., Virgin, H. W., and Speck, S. H. (2003). Disruption of gammaherpesvirus 68 gene 50 demonstrates that Rta is essential for virus replication. J Virol 77, 5731–5739.PubMedCrossRefGoogle Scholar
  146. Peacock, J. W., and Bost, K. L. (2001). Murine gammaherpesvirus-68-induced interleukin-10 increases viral burden, but limits virus-induced splenomegaly and leukocytosis. Immunology 104, 109–117.PubMedCrossRefGoogle Scholar
  147. Peacock, J. W., Elsawa, S. F., Petty, C. C., Hickey, W. F., and Bost, K. L. (2003). Exacerbation of experimental autoimmune encephalomyelitis in rodents infected with murine gammaherpesvirus-68. Eur J Immunol 33, 1849–1858.PubMedCrossRefGoogle Scholar
  148. Pollock, J. L., and Virgin, H. W. (1995). Latency, without persistence, of murine cytomegalovirus in the spleen and kidney. J Virol 69, 1762–1768.PubMedGoogle Scholar
  149. Purtilo, D. T., Sakamoto, K., Barnabei, V., Seeley, J., Bechtold, T., Rogers, G., Yetz, J., and Harada, S. (1982). Epstein-Barr virus-induced diseases in boys with the X-linked lymphoproliferative syndrome (XLP): update on studies of the registry. Am J Med 73, 49–56.PubMedCrossRefGoogle Scholar
  150. Quigmei, J., Chernishof, V, Bortz, E, Mchardy, I, Wu, TT, Liao, H-I, Sun, R (2005). Murine gammaherpesvirus 68 open reading frame 45 plays an essential role during the immediate-early phase of viral replication. J Virol 79, 5129–5141.CrossRefGoogle Scholar
  151. Rajcani, J., Blaskovic, D., Svobodova, J., Ciampor, F., Huckova, D., and Stanekova, D. (1985). Pathogenesis of acute and persistent murine herpesvirus infection in mice. Acta Virol 29, 51–60.PubMedGoogle Scholar
  152. Reynolds, H. Y. (1987). Lung inflammation: normal host defense or a complication of some diseases? Annu Rev Med 38, 295–323.PubMedCrossRefGoogle Scholar
  153. Rickabaugh, T. M., Brown, H. J., Martinez-Guzman, D., Wu, T. T., Tong, L., Yu, F., Cole, S., and Sun, R. (2004). Generation of a latency-deficient gammaherpesvirus that is protective against secondary infection. J Virol 78, 9215–9223.PubMedCrossRefGoogle Scholar
  154. Rodrigues, L., Pires de Miranda, M., Caloca, M. J., Bustelo, X. R., and Simas, J. P. (2006). Activation of Vav by the gammaherpesvirus M2 protein contributes to the establishment of viral latency in B lymphocytes. J Virol 80, 6123–6135.PubMedCrossRefGoogle Scholar
  155. Roy, D. J., Ebrahimi, B. C., Dutia, B. M., Nash, A. A., and Stewart, J. P. (2000). Murine gammaherpesvirus M11 gene product inhibits apoptosis and is expressed during virus persistence. Arch Virol 145, 2411–2420.PubMedCrossRefGoogle Scholar
  156. Sangster, M. Y., Topham, D. J., D'Costa, S., Cardin, R. D., Marion, T. N., Myers, L. K., and Doherty, P. C. (2000). Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. J Immunol 164, 1820–1828.PubMedGoogle Scholar
  157. Sarawar, S. R., Brooks, J. W., Cardin, R. D., Mehrpooya, M., and Doherty, P. C. (1998). Pathogenesis of murine gammaherpesvirus-68 infection in interleukin-6-deficient mice. Virology 249, 359–366.PubMedCrossRefGoogle Scholar
  158. Sarawar, S. R., Cardin, R. D., Brooks, J. W., Mehrpooya, M., Hamilton-Easton, A. M., Mo, X. Y., and Doherty, P. C. (1997). Gamma interferon is not essential for recovery from acute infection with murine gammaherpesvirus 68. J Virol 71, 3916–3921.PubMedGoogle Scholar
  159. Sarawar, S. R., Lee, B. J., Reiter, S. K., and Schoenberger, S. P. (2001). Stimulation via CD40 can substitute for CD4 T cell function in preventing reactivation of a latent herpesvirus. Proc Natl Acad Sci U S A 98, 6325–6329.PubMedCrossRefGoogle Scholar
  160. Schulze-Gahmen, U., Jung, J. U., and Kim, S. H. (1999). Crystal structure of a viral cyclin, a positive regulator of cyclin-dependent kinase 6. Structure Fold Des 7, 245–254.PubMedCrossRefGoogle Scholar
  161. Selman, M. (2002). From anti-inflammatory drugs through antifibrotic agents to lung transplantation: a long road of research, clinical attempts, and failures in the treatment of idiopathic pulmonary fibrosis. Chest 122, 759–761.PubMedCrossRefGoogle Scholar
  162. Sen, R. (2006). Control of B lymphocyte apoptosis by the transcription factor NF-kappaB. Immunity 25, 871–883.PubMedCrossRefGoogle Scholar
  163. Siegel, A. M., Herskowitz, J. H., and Speck, S. H. (2008). The MHV68 M2 protein drives IL-10 dependent B cell proliferation and differentiation. PLoS Pathog. 4, e1000039.Google Scholar
  164. Simas, J. P., Marques, S., Bridgeman, A., Efstathiou, S., and Adler, H. (2004). The M2 gene product of murine gammaherpesvirus 68 is required for efficient colonization of splenic follicles but is not necessary for expansion of latently infected germinal centre B cells. J Gen Virol 85, 2789–2797.PubMedCrossRefGoogle Scholar
  165. Song, M. J., Hwang, S., Wong, W. H., Wu, T. T., Lee, S., Liao, H. I., and Sun, R. (2005). Identification of viral genes essential for replication of murine gamma-herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 102, 3805–3810.PubMedCrossRefGoogle Scholar
  166. Sparks-Thissen, R. L., Braaten, D. C., Hildner, K., Murphy, T. L., Murphy, K. M., and Virgin, H. W. (2005). CD4 T cell control of acute and latent murine gammaherpesvirus infection requires IFNgamma. Virology 338, 201–208.PubMedCrossRefGoogle Scholar
  167. Sparks-Thissen, R. L., Braaten, D. C., Kreher, S., Speck, S. H., and Virgin, H. W. (2004). An optimized CD4 T-cell response can control productive and latent gammaherpesvirus infection. J Virol 78, 6827–6835.PubMedCrossRefGoogle Scholar
  168. Steed, A., Buch, T., Waisman, A., and Virgin, H. W. (2007). Interferon gamma blocks {gamma}-herpesvirus reactivation from latency in a cell type specific manner. J Virol.Google Scholar
  169. Steed, A. L., Barton, E. S., Tibbetts, S. A., Popkin, D. L., Lutzke, M. L., Rochford, R., and Virgin, H. W. (2006). Gamma interferon blocks gammaherpesvirus reactivation from latency. J Virol 80, 192–200.PubMedCrossRefGoogle Scholar
  170. Stevenson, P. G., Belz, G. T., Altman, J. D., and Doherty, P. C. (1998). Virus-specific CD8(+) T cell numbers are maintained during gamma-herpesvirus reactivation in CD4-deficient mice. Proc Natl Acad Sci U S A 95, 15565–15570.PubMedCrossRefGoogle Scholar
  171. Stevenson, P. G., Belz, G. T., Altman, J. D., and Doherty, P. C. (1999a). Changing patterns of dominance in the CD8+ T cell response during acute and persistent murine gamma-herpesvirus infection. Eur J Immunol 29, 1059–1067.Google Scholar
  172. Stevenson, P. G., Belz, G. T., Castrucci, M. R., Altman, J. D., and Doherty, P. C. (1999b). A gamma-herpesvirus sneaks through a CD8(+) T cell response primed to a lytic-phase epitope. Proc Natl Acad Sci U S A 96, 9281–9286.Google Scholar
  173. Stevenson, P. G., Boname, J. M., de Lima, B., and Efstathiou, S. (2002a). A battle for survival: immune control and immune evasion in murine gamma-herpesvirus-68 infection. Microbes Infect 4, 1177–1182.Google Scholar
  174. Stevenson, P. G., Cardin, R. D., Christensen, J. P., and Doherty, P. C. (1999c). Immunological control of a murine gammaherpesvirus independent of CD8+ T cells. J Gen Virol 80 (Pt 2), 477–483.Google Scholar
  175. Stevenson, P. G., and Doherty, P. C. (1998). Kinetic analysis of the specific host response to a murine gammaherpesvirus. J Virol 72, 943–949.PubMedGoogle Scholar
  176. Stevenson, P. G., and Doherty, P. C. (1999). Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. J Virol 73, 1075–1079.PubMedGoogle Scholar
  177. Stevenson, P. G., and Efstathiou, S. (2005). Immune mechanisms in murine gammaherpesvirus-68 infection. Viral Immunol 18, 445–456.PubMedCrossRefGoogle Scholar
  178. Stevenson, P. G., Efstathiou, S., Doherty, P. C., and Lehner, P. J. (2000). Inhibition of MHC class I-restricted antigen presentation by gamma 2-herpesviruses. Proc Natl Acad Sci U S A 97, 8455–8460.PubMedCrossRefGoogle Scholar
  179. Stevenson, P. G., May, J. S., Smith, X. G., Marques, S., Adler, H., Koszinowski, U. H., Simas, J. P., and Efstathiou, S. (2002b). K3-mediated evasion of CD8(+) T cells aids amplification of a latent gamma-herpesvirus. Nat Immunol 3, 733–740.Google Scholar
  180. Stewart, J. P., Micali, N., Usherwood, E. J., Bonina, L., and Nash, A. A. (1999). Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine 17, 152–157.PubMedCrossRefGoogle Scholar
  181. Stewart, J. P., Usherwood, E. J., Ross, A., Dyson, H., and Nash, T. (1998). Lung epithelial cells are a major site of murine gammaherpesvirus persistence. J Exp Med 187, 1941–1951.PubMedCrossRefGoogle Scholar
  182. Sunil-Chandra, N. P., Arno, J., Fazakerley, J., and Nash, A. A. (1994). Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol 145, 818–826.PubMedGoogle Scholar
  183. Sunil-Chandra, N. P., Efstathiou, S., Arno, J., and Nash, A. A. (1992a). Virological and pathological features of mice infected with murine gamma-herpesvirus 68. J Gen Virol 73 (Pt 9), 2347–2356.Google Scholar
  184. Sunil-Chandra, N. P., Efstathiou, S., and Nash, A. A. (1992b). Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol 73 (Pt 12), 3275–3279.Google Scholar
  185. Sutkowski, N., Conrad, B., Thorley-Lawson, D. A., and Huber, B. T. (2001). Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15, 579–589.PubMedCrossRefGoogle Scholar
  186. Sutkowski, N., Palkama, T., Ciurli, C., Sekaly, R. P., Thorley-Lawson, D. A., and Huber, B. T. (1996). An Epstein-Barr virus-associated superantigen. J Exp Med 184, 971–980.PubMedCrossRefGoogle Scholar
  187. Tai, A. K., Lin, M., Chang, F., Chen, G., Hsiao, F., Sutkowski, N., and Huber, B. T. (2006). Murine Vbeta3+ and Vbeta7+ T cell subsets are specific targets for the HERV-K18 Env superantigen. J Immunol 177, 3178–3184.PubMedGoogle Scholar
  188. Tang, Y. W., Johnson, J. E., Browning, P. J., Cruz-Gervis, R. A., Davis, A., Graham, B. S., Brigham, K. L., Oates, J. A., Jr., Loyd, J. E., and Stecenko, A. A. (2003). Herpesvirus DNA is consistently detected in lungs of patients with idiopathic pulmonary fibrosis. J Clin Microbiol 41, 2633–2640.PubMedCrossRefGoogle Scholar
  189. Tarakanova, V. L., Suarez, F., Tibbetts, S. A., Jacoby, M. A., Weck, K. E., Hess, J. L., Speck, S. H., and Virgin, H. W. (2005). Murine gammaherpesvirus 68 infection is associated with lymphoproliferative disease and lymphoma in BALB beta2 microglobulin-deficient mice. J Virol 79, 14668–14679.PubMedCrossRefGoogle Scholar
  190. Tatsumi, E., and Purtilo, D. T. (1986). Epstein-Barr virus (EBV) and X-linked lymphoproliferative syndrome (XLP). AIDS Res 2 Suppl 1, S109–113.PubMedGoogle Scholar
  191. Telfer, S., Bennett, M., Carslake, D., Helyar, S., and Begon, M. (2007). The dynamics of murid gammaherpesvirus 4 within wild, sympatric populations of bank voles and wood mice. J Wildl Dis 43, 32–39.PubMedGoogle Scholar
  192. Terry, L. A., Stewart, J. P., Nash, A. A., and Fazakerley, J. K. (2000). Murine gammaherpesvirus-68 infection of and persistence in the central nervous system. J Gen Virol 81, 2635–2643.PubMedGoogle Scholar
  193. Thorley-Lawson, D. A. (2001). Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1, 75–82.PubMedCrossRefGoogle Scholar
  194. Tibbetts, S. A., Loh, J., Van Berkel, V., McClellan, J. S., Jacoby, M. A., Kapadia, S. B., Speck, S. H., and Virgin, H. W. (2003a). Establishment and maintenance of gammaherpesvirus latency are independent of infective dose and route of infection. J Virol 77, 7696–7701.Google Scholar
  195. Tibbetts, S. A., McClellan, J. S., Gangappa, S., Speck, S. H., and Virgin, H. W. (2003b). Effective vaccination against long-term gammaherpesvirus latency. J Virol 77, 2522–2529.Google Scholar
  196. Tibbetts, S. A., Suarez, F., Steed, A. L., Simmons, J. A., and Virgin, H. W. (2006). A gamma-herpesvirus deficient in replication establishes chronic infection in vivo and is impervious to restriction by adaptive immune cells. Virology 353, 210–219.PubMedCrossRefGoogle Scholar
  197. Tibbetts, S. A., van Dyk, L. F., Speck, S. H., and Virgin, H. W. (2002). Immune control of the number and reactivation phenotype of cells latently infected with a gammaherpesvirus. J Virol 76, 7125–7132.PubMedCrossRefGoogle Scholar
  198. Topham, D. J., Cardin, R. C., Christensen, J. P., Brooks, J. W., Belz, G. T., and Doherty, P. C. (2001). Perforin and Fas in murine gammaherpesvirus-specific CD8(+) T cell control and morbidity. J Gen Virol 82, 1971–1981.Google Scholar
  199. Tripp, R. A., Hamilton-Easton, A. M., Cardin, R. D., Nguyen, P., Behm, F. G., Woodland, D. L., Doherty, P. C., and Blackman, M. A. (1997). Pathogenesis of an infectious mononucleosis-like disease induced by a murine gamma-herpesvirus: role for a viral superantigen? J Exp Med 185, 1641–1650.PubMedCrossRefGoogle Scholar
  200. Upton, J. W., and Speck, S. H. (2006). Evidence for CDK-dependent and CDK-independent functions of the murine gammaherpesvirus 68 v-cyclin. J Virol 80, 11946–11959.PubMedCrossRefGoogle Scholar
  201. Upton, J. W., van Dyk, L. F., and Speck, S. H. (2005). Characterization of murine gammaherpesvirus 68 v-cyclin interactions with cellular cdks. Virology 341, 271–283.PubMedCrossRefGoogle Scholar
  202. Usherwood, E. J., Brooks, J. W., Sarawar, S. R., Cardin, R. D., Young, W. D., Allen, D. J., Doherty, P. C., and Nash, A. A. (1997). Immunological control of murine gammaherpesvirus infection is independent of perforin. J Gen Virol 78 (Pt 8), 2025–2030.PubMedGoogle Scholar
  203. Usherwood, E. J., Ross, A. J., Allen, D. J., and Nash, A. A. (1996a). Murine gammaherpesvirus-induced splenomegaly: a critical role for CD4 T cells. J Gen Virol 77 (Pt 4), 627–630.Google Scholar
  204. Usherwood, E. J., Roy, D. J., Ward, K., Surman, S. L., Dutia, B. M., Blackman, M. A., Stewart, J. P., and Woodland, D. L. (2000). Control of gammaherpesvirus latency by latent antigen-specific CD8(+) T cells. J Exp Med 192, 943–952.PubMedCrossRefGoogle Scholar
  205. Usherwood, E. J., Stewart, J. P., and Nash, A. A. (1996b). Characterization of tumor cell lines derived from murine gammaherpesvirus-68-infected mice. J Virol 70, 6516–6518.Google Scholar
  206. Usherwood, E. J., Stewart, J. P., Robertson, K., Allen, D. J., and Nash, A. A. (1996c). Absence of splenic latency in murine gammaherpesvirus 68-infected B cell-deficient mice. J Gen Virol 77 (Pt 11), 2819–2825.Google Scholar
  207. Usherwood, E. J., Ward, K. A., Blackman, M. A., Stewart, J. P., and Woodland, D. L. (2001). Latent antigen vaccination in a model gammaherpesvirus infection. J Virol 75, 8283–8288.PubMedCrossRefGoogle Scholar
  208. van Berkel, V., Barrett, J., Tiffany, H. L., Fremont, D. H., Murphy, P. M., McFadden, G., Speck, S. H., and Virgin, H. W. (2000). Identification of a gammaherpesvirus selective chemokine binding protein that inhibits chemokine action. J Virol 74, 6741–6747.PubMedCrossRefGoogle Scholar
  209. van Berkel, V., Levine, B., Kapadia, S. B., Goldman, J. E., Speck, S. H., and Virgin, H. W. (2002). Critical role for a high-affinity chemokine-binding protein in gamma-herpesvirus-induced lethal meningitis. J Clin Invest 109, 905–914.PubMedGoogle Scholar
  210. van Berkel, V., Preiter, K., Virgin, H. W., and Speck, S. H. (1999). Identification and initial characterization of the murine gammaherpesvirus 68 gene M3, encoding an abundantly secreted protein. J Virol 73, 4524–4529.PubMedGoogle Scholar
  211. van Dyk, L. F., Hess, J. L., Katz, J. D., Jacoby, M., Speck, S. H., and Virgin, H. W. (1999). The murine gammaherpesvirus 68 v-cyclin gene is an oncogene that promotes cell cycle progression in primary lymphocytes. J Virol 73, 5110–5122.PubMedGoogle Scholar
  212. van Dyk, L. F., Virgin, H. W., and Speck, S. H. (2000). The murine gammaherpesvirus 68 v-cyclin is a critical regulator of reactivation from latency. J Virol 74, 7451–7461.PubMedCrossRefGoogle Scholar
  213. van Dyk, L. F., Virgin, H. W., and Speck, S. H. (2003). Maintenance of gammaherpesvirus latency requires viral cyclin in the absence of B lymphocytes. J Virol 77, 5118–5126.PubMedCrossRefGoogle Scholar
  214. Verzijl, D., Fitzsimons, C. P., Van Dijk, M., Stewart, J. P., Timmerman, H., Smit, M. J., and Leurs, R. (2004). Differential activation of murine herpesvirus 68- and Kaposi's sarcoma-associated herpesvirus-encoded ORF74 G protein-coupled receptors by human and murine chemokines. J Virol 78, 3343–3351.PubMedCrossRefGoogle Scholar
  215. Virgin, H. W., and Speck, S. H. (1999). Unraveling immunity to gamma-herpesviruses: a new model for understanding the role of immunity in chronic virus infection. Curr Opin Immunol 11, 371–379.PubMedCrossRefGoogle Scholar
  216. Virgin, H. W., Latreille, P., Wamsley, P., Hallsworth, K., Weck, K. E., Dal Canto, A. J., and Speck, S. H. (1997). Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71, 5894–5904.PubMedGoogle Scholar
  217. Virgin, H. W., Presti, R. M., Li, X. Y., Liu, C., and Speck, S. H. (1999). Three distinct regions of the murine gammaherpesvirus 68 genome are transcriptionally active in latently infected mice. J Virol 73, 2321–2332.PubMedGoogle Scholar
  218. Wakeling, M. N., Roy, D. J., Nash, A. A., and Stewart, J. P. (2001). Characterization of the murine gammaherpesvirus 68 ORF74 product: a novel oncogenic G protein-coupled receptor. J Gen Virol 82, 1187–1197.PubMedGoogle Scholar
  219. Wang, G. H., Garvey, T. L., and Cohen, J. I. (1999). The murine gammaherpesvirus-68 M11 protein inhibits Fas- and TNF-induced apoptosis. J Gen Virol 80 (Pt 10), 2737–2740.PubMedGoogle Scholar
  220. Wang, X., Connors, R., Harris, M. R., Hansen, T. H., and Lybarger, L. (2005). Requirements for the selective degradation of endoplasmic reticulum-resident major histocompatibility complex class I proteins by the viral immune evasion molecule mK3. J Virol 79, 4099–4108.PubMedCrossRefGoogle Scholar
  221. Wang, X., Ye, Y., Lencer, W., and Hansen, T. H. (2006). The viral E3 ubiquitin ligase mK3 uses the Derlin/p97 endoplasmic reticulum-associated degradation pathway to mediate down-regulation of major histocompatibility complex class I proteins. J Biol Chem 281, 8636–8644.PubMedCrossRefGoogle Scholar
  222. Weck, K. E., Barkon, M. L., Yoo, L. I., Speck, S. H., and Virgin, H. I. (1996). Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J Virol 70, 6775–6780.PubMedGoogle Scholar
  223. Weck, K. E., Dal Canto, A. J., Gould, J. D., O'Guin, A. K., Roth, K. A., Saffitz, J. E., Speck, S. H., and Virgin, H. W. (1997). Murine gamma-herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-gamma responsiveness: a new model for virus-induced vascular disease. Nat Med 3, 1346–1353.PubMedCrossRefGoogle Scholar
  224. Weck, K. E., Kim, S. S., Virgin, H. I., and Speck, S. H. (1999a). B cells regulate murine gammaherpesvirus 68 latency. J Virol 73, 4651–4661.Google Scholar
  225. Weck, K. E., Kim, S. S., Virgin, H. I., and Speck, S. H. (1999b). Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J Virol 73, 3273–3283.Google Scholar
  226. Willer, D. O., and Speck, S. H. (2003). Long-term latent murine Gammaherpesvirus 68 infection is preferentially found within the surface immunoglobulin D-negative subset of splenic B cells in vivo. J Virol 77, 8310–8321.PubMedCrossRefGoogle Scholar
  227. Willer, D. O., and Speck, S. H. (2005). Establishment and maintenance of long-term murine gammaherpesvirus 68 latency in B cells in the absence of CD40. J Virol 79, 2891–2899.PubMedCrossRefGoogle Scholar
  228. Wu, C., Nguyen, K. B., Pien, G. C., Wang, N., Gullo, C., Howie, D., Sosa, M. R., Edwards, M. J., Borrow, P., Satoskar, A. R., et al. (2001a). SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nat Immunol 2, 410–414.Google Scholar
  229. Wu, T. T., Tong, L., Rickabaugh, T., Speck, S., and Sun, R. (2001b). Function of Rta is essential for lytic replication of murine gammaherpesvirus 68. J Virol 75, 9262–9273.Google Scholar
  230. Wu, T. T., Usherwood, E. J., Stewart, J. P., Nash, A. A., and Sun, R. (2000). Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency. J Virol 74, 3659–3667.PubMedCrossRefGoogle Scholar
  231. Yarilin, D. A., Valiando, J., and Posnett, D. N. (2004). A mouse herpesvirus induces relapse of experimental autoimmune arthritis by infection of the inflammatory target tissue. J Immunol 173, 5238–5246.PubMedGoogle Scholar
  232. Yin, L., Al-Alem, U., Liang, J., Tong, W. M., Li, C., Badiali, M., Medard, J. J., Sumegi, J., Wang, Z. Q., and Romeo, G. (2003). Mice deficient in the X-linked lymphoproliferative disease gene sap exhibit increased susceptibility to murine gammaherpesvirus-68 and hypo-gammaglobulinemia. J Med Virol 71, 446–455.PubMedCrossRefGoogle Scholar
  233. Yu, Y., Okayasu, R., Weil, M. M., Silver, A., McCarthy, M., Zabriskie, R., Long, S., Cox, R., and Ullrich, R. L. (2001). Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene. Cancer Res 61, 1820–1824.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • James Craig Forrest
  • Laurie T. Krug
  • Samuel H. Speck
    • 1
  1. 1.Department of Microbiology and Immunology, and The Emory Vaccine CenterEmory University School of MedicineAtlantaUSA

Personalised recommendations