KSHV Entry and Infection of Target Cells

  • Bala Chandran
  • Neelam Sharma-Walia


To initiate and establish a successful infection in the target cells, KSHV must cross the plasma membrane and target its genome and accessory proteins to the infected cell nuclei, where gene transcription, nucleic acid replication, and viral maturation take place. Detailed knowledge about the initial stages of KSHV interactions with the host cells is crucial not only to understand the tropism and pathogenesis of KSHV but also for the development of strategies to block infection. Compared to the advances in other areas of KSHV research, knowledge regarding KSHV entry and infection is somewhat limited due to the complexity of the process which includes multiple KSHV envelope glycoproteins and a wide range of target cells, as well as the inherent difficulties in studying virus–receptor interactions. In this chapter, we discuss the available information regarding KSHV in vivo and in vitro target cells, viral envelope glycoproteins, host cell molecules (receptors) involved in...


Focal Adhesion Kinase Endocytic Vesicle Lytic Cycle Lytic Replication KSHV Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported in part by Public Health Service Grants AI057349 and CA 075911, and Rosalind Franklin University of Medicine and Science – H.M. Bligh Cancer Research Fund to BC. We thank Keith Philibert for critically reading this manuscript.


  1. Akula, S. M., Hurley, D. J., Wixon, R. L., Wang, C. and Chase, C. C. (2002a) Effect of genistein on replication of bovine herpesvirus type 1. Am. J. Vet. Res. 63, 1124–1128.Google Scholar
  2. Akula, S. M., Naranatt, P. P., Walia, N. S., Wang, F. Z., Fegley, B., and Chandran, B. (2003) Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J. Virol. 77, 7978–7990.PubMedCrossRefGoogle Scholar
  3. Akula, S. M., Naranatt, P. P., Wang, F. Z. and Chandran, B. (2001a) Human herpesvirus envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology. 284, 235–249.Google Scholar
  4. Akula, S. M., Naranatt, P. P., Wang, F. Z., and Chandran, B. (2002b) Integrin α3β1 (CD49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) entry into target cells. Cell. 108, 407–419.Google Scholar
  5. Akula, S. M., Wang, F. Z., Vieira, J., and Chandran, B. (2001b) Human herpesvirus 8 interaction with target cells involves heparan sulfate. Virology. 282, 245–255.Google Scholar
  6. Antman, K., and Chang, Y. (2000) Kaposi's sarcoma. N. Engl. J. Med. 342, 1027–1038.PubMedCrossRefGoogle Scholar
  7. Baghian, A., Luftig, M., Black, J. B., Meng, Y. X., Pau, C. P., Voss, T., Pellett, P. E., and Kousoulas, K. G. (2000) Glycoprotein B of human herpesvirus 8 is a component of the virion in a cleaved form composed of amino- and carboxyl-terminal fragments. Virology. 269, 18–25.PubMedCrossRefGoogle Scholar
  8. Bechtel, J., Grundhoff, A., and Ganem, D. (2005) RNAs in the Virion of Kaposi's Sarcoma-Associated Herpesvirus. J.Virol. 79, 10138–10146.PubMedCrossRefGoogle Scholar
  9. Calderwood, D. A., Shattil, S. J., and Ginsberg, M. H. (2000) Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275, 22607–22610.PubMedCrossRefGoogle Scholar
  10. Chandran, B., Bloomer, C., Chan, S. R., Zhu, L., Goldstein, E., and Horvat, R. (1998) Human herpesvirus-8 ORF K8.1 gene encodes immunogenic glycoproteins generated by spliced transcripts. Virology. 249, 140–149.PubMedCrossRefGoogle Scholar
  11. Ciufo, D. M., Cannon, J. S., Poole, L. J., Wu, F. Y., Murray, P., Ambinder, R. F., and Hayward, G. S. (2001) Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J. Virol. 75, 5614–5626.PubMedCrossRefGoogle Scholar
  12. Dezube, B. J., Zambela, M., Sage, D. R., Wang, J. F., and Fingeroth, J. D. (2002) Characterization of Kaposi sarcoma-associated herpesvirus/human herpesvirus-8 infection of human vascular endothelial cells: early events. Blood. 100, 888–896.PubMedCrossRefGoogle Scholar
  13. Dourmishev, L. A., Dourmishev, A. L., Palmeri, D., Schwartz, R. A., and Lukac, D. M. (2003) Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 175–212.PubMedCrossRefGoogle Scholar
  14. Fenczik, C. A., Zent, R., Dellos, M., Calderwood, D. A., Satriano, J., Kelly, C. and Ginsberg, M. H. (2001) Distinct domains of CD98hc regulate integrins and amino acid transport. J. Biol. Chem. 276, 8746–8752.PubMedCrossRefGoogle Scholar
  15. Feral, C. C., Nishiya, N., Fenczik, C. A., Stuhlmann, H., Slepak, M., and Ginsberg, M. H. (2005) CD98hc (SLC3A2) mediates integrin signaling. Proc. Natl. Acad. Sci. USA 102, 355–360.Google Scholar
  16. Ganem, D. (1998) Human herpesvirus 8 and its role in the genesis of Kaposi's sarcoma. Curr. Clin. Top. Infect. Dis. 18, 237–251.PubMedGoogle Scholar
  17. Ganem, D. (2007) Kaposi’s Sarcoma-associated Herpesvirus. In: Fields Virology (Fifth edition), Volume 2, pp. 2875–2888.Google Scholar
  18. Gao, S. J., Deng, J. H., and Zhou, F. C. (2003) Productive Lytic Replication of a Recombinant Kaposi's Sarcoma-Associated Herpesvirus in Efficient Primary Infection of Primary Human Endothelial Cells J. Virol. 77, 9738–9749.PubMedCrossRefGoogle Scholar
  19. Gasperini, P., Barbierato, M., Martinelli, C., Rigotti, P., Marchini, F., Masserizzi, G., Leoncini, F., Chieco-Bianchi, L., Schulz, T. F., and Calabro, M. L. (2005) Use of a BJAB-Derived Cell Line for Isolation of Human Herpesvirus 8. J. Clin. Microbiol. 43, 2866–2875.PubMedCrossRefGoogle Scholar
  20. Giancotti, F. G. (2000) Complexity and specificity of integrin signalling. Nat. Cell. Biol. 2, E13–4.PubMedCrossRefGoogle Scholar
  21. Giancotti, F. G., and Ruoslahti, E. (1999) Integrin signaling. Science. 285, 1028–1032.PubMedCrossRefGoogle Scholar
  22. Grundhoff, A., and Ganem, D. (2004) Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J. Clin. Invest. 113, 124–136.PubMedGoogle Scholar
  23. Hall, A., and Nobes, C. D. (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 965–970.PubMedCrossRefGoogle Scholar
  24. Inoue, N., Winter, J., Lal, R. B., Offermann, M. K., and Koyano, S. (2003) Characterization of entry mechanisms of human herpesvirus 8 by using an Rta-dependent reporter cell line. J. Virol. 77, 8143–8152.Google Scholar
  25. Ishizaki, T., Morishima, Y., Okamoto, M., Furuyashiki, T., Kato, T. and Narumiya, S. (2001) Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat. Cell. Biol. 3, 8–14.PubMedCrossRefGoogle Scholar
  26. Kaleeba, J. A., and Berger, E. A. (2006) Kaposi's sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science. 311, 1921–194.PubMedCrossRefGoogle Scholar
  27. King, S. M. (2000). The dynein microtubule motor. Biochim. Biophys. Acta. 1496, 60–75.PubMedCrossRefGoogle Scholar
  28. Koyano, S., Mar, E. C., Stamey, F. R., and Inoue, N. (2003) Glycoproteins M and N of human herpesvirus 8 form a complex and inhibit cell fusion. J. Gen. Virol. 84, 1485–1491.PubMedCrossRefGoogle Scholar
  29. Krishnan, H. H., Naranatt, P. P., Smith, M. S., Zeng, L., Bloomer, C., and Chandran, B. (2004) Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi's sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J. Virol. 78, 3601–3620.PubMedCrossRefGoogle Scholar
  30. Krishnan, H. H., Sharma-Walia, N., Streblow, D. N., Naranatt, P. P., and Chandran, B. (2006) Focal adhesion kinase is critical for entry of Kaposi’s sarcoma-associated herpesvirus into target cells. J. Virol. 80, 1167–1180.PubMedCrossRefGoogle Scholar
  31. Krishnan, H. H., Sharma-Walia, N., Zeng, L., Gao, S. J., and Chandran, B. (2005) Envelope Glycoprotein gB of Kaposi's Sarcoma-Associated Herpesvirus Is Essential for Egress from Infected Cells. J. Virol. 79, 10952–10967.PubMedCrossRefGoogle Scholar
  32. Lagunoff, M., Bechtel, J., Venetsanakos, E., Roy, A. M., Abbey, N., Herndier, B., McMahon, M., and Ganem, D. (2002). De novo infection and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells. J. Virol. 76, 2440–2448.PubMedCrossRefGoogle Scholar
  33. Lake, C. M., Molesworth, S. J., and Hutt-Fletcher, L.M. (1998) The Epstein-Barr Virus (EBV) gN homolog BLRF1 encodes a 15-Kilodalton glycoprotein that cannot be authentically processed unless it is coexpressed with the EBV gM homolog BBRF3. J. Virol. 72, 5559–5564.PubMedGoogle Scholar
  34. Liao, W., Tang, Y., Kuo, Y. L., Liu, B. Y., Xu, C. J., and Giam, C. Z. (2003) Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 transcriptional activator Rta is an oligomeric DNA-binding protein that interacts with tandem arrays of phased A/T-trinucleotide motifs. J. Virol. 77, 9399–9411.PubMedCrossRefGoogle Scholar
  35. Lomonte, P., Filee, P., Lyaku, J. R., Bublot, M., Pastoret, P. P. and Thiry, E. (1997) Analysis of the biochemical properties of, and complex formation between, glycoproteins H and L of the gamma2 herpesvirus bovine herpesvirus-4. J. Gen.Virol. 78, 2015–2023.PubMedGoogle Scholar
  36. Luna, R. E., Zhou, F., Baghian, A., Chouljenko, V., Forghani, B., Gao, S. J., and Kousoulas, K. G. (2004) Kaposi's sarcoma-associated herpesvirus glycoprotein K8.1 is dispensable for virus entry. J. Virol. 78, 6389–6398.PubMedCrossRefGoogle Scholar
  37. Mach, M., Kropff, B., Monte, P. D., and Britt, W. (2000) Complex Formation by Human Cytomegalovirus Glycoproteins M (gpUL100) and N (gpUL73). J. Virol. 74. 11881–11892.PubMedCrossRefGoogle Scholar
  38. Matsumura, S., Fujita, Y., Gomez, E., Tanese., N., and Wilson., A. C. (2005). Activation of the Kaposi's sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J. Virol. 79:8493–8505.PubMedCrossRefGoogle Scholar
  39. Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G., and Baumeister, W. (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science. 298, 1209–1213.PubMedCrossRefGoogle Scholar
  40. Moses, A. V., Fish, K. N., Ruhl, R., Smith, P. P., Strussenberg, J. G., Zhu, L., Chandran, B., and Nelson, J. A. (1999) Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J. Virol. 73, 6892–6902.PubMedGoogle Scholar
  41. Naranatt, P. P., Akula, S. M., and Chandran, B. (2002) Characterization of gamma2-human herpesvirus-8 glycoproteins gH and gL. Arch. Virol. 147, 1349–1370.PubMedCrossRefGoogle Scholar
  42. Naranatt, P. P., Akula, S. M., Zien, C. A., Krishnan, H. H., and Chandran, B. (2003) Kaposi's sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC--MEK-ERK signaling pathway in target cells early during infection: Implications for infectivity. J. Virol. 77, 1524–1539.PubMedCrossRefGoogle Scholar
  43. Naranatt, P. P., Krishnan, H. H., Svojanovsky, S. R., Bloomer, C., Mathur, S., and Chandran B. (2004). Host gene induction and transcriptional reprogramming in Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8)-infected endothelial, fibroblast, and B cells: insights into modulation events early during infection. Cancer Res. 64, 72–84.PubMedCrossRefGoogle Scholar
  44. Naranatt, P. P., Krishnan, H. H., Smith, M. S. and Chandran, B. (2005) Kaposi's sarcoma-associated herpesvirus modulates microtubule dynamics via RhoA-GTP diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus. J. Virol. 79, 1191–1206.PubMedCrossRefGoogle Scholar
  45. Neipel, F., Albrecht, J. C., and Fleckenstein, B. (1997) Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J. Virol. 71, 4187–4192.PubMedGoogle Scholar
  46. Nicola, A. V., Hou, J., Major, E. O., and Straus, S. E. (2005) Herpes Simplex Virus Type 1 Enters Human Epidermal Keratinocytes, but Not Neurons, via a pH-Dependent Endocytic Pathway. J. Virol. 79, 7609–7616.PubMedCrossRefGoogle Scholar
  47. Okuno, T., Jiang, Y. B., Ueda, K., Nishimura, K., Tamura, T., and Yamanishi, K. (2002). Activation of human herpesvirus 8 open reading frame K5 independent of ORF50 expression. Virus Res. 90, 77–89.PubMedCrossRefGoogle Scholar
  48. Palazzo, A. F., Cook, T. A., Alberts, A. S., and Gundersen, G. G. (2001) mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 3, 723–729.PubMedCrossRefGoogle Scholar
  49. Perry, S. T. and Compton, T. (2006) Kaposi’s Sarcoma-Associated Herpesvirus virions inhibit interferon responses induced by envelope glycoprotein gpK8.1 J. Virol. 80, 11105–11114.PubMedCrossRefGoogle Scholar
  50. Poole, L. J., Yu, Y., Kim, P. S., Zheng, Q. Z., Pevsner, J., and Hayward G. S. (2002). Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi’s sarcoma-associated herpesvirus. J. Virol., 76, 3395–3420.PubMedCrossRefGoogle Scholar
  51. Rappocciolo, G., Jenkins, F. J., Hensler, H. R., Piazza, P., Jais, M., Borowski, L. S., Watkins, C., and Rinaldo, C. R. Jr. (2006) DC-SIGN is a receptor for human herpesvirus 8 on dendritic cells and macrophages. J. Immunol. 176, 1741–1749.PubMedGoogle Scholar
  52. Renne, R., Blackbourn, D., Whitby, D., Levy, J., and Ganem, D. (1998) Limited transmission of Kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol. 72, 5182–5188.PubMedGoogle Scholar
  53. Russo, J. J., Bohenzky, R. A., Chien, M. C., Chen, J., Yan, M., Maddalena, D., Parry, J. P., Peruzzi, D., Edelman, I. S., Chang, Y., and Moore, P. S. (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl. Acad. Sci. USA. 93, 14862–14867.Google Scholar
  54. Ryckman, B. J., Jarvis, M. A., Drummond, D. D., Nelson, J. A., Johnson, D. C. (2006) Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J. Virol. 80, 710–722.PubMedCrossRefGoogle Scholar
  55. Sarid, R., Olsen, S. J., and Moore, P. S. (1999) Kaposi's sarcoma-associated herpesvirus: epidemiology, virology, and molecular biology. Adv. Virus Res. 52, 139–232.CrossRefGoogle Scholar
  56. Sastry, S. K., and Burridge, K. (2000) Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell. Res. 261, 25–36.PubMedCrossRefGoogle Scholar
  57. Schulz, T. F., Sheldon, J., and Greensill, J. (2002) Kaposi's sarcoma associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8). Virus. Res. 82, 115–126.PubMedCrossRefGoogle Scholar
  58. Sharma-Walia, N., Krishnan, H. H., Naranatt, P. P., Zeng, L., Smith, M. S., and Chandran, B. (2005) ERK1/2 and MEK1/2 induced by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. J. Virol. 79, 10308–10329.PubMedCrossRefGoogle Scholar
  59. Sharma-Walia, N., Naranatt, P. P., Krishnan, H. H., Zeng, L., and Chandran, B. (2004) Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-Src-phosphatidylinositol 3-kinase rho GTPase signal pathways and cytoskeletal rearrangements. J. Virol. 78, 4207–4223.PubMedCrossRefGoogle Scholar
  60. Sharma-Walia, N., Raghu, H., Sadagopan, S., Sivakumar, R., Veettil, M. V., Naranatt, P. P., Smith, M. M., and Chandran, B. (2006). Cyclooxygenase 2 induced by Kaposi's sarcoma-associated herpesvirus early during in vitro infection of target cells plays a role in the maintenance of latent viral gene expression. J. Virol. 80, 6534–6552.PubMedCrossRefGoogle Scholar
  61. Sieczkarski, S.B. and Whittaker, G.R. (2002) Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis, J. Virol. 76, 10455–10464.PubMedCrossRefGoogle Scholar
  62. Simpson, S. A., Manchak, M.D., Hager, E.J., Krummenacher, C., Whitbeck, J., Levin, M.J., Freed, C.R., Wilcox, C.L., Cohen, G.H., Eisenberg, R. J., Pizer, L.I. (2005) Nectin-1/HveC Mediates herpes simplex virus type-1 entry into primary human sensory neurons and fibroblasts. J Neurovirol. 11: 208–218.PubMedCrossRefGoogle Scholar
  63. Tischer, B., Schumacher, K. D., Messerle, M., Wagner, M. and Osterrieder, N. (2002) The products of the UL10 (gM) and the UL49.5 genes of Marek’s disease virus serotype 1 are essential for virus growth in cultured cells. J. Gen. Virol. 83, 997–1003.PubMedGoogle Scholar
  64. Tomescu, C., Law, W. K., and Kedes, D. H. (2003) Surface downregulation of major histocompatibility complex class I, PE-CAM, and ICAM-1 following de novo infection of endothelial cells with Kaposi's sarcoma-associated herpesvirus. J. Virol. 77, 9669–9684.PubMedCrossRefGoogle Scholar
  65. Veettil, M. V., Sharma-Walia, N., Sadagopan, S., Raghu, H., Sivakumar, R., Naranatt, P. P. and Chandran, B. (2006) RhoA-GTPase Facilitates Entry of Kaposi's Sarcoma-Associated Herpesvirus into adherent target cells in a Src-Dependent Manner. J. Virol. 80, 11432–11446.PubMedCrossRefGoogle Scholar
  66. Vieira, J., Hearn, O., Kimball, L. E., Chandran, B., and Corey, L. (2001) Activation of KSHV (HHV-8) lytic replication by human cytomegalovirus. J. Virol. 75, 1378–1386.PubMedCrossRefGoogle Scholar
  67. Virji, M. (1996) Microbial utilization of human signalling molecules. Microbiology. 142, 3319–3336.PubMedCrossRefGoogle Scholar
  68. Wang, F. Z., Akula, S. M., Pramod, N. P., Zeng, L., and Chandran, B. (2001) Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. J. Virol. 75, 7517–7527.PubMedCrossRefGoogle Scholar
  69. Wang, F. Z., Akula, S. M., Sharma-Walia, N., Zeng, L., and Chandran, B. (2003) Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J. Virol. 77, 3131–3147.PubMedCrossRefGoogle Scholar
  70. Zhu, L., Puri, V., and Chandran, B. (1999a) Characterization of human herpesvirus-8 K8.1A/B glycoproteins by monoclonal antibodies. Virology. 262, 237–249.Google Scholar
  71. Zhu, L., Wang, R., Sweat, A., Goldstein, E., Horvat, R., and Chandran, B. (1999b) Comparison of human sera reactivities in immunoblots with recombinant humanherpesvirus (HHV)-8 proteins associated with the latent (ORF73) and lytic (ORFs 65, K8.1A, and K8.1B) replicative cycles and in immunofluorescence assays with KSHV- infected BCBL-1 cells. Virology. 256, 381–392.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, H.M. Bligh Cancer Research LaboratoriesChicago Medical School, Rosalind Franklin University of Medicine and ScienceNorth ChicagoUSA

Personalised recommendations