Non-coding Regulatory RNAs of the DNA Tumor Viruses



Viral non-coding RNAs (ncRNAs) exist in various forms, many of which appear unique to a particular DNA tumor virus family. In contrast, virally encoded microRNAs (miRNAs) represent a strategy used by several DNA tumor virus families to tap into the same processing and effector machinery utilized by host-derived miRNAs. Whether encoded during latent or lytic infection, ncRNAs are often among the most highly expressed viral transcripts, implying that they have important functions in the viral life cycle. Viral ncRNAs have been shown to contribute to viral gene autoregulation, modification of the host cell apoptotic response, and enhance the translation of viral proteins. While our knowledge of the various viral ncRNAs continues to grow, there remain surprising gaps in our understanding of the functions of some viral ncRNAs, especially given their abundance and the fact that they were discovered decades ago. Here, we provide an overview of the current understanding of the regulatory ncRNAs encoded by the DNA tumor viruses, including the VA RNAs, EBERs, HSURs, PAN, and the recently discovered viral miRNAs.


Antisense Transcript Lytic Replication Viral miRNAs Cellular miRNAs Bart miRNAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work in CSS lab is funded by UT Austin start up funds & a Fellowship from the UT Austin Institute for Cellular and Molecular Biology. Research into viral miRNA function in the Cullen laboratory is supported by NIH Grant AI067968. We thank Dr. Joan Steitz and Latham Fink for helpful comments regarding this chapter, and Jennifer Lin, Xuezhong Cai, Eva Gottwein, and Latham Fink for help with the figures. The manuscript proposing the existence of a miRNA called miR-LAT within the LAT transcripts of HSV-1 (Gupta et al., 2006) has now been retracted. A recent manuscript (Umbach, J. L., Kramer, M. F., Jurak, I., Coen, D. M., & Cullen, B. R. 2008, MicroRNAs expressed by Herpes Simplex Virus 1 during latent neuronal infection regulate viral gene expression. Nature, 454, 780–783) has now reported that HSV-1 LAT is processed to give rise to four viral miRNAs, miR-H2 to miR-H5, while an additional HSV-1 miRNA, miR-H6, was found to be encoded outside LAT. All five HSV-1 miRNA were found to be expressed in latently infected neurons in vivo. Moreover, miR-H2 and miR-H6 were found to inhibit expression of the HSV-1 immediate early transcription factors ICP-0 and ICP-4 respectively. This suggests that these viral miRNA may stabilize HSV-1 latency in infected neurons in vivo.


  1. Acheson, N.H. (1978). Polyoma virus giant RNAs contain tandem repeats of the nucleotide sequence of the entire viral genome. Proc Natl Acad Sci USA 75, 4754–4758.PubMedCrossRefGoogle Scholar
  2. Ahuja, D., Saenz-Robles, M.T., and Pipas, J.M. (2005). SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24, 7729–7745.PubMedCrossRefGoogle Scholar
  3. Albrecht, J.C., and Fleckenstein, B. (1992). Nucleotide sequence of HSUR 6 and HSUR 7, two small RNAs of herpesvirus saimiri. Nucleic Acids Res 20, 1810.PubMedCrossRefGoogle Scholar
  4. An, F.Q., Compitello, N., Horwitz, E., Sramkoski, M., Knudsen, E.S., and Renne, R. (2005). The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus modulates cellular gene expression and protects lymphoid cells from p16 INK4A-induced cell cycle arrest. J Biol Chem 280, 3862–3874.PubMedCrossRefGoogle Scholar
  5. Andersson, M.G., Haasnoot, P.C., Xu, N., Berenjian, S., Berkhout, B., and Akusjarvi, G. (2005). Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79, 9556–9565.PubMedCrossRefGoogle Scholar
  6. Aparicio, O., Razquin, N., Zaratiegui, M., Narvaiza, I., and Fortes, P. (2006). Adenovirus virus-associated RNA is processed to functional interfering RNAs involved in virus production. J Virol 80, 1376–1384.PubMedCrossRefGoogle Scholar
  7. Arrand, J.R., Young, L.S., and Tugwood, J.D. (1989). Two families of sequences in the small RNA-encoding region of Epstein-Barr virus (EBV) correlate with EBV types A and B. J Virol 63, 983–986.PubMedGoogle Scholar
  8. Bakheet, T., Frevel, M., Williams, B.R., Greer, W., and Khabar, K.S. (2001). ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res29, 246–254.PubMedCrossRefGoogle Scholar
  9. Barletta, J.M., Kingma, D.W., Ling, Y., Charache, P., Mann, R.B., and Ambinder, R.F. (1993). Rapid in situ hybridization for the diagnosis of latent Epstein-Barr virus infection. Mol Cell Probes 7, 105–109.PubMedCrossRefGoogle Scholar
  10. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.PubMedCrossRefGoogle Scholar
  11. Bass, B.L. (2002). RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71, 817–846.PubMedCrossRefGoogle Scholar
  12. Bates, M.P., Jennings, S.R., Tanaka, Y., Tevethia, M.J., and Tevethia, S.S. (1988). Recognition of simian virus 40 T antigen synthesized during viral lytic cycle in monkey kidney cells expressing mouse H-2 Kb- and H-2Db-transfected genes by SV40-specific cytotoxic T lymphocytes leads to the abrogation of virus lytic cycle. Virology 162, 197–205.PubMedCrossRefGoogle Scholar
  13. Bechtel, J., Grundhoff, A., and Ganem, D. (2005). RNAs in the virion of Kaposi's sarcoma-associated herpesvirus. J Virol 79, 10138–10146.PubMedCrossRefGoogle Scholar
  14. Belaguli, N.S., Pater, M.M., and Pater, A. (1997). Identification and location of human papillomavirus type 16 antisense early promoter and characterisation of antisense RNA. J Med Virol 51, 344–354.PubMedCrossRefGoogle Scholar
  15. Berk, A.J. (2005). Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24, 7673–7685.PubMedCrossRefGoogle Scholar
  16. Bhat, R.A., and Thimmappaya, B. (1983). Two small RNAs encoded by Epstein-Barr virus can functionally substitute for the virus-associated RNAs in the lytic growth of adenovirus 5. Proc Natl Acad Sci USA 80, 4789–4793.PubMedCrossRefGoogle Scholar
  17. Bloom, D.C. (2004). HSV LAT and neuronal survival. Int Rev Immunol 23, 187–198.PubMedCrossRefGoogle Scholar
  18. Bohnsack, M.T., Czaplinski, K., and Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna 10, 185–191.PubMedCrossRefGoogle Scholar
  19. Briani, F., Ghisotti, D., and Deho, G. (2000). Antisense RNA-dependent transcription termination sites that modulate lysogenic development of satellite phage P4. Mol Microbiol 36, 1124–1134.PubMedCrossRefGoogle Scholar
  20. Brown, C.J., and Chow, J.C. (2003). Beyond sense: the role of antisense RNA in controlling Xist expression. Semin Cell Dev Biol 14, 341–347.PubMedCrossRefGoogle Scholar
  21. Buck, A.H., Santoyo-Lopez, J., Robertson, K.A., Kumar, D.S., Reczko, M., and Ghazal, P. (2007). Discrete clusters of virus-encoded micrornas are associated with complementary strands of the genome and the 7.2-kilobase stable intron in murine cytomegalovirus. J Virol 81, 13761–13770.PubMedCrossRefGoogle Scholar
  22. Burnside, J., Bernberg, E., Anderson, A., Lu, C., Meyers, B.C., Green, P.J., Jain, N., Isaacs, G., and Morgan, R.W. (2006). Marek's disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virol 80, 8778–8786.PubMedCrossRefGoogle Scholar
  23. Butcher, S.E., and Brow, D.A. (2005). Towards understanding the catalytic core structure of the spliceosome. Biochem Soc Trans 33, 447–449.PubMedCrossRefGoogle Scholar
  24. Cai, X., and Cullen, B.R. (2006). Transcriptional origin of Kaposi's sarcoma-associated herpesvirus microRNAs. J Virol 80, 2234–2242.PubMedCrossRefGoogle Scholar
  25. Cai, X., Hagedorn, C.H., and Cullen, B.R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna 10, 1957–1966.PubMedCrossRefGoogle Scholar
  26. Cai, X., Li, G., Laimins, L.A., and Cullen, B.R. (2006a). Human papillomavirus genotype 31 does not express detectable microRNA levels during latent or productive virus replication. J Virol 80, 10890–10893.Google Scholar
  27. Cai, X., Lu, S., Zhang, Z., Gonzalez, C.M., Damania, B., and Cullen, B.R. (2005). Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 102, 5570–5575. Epub 2005 Mar 5530.PubMedCrossRefGoogle Scholar
  28. Cai, X., Schafer, A., Lu, S., Bilello, J.P., Desrosiers, R.C., Edwards, R., Raab-Traub, N., and Cullen, B.R. (2006b). Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2, e23.Google Scholar
  29. Cantalupo, P., Doering, A., Sullivan, C.S., Pal, A., Peden, K.W., Lewis, A.M., and Pipas, J.M. (2005). Complete nucleotide sequence of polyomavirus SA12. J Virol 79, 13094–13104.PubMedCrossRefGoogle Scholar
  30. Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., Wells, C., et al. (2005). The transcriptional landscape of the mammalian genome. Science 309, 1559–1563.PubMedCrossRefGoogle Scholar
  31. Chen, C.Y., and Shyu, A.B. (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20, 465–470.PubMedCrossRefGoogle Scholar
  32. Chen, H.L., Lung, M.M., Sham, J.S., Choy, D.T., Griffin, B.E., and Ng, M.H. (1992). Transcription of BamHI-A region of the EBV genome in NPC tissues and B cells. Virology 191, 193–201.PubMedCrossRefGoogle Scholar
  33. Clarke, P.A., Schwemmle, M., Schickinger, J., Hilse, K., and Clemens, M.J. (1991). Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nucleic Acids Res 19, 243–248.PubMedCrossRefGoogle Scholar
  34. Clemens, M.J. (2006). Epstein-Barr virus: inhibition of apoptosis as a mechanism of cell transformation. Int J Biochem Cell Biol 38, 164–169.PubMedCrossRefGoogle Scholar
  35. Cole, C.N. (1996). Polyomaviridae: the viruses and their replication. In Fields Virology, Third Edition, B.N. Fields, D.M. Knipe, and P.M. Howley, eds. (Philadelphia, Lippincott-Raven Publishers), pp.1997–2043.Google Scholar
  36. Conrad, N.K., Mili, S., Marshall, E.L., Shu, M.D., and Steitz, J.A. (2006). Identification of a rapid mammalian deadenylation-dependent decay pathway and its inhibition by a viral RNA element. Mol Cell 24, 943–953.PubMedCrossRefGoogle Scholar
  37. Conrad, N.K., and Steitz, J.A. (2005). A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. Embo J 24, 1831–1841.PubMedCrossRefGoogle Scholar
  38. Cook, H.L., Lytle, J.R., Mischo, H.E., Li, M.J., Rossi, J.J., Silva, D.P., Desrosiers, R.C., and Steitz, J.A. (2005). Small nuclear RNAs encoded by Herpesvirus saimiri upregulate the expression of genes linked to T cell activation in virally transformed T cells. Curr Biol 15, 974–979.PubMedCrossRefGoogle Scholar
  39. Cook, H.L., Mischo, H.E., and Steitz, J.A. (2004). The Herpesvirus saimiri small nuclear RNAs recruit AU-rich element-binding proteins but do not alter host AU-rich element-containing mRNA levels in virally transformed T cells. Mol Cell Biol 24, 4522–4533.PubMedCrossRefGoogle Scholar
  40. Cui, C., Griffiths, A., Li, G., Silva, L.M., Kramer, M.F., Gaasterland, T., Wang, X.J., and Coen, D.M. (2006). Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80, 5499–5508.PubMedCrossRefGoogle Scholar
  41. Cullen, B.R. (2004). Transcription and processing of human microRNA precursors. Mol Cell 16, 861–865.PubMedCrossRefGoogle Scholar
  42. Cullen, B.R. (2006). Induction of stable RNA interference in mammalian cells. Gene Ther 13, 503–508.PubMedCrossRefGoogle Scholar
  43. DeCerbo, J., and Carmichael, G.G. (2005). Retention and repression: fates of hyperedited RNAs in the nucleus. Curr Opin Cell Biol 17, 302–308.PubMedCrossRefGoogle Scholar
  44. Desrosiers, R.C., Silva, D.P., Waldron, L.M., and Letvin, N.L. (1986). Nononcogenic deletion mutants of herpesvirus saimiri are defective for in vitro immortalization. J Virol 57, 701–705.PubMedGoogle Scholar
  45. Dittmer, D., Lagunoff, M., Renne, R., Staskus, K., Haase, A., and Ganem, D. (1998). A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72, 8309–8315.PubMedGoogle Scholar
  46. Doench, J.G., Petersen, C.P., and Sharp, P.A. (2003). siRNAs can function as miRNAs. Genes Dev 17, 438–442.PubMedCrossRefGoogle Scholar
  47. Dolken, L., Perot, J., Cognat, V., Alioua, A., John, M., Soutschek, J., Ruzsics, Z., Koszinowski, U., Voinnet, O., and Pfeffer, S. (2007). Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J Virol 81, 13771–13782.PubMedCrossRefGoogle Scholar
  48. Doniger, J., Muralidhar, S., and Rosenthal, L.J. (1999). Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate. Clin Microbiol Rev 12, 367–382.PubMedGoogle Scholar
  49. Dunn, W., Trang, P., Zhong, Q., Yang, E., van Belle, C., and Liu, F. (2005). Human cytomegalovirus expresses novel microRNAs during productive viral infection. Cell Microbiol 7, 1684–1695.PubMedCrossRefGoogle Scholar
  50. Ensser, A., Pfinder, A., Muller-Fleckenstein, I., and Fleckenstein, B. (1999). The URNA genes of herpesvirus saimiri (strain C488) are dispensable for transformation of human T cells in vitro. J Virol 73, 10551–10555.PubMedGoogle Scholar
  51. Finlay, B.B., and McFadden, G. (2006). Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124, 767–782.PubMedCrossRefGoogle Scholar
  52. Flemington, E.K. (2001). Herpesvirus lytic replication and the cell cycle: arresting new developments. J Virol 75, 4475–4481.PubMedCrossRefGoogle Scholar
  53. Fok, V., Friend, K., and Steitz, J.A. (2006). Epstein-Barr virus noncoding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. J Cell Biol 173, 319–325.PubMedCrossRefGoogle Scholar
  54. Fragnet, L., Blasco, M.A., Klapper, W., and Rasschaert, D. (2003). The RNA subunit of telomerase is encoded by Marek's disease virus. J Virol 77, 5985–5996.PubMedCrossRefGoogle Scholar
  55. Furnari, F.B., Adams, M.D., and Pagano, J.S. (1993). Unconventional processing of the 3' termini of the Epstein-Barr virus DNA polymerase mRNA. Proc Natl Acad Sci USA 90, 378–382.PubMedCrossRefGoogle Scholar
  56. Garcia, M.A., Gil, J., Ventoso, I., Guerra, S., Domingo, E., Rivas, C., and Esteban, M. (2006). Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 70, 1032–1060.PubMedCrossRefGoogle Scholar
  57. Gerner, C.S., Dolan, A., and McGeoch, D.J. (2004). Phylogenetic relationships in the Lymphocryptovirus genus of the Gammaherpesvirinae. Virus Res 99, 187–192.PubMedCrossRefGoogle Scholar
  58. Gil, J., Alcami, J., and Esteban, M. (1999). Induction of apoptosis by double-stranded-RNA-dependent protein kinase (PKR) involves the alpha subunit of eukaryotic translation initiation factor 2 and NF-kappaB. Mol Cell Biol 19, 4653–4663.PubMedGoogle Scholar
  59. Gil, J., Garcia, M.A., Gomez-Puertas, P., Guerra, S., Rullas, J., Nakano, H., Alcami, J., and Esteban, M. (2004). TRAF family proteins link PKR with NF-kappa B activation. Mol Cell Biol 24, 4502–4512.PubMedCrossRefGoogle Scholar
  60. Gilligan, K., Sato, H., Rajadurai, P., Busson, P., Young, L., Rickinson, A., Tursz, T., and Raab-Traub, N. (1990). Novel transcription from the Epstein-Barr virus terminal EcoRI fragment, DIJhet, in a nasopharyngeal carcinoma. J Virol 64, 4948–4956.PubMedGoogle Scholar
  61. Glaunsinger, B.A., and Ganem, D.E. (2006). Messenger RNA turnover and its regulation in herpesviral infection. Adv Virus Res 66, 337–394.PubMedCrossRefGoogle Scholar
  62. Glickman, J.N., Howe, J.G., and Steitz, J.A. (1988). Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells. J Virol 62, 902–911.PubMedGoogle Scholar
  63. Gottwein, E., Mukherjee, N., Sachse, C., Frenzel, C., Majoros, W.H., Chi, J.T., Braich, R., Manoharan, M., Soutschek, J., Ohler, U., et al. (2007). A viral microRNA functions as an orthologue of cellular miR-155. Nature 450, 1096–1099.PubMedCrossRefGoogle Scholar
  64. Grey, F., Antoniewicz, A., Allen, E., Saugstad, J., McShea, A., Carrington, J.C., and Nelson, J. (2005). Identification and characterization of human cytomegalovirus-encoded microRNAs. J Virol 79, 12095–12099.PubMedCrossRefGoogle Scholar
  65. Grey, F., Meyers, H., White, E.A., Spector, D.H., and Nelson, J. (2007). A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3, e163.PubMedCrossRefGoogle Scholar
  66. Grundhoff, A., Sullivan, C.S., and Ganem, D. (2006). A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. Rna 12, 733–750. Epub 2006 Mar 2015.PubMedCrossRefGoogle Scholar
  67. Gupta, A., Gartner, J.J., Sethupathy, P., Hatzigeorgiou, A.G., and Fraser, N.W. (2006). Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442, 82–85.PubMedGoogle Scholar
  68. Gwack, Y., Hwang, S., Byun, H., Lim, C., Kim, J.W., Choi, E.J., and Choe, J. (2001). Kaposi's sarcoma-associated herpesvirus open reading frame 50 represses p53-induced transcriptional activity and apoptosis. J Virol 75, 6245–6248.PubMedCrossRefGoogle Scholar
  69. Gwizdek, C., Bertrand, E., Dargemont, C., Lefebvre, J.C., Blanchard, J.M., Singer, R.H., and Doglio, A. (2001). Terminal minihelix, a novel RNA motif that directs polymerase III transcripts to the cell cytoplasm. Terminal minihelix and RNA export. J Biol Chem 276, 25910–25918.PubMedCrossRefGoogle Scholar
  70. Heinrich, J., Velleman, M., and Schuster, H. (1995). The tripartite immunity system of phages P1 and P7. FEMS Microbiol Rev 17, 121–126.PubMedCrossRefGoogle Scholar
  71. Higgins, G.D., Uzelin, D.M., Phillips, G.E., and Burrell, C.J. (1991). Presence and distribution of human papillomavirus sense and antisense RNA transcripts in genital cancers. J Gen Virol 72 ( Pt 4), 885–895.PubMedCrossRefGoogle Scholar
  72. Hirose, T., Ideue, T., Nagai, M., Hagiwara, M., Shu, M.D., and Steitz, J.A. (2006). A spliceosomal intron binding protein, IBP160, links position-dependent assembly of intron-encoded box C/D snoRNP to pre-mRNA splicing. Mol Cell 23, 673–684.PubMedCrossRefGoogle Scholar
  73. Howe, J.G., and Steitz, J.A. (1986). Localization of Epstein-Barr virus-encoded small RNAs by in situ hybridization. Proc Natl Acad Sci USA 83, 9006–9010.PubMedCrossRefGoogle Scholar
  74. Huttenhofer, A., Schattner, P., and Polacek, N. (2005). Non-coding RNAs: hope or hype? Trends Genet 21, 289–297.PubMedCrossRefGoogle Scholar
  75. Hutvagner, G., and Zamore, P.D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.PubMedCrossRefGoogle Scholar
  76. Jones, C. (2003). Herpes simplex virus type 1 and bovine herpesvirus 1 latency. Clin Microbiol Rev 16, 79–95.PubMedCrossRefGoogle Scholar
  77. Katze, M.G., DeCorato, D., Safer, B., Galabru, J., and Hovanessian, A.G. (1987). Adenovirus VAI RNA complexes with the 68 000 Mr protein kinase to regulate its autophosphorylation and activity. Embo J 6, 689–697.PubMedGoogle Scholar
  78. Kent, J.R., Kang, W., Miller, C.G., and Fraser, N.W. (2003). Herpes simplex virus latency-associated transcript gene function. J Neurovirol 9, 285–290.PubMedGoogle Scholar
  79. Khan, G., Coates, P.J., Kangro, H.O., and Slavin, G. (1992). Epstein Barr virus (EBV) encoded small RNAs: targets for detection by in situ hybridisation with oligonucleotide probes. J Clin Pathol 45, 616–620.PubMedCrossRefGoogle Scholar
  80. Kieff, E., and Rickinson, A.B. (2001). Epstein-Barr Virus and its Replication (Philadelphia, Lippincott, Williams, and Wilkins).Google Scholar
  81. Kirchhoff, S., Koromilas, A.E., Schaper, F., Grashoff, M., Sonenberg, N., and Hauser, H. (1995). IRF-1 induced cell growth inhibition and interferon induction requires the activity of the protein kinase PKR. Oncogene 11, 439–445.PubMedGoogle Scholar
  82. Kulesza, C.A., and Shenk, T. (2004). Human cytomegalovirus 5-kilobase immediate-early RNA is a stable intron. J Virol 78, 13182–13189.PubMedCrossRefGoogle Scholar
  83. Kulesza, C.A., and Shenk, T. (2006). Murine cytomegalovirus encodes a stable intron that facilitates persistent replication in the mouse. Proc Natl Acad Sci USA 103, 18302–18307.PubMedCrossRefGoogle Scholar
  84. Kumar, A., Yang, Y.L., Flati, V., Der, S., Kadereit, S., Deb, A., Haque, J., Reis, L., Weissmann, C., and Williams, B.R. (1997). Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. Embo J 16, 406–416.PubMedCrossRefGoogle Scholar
  85. Kumar, M., and Carmichael, G.G. (1997). Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc Natl Acad Sci USA 94, 3542–3547.PubMedCrossRefGoogle Scholar
  86. Kumar, M., and Carmichael, G.G. (1998). Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 62, 1415–1434.PubMedGoogle Scholar
  87. Kwek, K.Y., Murphy, S., Furger, A., Thomas, B., O'Gorman, W., Kimura, H., Proudfoot, N.J., and Akoulitchev, A. (2002). U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol 9, 800–805.PubMedGoogle Scholar
  88. Laing, K.G., Elia, A., Jeffrey, I., Matys, V., Tilleray, V.J., Souberbielle, B., and Clemens, M.J. (2002). In vivo effects of the Epstein-Barr virus small RNA EBER-1 on protein synthesis and cell growth regulation. Virology 297, 253–269.PubMedCrossRefGoogle Scholar
  89. Langland, J.O., Cameron, J.M., Heck, M.C., Jancovich, J.K., and Jacobs, B.L. (2006). Inhibition of PKR by RNA and DNA viruses. Virus Res 119, 100–110.PubMedCrossRefGoogle Scholar
  90. Lee, S.I., Murthy, S.C., Trimble, J.J., Desrosiers, R.C., and Steitz, J.A. (1988). Four novel U RNAs are encoded by a herpesvirus. Cell 54, 599–607.PubMedCrossRefGoogle Scholar
  91. Lee, S.I., and Steitz, J.A. (1990). Herpesvirus saimiri U RNAs are expressed and assembled into ribonucleoprotein particles in the absence of other viral genes. J Virol 64, 3905–3915.PubMedGoogle Scholar
  92. Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H., and Kim, V.N. (2004). MicroRNA genes are transcribed by RNA polymerase II. Embo J 23, 4051–4060.PubMedCrossRefGoogle Scholar
  93. Lerner, M.R., Andrews, N.C., Miller, G., and Steitz, J.A. (1981). Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 78, 805–809.PubMedCrossRefGoogle Scholar
  94. Lin, J., and Cullen, B.R. (2007). Manuscript submitted.Google Scholar
  95. Lo, A.K., To, K.F., Lo, K.W., Lung, R.W., Hui, J.W., Liao, G., and Hayward, S.D. (2007). Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci USA 104, 16164–16169.PubMedCrossRefGoogle Scholar
  96. Lodoen, M.B., and Lanier, L.L. (2006). Natural killer cells as an initial defense against pathogens. Curr Opin Immunol 18, 391–398.PubMedCrossRefGoogle Scholar
  97. Lu, S., and Cullen, B.R. (2004). Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol 78, 12868–12876.PubMedCrossRefGoogle Scholar
  98. Lukac, D.M., Kirshner, J.R., and Ganem, D. (1999). Transcriptional activation by the product of open reading frame 50 of Kaposi's sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73, 9348–9361.PubMedGoogle Scholar
  99. Lukac, D.M., Renne, R., Kirshner, J.R., and Ganem, D. (1998). Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252, 304–312.PubMedCrossRefGoogle Scholar
  100. Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. (2004). Nuclear export of microRNA precursors. Science 303, 95–98. Epub 2003 Nov 2020.PubMedCrossRefGoogle Scholar
  101. Luther, H.P. (2005). Role of endogenous antisense RNA in cardiac gene regulation. J Mol Med 83, 26–32.PubMedCrossRefGoogle Scholar
  102. Luther, H.P., Morwinski, R., Wallukat, G., Haase, H., and Morano, I. (1997). Expression of sense and naturally occurring antisense mRNA of myosin heavy chain in rat heart tissue and cultivated cardiomyocytes. J Mol Cell Cardiol 29, 27–35.PubMedCrossRefGoogle Scholar
  103. Ma, Y., and Mathews, M.B. (1996). Structure, function, and evolution of adenovirus-associated RNA: a phylogenetic approach. J Virol 70, 5083–5099.PubMedGoogle Scholar
  104. Macrae, A.I., Usherwood, E.J., Husain, S.M., Flano, E., Kim, I.J., Woodland, D.L., Nash, A.A., Blackman, M.A., Sample, J.T., and Stewart, J.P. (2003). Murid herpesvirus 4 strain 68 M2 protein is a B-cell-associated antigen important for latency but not lymphocytosis. J Virol 77, 9700–9709.PubMedCrossRefGoogle Scholar
  105. Maeda, N., Kasukawa, T., Oyama, R., Gough, J., Frith, M., Engstrom, P.G., Lenhard, B., Aturaliya, R.N., Batalov, S., Beisel, K.W., et al. (2006). Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. The transcriptional landscape of the mammalian genome. PLoS Genet 2, e62.PubMedCrossRefGoogle Scholar
  106. Matera, A.G., and Shpargel, K.B. (2006). Pumping RNA: nuclear bodybuilding along the RNP pipeline. Curr Opin Cell Biol 18, 317–324.PubMedCrossRefGoogle Scholar
  107. Mathews, M.B., and Shenk, T. (1991). Adenovirus virus-associated RNA and translation control. J Virol 65, 5657–5662.PubMedGoogle Scholar
  108. Mattick, J.S., and Makunin, I.V. (2006). Non-coding RNA. Hum Mol Genet 15 Spec No 1, R17–29.PubMedCrossRefGoogle Scholar
  109. McCormick, C., and Ganem, D. (2005). The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307, 739–741.PubMedCrossRefGoogle Scholar
  110. Mellits, K.H., Kostura, M., and Mathews, M.B. (1990). Interaction of adenovirus VA RNAl with the protein kinase DAI: nonequivalence of binding and function. Cell 61, 843–852.PubMedCrossRefGoogle Scholar
  111. Moore, P.S., and Chang, Y. (2003). Kaposi's sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin? Annu Rev Microbiol 57, 609–639.PubMedCrossRefGoogle Scholar
  112. Moser, J.M., and Lukacher, A.E. (2001). Immunity to polyoma virus infection and tumorigenesis. Viral Immunol 14, 199–216.PubMedCrossRefGoogle Scholar
  113. Murthy, S., Kamine, J., and Desrosiers, R.C. (1986). Viral-encoded small RNAs in herpes virus saimiri induced tumors. Embo J 5, 1625–1632.PubMedGoogle Scholar
  114. Murthy, S.C., Trimble, J.J., and Desrosiers, R.C. (1989). Deletion mutants of herpesvirus saimiri define an open reading frame necessary for transformation. J Virol 63, 3307–3314.PubMedGoogle Scholar
  115. Myer, V.E., Lee, S.I., and Steitz, J.A. (1992). Viral small nuclear ribonucleoproteins bind a protein implicated in messenger RNA destabilization. Proc Natl Acad Sci USA 89, 1296–1300.PubMedCrossRefGoogle Scholar
  116. Nair, V., and Zavolan, M. (2006). Virus-encoded microRNAs: novel regulators of gene expression. Trends Microbiol 14, 169–175.PubMedCrossRefGoogle Scholar
  117. Nanbo, A., Yoshiyama, H., and Takada, K. (2005). Epstein-Barr virus-encoded poly(A)- RNA confers resistance to apoptosis mediated through Fas by blocking the PKR pathway in human epithelial intestine 407 cells. J Virol 79, 12280–12285.PubMedCrossRefGoogle Scholar
  118. Omoto, S., and Fujii, Y.R. (2005). Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol 86, 751–755.PubMedCrossRefGoogle Scholar
  119. Omoto, S., Ito, M., Tsutsumi, Y., Ichikawa, Y., Okuyama, H., Brisibe, E.A., Saksena, N.K., and Fujii, Y.R. (2004). HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1, 44.PubMedCrossRefGoogle Scholar
  120. Pfeffer, S., Sewer, A., Lagos-Quintana, M., Sheridan, R., Sander, C., Grasser, F.A., van Dyk, L.F., Ho, C.K., Shuman, S., Chien, M., et al. (2005). Identification of microRNAs of the herpesvirus family. Nat Methods 2, 269–276. Epub 2005 Feb 2016.PubMedCrossRefGoogle Scholar
  121. Pfeffer, S., Zavolan, M., Grasser, F.A., Chien, M., Russo, J.J., Ju, J., John, B., Enright, A.J., Marks, D., Sander, C., et al. (2004). Identification of virus-encoded microRNAs. Science 304, 734–736.PubMedCrossRefGoogle Scholar
  122. Pipas, J.M. (1992). Common and unique features of T antigens encoded by the polyomavirus group. J Virol 66, 3979–3985.PubMedGoogle Scholar
  123. Plath, K., Mlynarczyk-Evans, S., Nusinow, D.A., and Panning, B. (2002). Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36, 233–278.PubMedCrossRefGoogle Scholar
  124. Prang, N., Wolf, H., and Schwarzmann, F. (1999). Latency of Epstein-Barr virus is stabilized by antisense-mediated control of the viral immediate-early gene BZLF-1. J Med Virol 59, 512–519.PubMedCrossRefGoogle Scholar
  125. Reeves, M.B., Davies, A.A., McSharry, B.P., Wilkinson, G.W., and Sinclair, J.H. (2007). Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316, 1345–1348.PubMedCrossRefGoogle Scholar
  126. Rivailler, P., Carville, A., Kaur, A., Rao, P., Quink, C., Kutok, J.L., Westmoreland, S., Klumpp, S., Simon, M., Aster, J.C., et al. (2004). Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein-Barr virus pathogenesis in the immunosuppressed host. Blood 104, 1482–1489.PubMedCrossRefGoogle Scholar
  127. Rosa, M.D., Gottlieb, E., Lerner, M.R., and Steitz, J.A. (1981). Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAII. Mol Cell Biol 1, 785–796.PubMedGoogle Scholar
  128. Rossignol, F., de Laplanche, E., Mounier, R., Bonnefont, J., Cayre, A., Godinot, C., Simonnet, H., and Clottes, E. (2004). Natural antisense transcripts of HIF-1alpha are conserved in rodents. Gene 339, 121–130.PubMedCrossRefGoogle Scholar
  129. Rossignol, F., Vache, C., and Clottes, E. (2002). Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene 299, 135–140.PubMedCrossRefGoogle Scholar
  130. Ruf, I.K., Lackey, K.A., Warudkar, S., and Sample, J.T. (2005). Protection from interferon-induced apoptosis by Epstein-Barr virus small RNAs is not mediated by inhibition of PKR. J Virol 79, 14562–14569.PubMedCrossRefGoogle Scholar
  131. Sadler, R., Wu, L., Forghani, B., Renne, R., Zhong, W., Herndier, B., and Ganem, D. (1999). A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi's sarcoma-associated herpesvirus. J Virol 73, 5722–5730.PubMedGoogle Scholar
  132. Samols, M.A., Hu, J., Skalsky, R.L., and Renne, R. (2005). Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J Virol 79, 9301–9305.PubMedCrossRefGoogle Scholar
  133. Samols, M.A., Skalsky, R.L., Maldonado, A.M., Riva, A., Lopez, M.C., Baker, H.V., and Renne, R. (2007). Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 3, e65.PubMedCrossRefGoogle Scholar
  134. Sano, M., Kato, Y., and Taira, K. (2006). Sequence-specific interference by small RNAs derived from adenovirus VAI RNA. FEBS Lett 580, 1553–1564.PubMedCrossRefGoogle Scholar
  135. Sarid, R., Flore, O., Bohenzky, R.A., Chang, Y., and Moore, P.S. (1998). Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol 72, 1005–1012.PubMedGoogle Scholar
  136. Saveliev, A., Zhu, F., and Yuan, Y. (2002). Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi's sarcoma-associated herpesvirus. Virology 299, 301–314.PubMedCrossRefGoogle Scholar
  137. Schafer, A., Cai, X., Bilello, J.P., Desrosiers, R.C., and Cullen, B.R. (2007). Cloning and analysis of microRNAs encoded by the primate gamma-herpesvirus rhesus monkey rhadinovirus. Virology 364, 21–27.PubMedCrossRefGoogle Scholar
  138. Schneider, R.J., Weinberger, C., and Shenk, T. (1984). Adenovirus VAI RNA facilitates the initiation of translation in virus-infected cells. Cell 37, 291–298.PubMedCrossRefGoogle Scholar
  139. Sharp, T.V., Schwemmle, M., Jeffrey, I., Laing, K., Mellor, H., Proud, C.G., Hilse, K., and Clemens, M.J. (1993). Comparative analysis of the regulation of the interferon-inducible protein kinase PKR by Epstein-Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA. Nucleic Acids Res 21, 4483–4490.PubMedCrossRefGoogle Scholar
  140. Skalsky, R.L., Samols, M.A., Plaisance, K.B., Boss, I.W., Riva, A., Lopez, M.C., Baker, H.V., and Renne, R. (2007). Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81, 12836–12845.PubMedCrossRefGoogle Scholar
  141. Song, M.J., Brown, H.J., Wu, T.T., and Sun, R. (2001). Transcription activation of polyadenylated nuclear rna by rta in human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus. J Virol 75, 3129–3140.PubMedCrossRefGoogle Scholar
  142. Speck, S.H., and Virgin, H.W. (1999). Host and viral genetics of chronic infection: a mouse model of gamma-herpesvirus pathogenesis. Curr Opin Microbiol 2, 403–409.PubMedCrossRefGoogle Scholar
  143. Stern-Ginossar, N., Elefant, N., Zimmermann, A., Wolf, D.G., Saleh, N., Biton, M., Horwitz, E., Prokocimer, Z., Prichard, M., Hahn, G., et al. (2007). Host immune system gene targeting by a viral miRNA. Science 317, 376–381.PubMedCrossRefGoogle Scholar
  144. Sullivan, C.S., Grundhoff, A.T., Tevethia, S., Pipas, J.M., and Ganem, D. (2005). SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686.PubMedCrossRefGoogle Scholar
  145. Sun, R., Lin, S.F., Gradoville, L., and Miller, G. (1996). Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 93, 11883–11888.PubMedCrossRefGoogle Scholar
  146. Sun, R., Lin, S.F., Gradoville, L., Yuan, Y., Zhu, F., and Miller, G. (1998). A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 95, 10866–10871.PubMedCrossRefGoogle Scholar
  147. Szomolanyi, E., Medveczky, P., and Mulder, C. (1987). In vitro immortalization of marmoset cells with three subgroups of herpesvirus saimiri. J Virol 61, 3485–3490.PubMedGoogle Scholar
  148. Thimmappaya, B., Weinberger, C., Schneider, R.J., and Shenk, T. (1982). Adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. Cell 31, 543–551.PubMedCrossRefGoogle Scholar
  149. Thrash-Bingham, C.A., and Tartof, K.D. (1999). aHIF: a natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst 91, 143–151.PubMedCrossRefGoogle Scholar
  150. Toczyski, D.P., and Steitz, J.A. (1991). EAP, a highly conserved cellular protein associated with Epstein-Barr virus small RNAs (EBERs). Embo J 10, 459–466.PubMedGoogle Scholar
  151. Trapp, S., Parcells, M.S., Kamil, J.P., Schumacher, D., Tischer, B.K., Kumar, P.M., Nair, V.K., and Osterrieder, N. (2006). A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. J Exp Med 203, 1307–1317.PubMedCrossRefGoogle Scholar
  152. Vormwald-Dogan, V., Fischer, B., Bludau, H., Freese, U.K., Gissmann, L., Glitz, D., Schwartz, E., and Durst, M. (1992). Sense and antisense transcripts of human papillomavirus type 16 in cervical cancers. J Gen Virol 73 ( Pt 7), 1833–1838.PubMedCrossRefGoogle Scholar
  153. Wang, Y., Xue, S.A., Hallden, G., Francis, J., Yuan, M., Griffin, B.E., and Lemoine, N.R. (2005). Virus-associated RNA I-deleted adenovirus, a potential oncolytic agent targeting EBV-associated tumors. Cancer Res 65, 1523–1531.PubMedCrossRefGoogle Scholar
  154. Wassarman, D.A., Lee, S.I., and Steitz, J.A. (1989). Nucleotide sequence of HSUR 5 RNA from herpesvirus saimiri. Nucleic Acids Res 17, 1258.PubMedCrossRefGoogle Scholar
  155. Werner, A., and Berdal, A. (2005). Natural antisense transcripts: sound or silence? Physiol Genomics 23, 125–131.PubMedCrossRefGoogle Scholar
  156. Whitley, R.J. (2001). Herpes Simplex Viruses (Lippincott, Williams, and Wilkins).Google Scholar
  157. Wolin, S.L., and Cedervall, T. (2002). The La protein. Annu Rev Biochem 71, 375–403.PubMedCrossRefGoogle Scholar
  158. Wong, H.L., Wang, X., Chang, R.C., Jin, D.Y., Feng, H., Wang, Q., Lo, K.W., Huang, D.P., Yuen, P.W., Takada, K., et al. (2005). Stable expression of EBERs in immortalized nasopharyngeal epithelial cells confers resistance to apoptotic stress. Mol Carcinog 44, 92–101.PubMedCrossRefGoogle Scholar
  159. Wu, T.H., Liao, S.M., McClure, W.R., and Susskind, M.M. (1987). Control of gene expression in bacteriophage P22 by a small antisense RNA. II. Characterization of mutants defective in repression. Genes Dev 1, 204–212.PubMedCrossRefGoogle Scholar
  160. Yamamoto, N., Takizawa, T., Iwanaga, Y., Shimizu, N., and Yamamoto, N. (2000). Malignant transformation of B lymphoma cell line BJAB by Epstein-Barr virus-encoded small RNAs. FEBS Lett 484, 153–158.PubMedCrossRefGoogle Scholar
  161. Yang, Z., Zhu, Q., Luo, K., and Zhou, Q. (2001). The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322.PubMedCrossRefGoogle Scholar
  162. Yao, Y., Zhao, Y., Xu, H., Smith, L.P., Lawrie, C.H., Sewer, A., Zavolan, M., and Nair, V. (2007). Marek's disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation to those encoded by MDV-1. J Virol 25, 25.Google Scholar
  163. Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011–3016. Epub 2003 Dec 3017.PubMedCrossRefGoogle Scholar
  164. Zeng, Y., and Cullen, B.R. (2004). Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32, 4776–4785. Print 2004.PubMedCrossRefGoogle Scholar
  165. Zeng, Y., Yi, R., and Cullen, B.R. (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100, 9779–9784.PubMedCrossRefGoogle Scholar
  166. Zezza, D.J., and Heywood, S.M. (1986). Analysis of tcRNA102 associated with myosin heavy chain-mRNPs in control and dystrophic chick pectoralis muscle. J Biol Chem 261, 7461–7465.PubMedGoogle Scholar
  167. Zhang, F., Lemieux, S., Wu, X., St-Arnaud, D., McMurray, C.T., Major, F., and Anderson, D. (1998). Function of hexameric RNA in packaging of bacteriophage phi 29 DNA in vitro. Mol Cell 2, 141–147.PubMedCrossRefGoogle Scholar
  168. Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68.PubMedCrossRefGoogle Scholar
  169. Zhang, Z., and Carmichael, G.G. (2001). The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106, 465–475.PubMedCrossRefGoogle Scholar
  170. Zhong, W., and Ganem, D. (1997). Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8). J Virol 71, 1207–1212.PubMedGoogle Scholar
  171. Zhong, W., Wang, H., Herndier, B., and Ganem, D. (1996). Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci USA 93, 6641–6646.PubMedCrossRefGoogle Scholar
  172. Ziegelbauer, J.M., Sullivan, C.S., and Ganem, D. Personal communication.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.The University of Texas at Austin,Molecular Genetics and MicrobiologyAustinUSA
  2. 2.Center for Virology and Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA

Personalised recommendations