Skip to main content

KSHV Entry and Infection of Target Cells

  • Chapter
  • First Online:
DNA Tumor Viruses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akula, S. M., Hurley, D. J., Wixon, R. L., Wang, C. and Chase, C. C. (2002a) Effect of genistein on replication of bovine herpesvirus type 1. Am. J. Vet. Res. 63, 1124–1128.

    Google Scholar 

  • Akula, S. M., Naranatt, P. P., Walia, N. S., Wang, F. Z., Fegley, B., and Chandran, B. (2003) Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J. Virol. 77, 7978–7990.

    Article  PubMed  CAS  Google Scholar 

  • Akula, S. M., Naranatt, P. P., Wang, F. Z. and Chandran, B. (2001a) Human herpesvirus envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology. 284, 235–249.

    Google Scholar 

  • Akula, S. M., Naranatt, P. P., Wang, F. Z., and Chandran, B. (2002b) Integrin α3β1 (CD49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) entry into target cells. Cell. 108, 407–419.

    Google Scholar 

  • Akula, S. M., Wang, F. Z., Vieira, J., and Chandran, B. (2001b) Human herpesvirus 8 interaction with target cells involves heparan sulfate. Virology. 282, 245–255.

    Google Scholar 

  • Antman, K., and Chang, Y. (2000) Kaposi's sarcoma. N. Engl. J. Med. 342, 1027–1038.

    Article  PubMed  CAS  Google Scholar 

  • Baghian, A., Luftig, M., Black, J. B., Meng, Y. X., Pau, C. P., Voss, T., Pellett, P. E., and Kousoulas, K. G. (2000) Glycoprotein B of human herpesvirus 8 is a component of the virion in a cleaved form composed of amino- and carboxyl-terminal fragments. Virology. 269, 18–25.

    Article  PubMed  CAS  Google Scholar 

  • Bechtel, J., Grundhoff, A., and Ganem, D. (2005) RNAs in the Virion of Kaposi's Sarcoma-Associated Herpesvirus. J.Virol. 79, 10138–10146.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood, D. A., Shattil, S. J., and Ginsberg, M. H. (2000) Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275, 22607–22610.

    Article  PubMed  CAS  Google Scholar 

  • Chandran, B., Bloomer, C., Chan, S. R., Zhu, L., Goldstein, E., and Horvat, R. (1998) Human herpesvirus-8 ORF K8.1 gene encodes immunogenic glycoproteins generated by spliced transcripts. Virology. 249, 140–149.

    Article  PubMed  CAS  Google Scholar 

  • Ciufo, D. M., Cannon, J. S., Poole, L. J., Wu, F. Y., Murray, P., Ambinder, R. F., and Hayward, G. S. (2001) Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J. Virol. 75, 5614–5626.

    Article  PubMed  CAS  Google Scholar 

  • Dezube, B. J., Zambela, M., Sage, D. R., Wang, J. F., and Fingeroth, J. D. (2002) Characterization of Kaposi sarcoma-associated herpesvirus/human herpesvirus-8 infection of human vascular endothelial cells: early events. Blood. 100, 888–896.

    Article  PubMed  CAS  Google Scholar 

  • Dourmishev, L. A., Dourmishev, A. L., Palmeri, D., Schwartz, R. A., and Lukac, D. M. (2003) Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 175–212.

    Article  PubMed  CAS  Google Scholar 

  • Fenczik, C. A., Zent, R., Dellos, M., Calderwood, D. A., Satriano, J., Kelly, C. and Ginsberg, M. H. (2001) Distinct domains of CD98hc regulate integrins and amino acid transport. J. Biol. Chem. 276, 8746–8752.

    Article  PubMed  CAS  Google Scholar 

  • Feral, C. C., Nishiya, N., Fenczik, C. A., Stuhlmann, H., Slepak, M., and Ginsberg, M. H. (2005) CD98hc (SLC3A2) mediates integrin signaling. Proc. Natl. Acad. Sci. USA 102, 355–360.

    Google Scholar 

  • Ganem, D. (1998) Human herpesvirus 8 and its role in the genesis of Kaposi's sarcoma. Curr. Clin. Top. Infect. Dis. 18, 237–251.

    PubMed  CAS  Google Scholar 

  • Ganem, D. (2007) Kaposi’s Sarcoma-associated Herpesvirus. In: Fields Virology (Fifth edition), Volume 2, pp. 2875–2888.

    Google Scholar 

  • Gao, S. J., Deng, J. H., and Zhou, F. C. (2003) Productive Lytic Replication of a Recombinant Kaposi's Sarcoma-Associated Herpesvirus in Efficient Primary Infection of Primary Human Endothelial Cells J. Virol. 77, 9738–9749.

    Article  PubMed  CAS  Google Scholar 

  • Gasperini, P., Barbierato, M., Martinelli, C., Rigotti, P., Marchini, F., Masserizzi, G., Leoncini, F., Chieco-Bianchi, L., Schulz, T. F., and Calabro, M. L. (2005) Use of a BJAB-Derived Cell Line for Isolation of Human Herpesvirus 8. J. Clin. Microbiol. 43, 2866–2875.

    Article  PubMed  CAS  Google Scholar 

  • Giancotti, F. G. (2000) Complexity and specificity of integrin signalling. Nat. Cell. Biol. 2, E13–4.

    Article  PubMed  CAS  Google Scholar 

  • Giancotti, F. G., and Ruoslahti, E. (1999) Integrin signaling. Science. 285, 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  • Grundhoff, A., and Ganem, D. (2004) Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J. Clin. Invest. 113, 124–136.

    PubMed  CAS  Google Scholar 

  • Hall, A., and Nobes, C. D. (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355, 965–970.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, N., Winter, J., Lal, R. B., Offermann, M. K., and Koyano, S. (2003) Characterization of entry mechanisms of human herpesvirus 8 by using an Rta-dependent reporter cell line. J. Virol. 77, 8143–8152.

    Google Scholar 

  • Ishizaki, T., Morishima, Y., Okamoto, M., Furuyashiki, T., Kato, T. and Narumiya, S. (2001) Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat. Cell. Biol. 3, 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Kaleeba, J. A., and Berger, E. A. (2006) Kaposi's sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science. 311, 1921–194.

    Article  PubMed  CAS  Google Scholar 

  • King, S. M. (2000). The dynein microtubule motor. Biochim. Biophys. Acta. 1496, 60–75.

    Article  PubMed  CAS  Google Scholar 

  • Koyano, S., Mar, E. C., Stamey, F. R., and Inoue, N. (2003) Glycoproteins M and N of human herpesvirus 8 form a complex and inhibit cell fusion. J. Gen. Virol. 84, 1485–1491.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, H. H., Naranatt, P. P., Smith, M. S., Zeng, L., Bloomer, C., and Chandran, B. (2004) Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi's sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J. Virol. 78, 3601–3620.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, H. H., Sharma-Walia, N., Streblow, D. N., Naranatt, P. P., and Chandran, B. (2006) Focal adhesion kinase is critical for entry of Kaposi’s sarcoma-associated herpesvirus into target cells. J. Virol. 80, 1167–1180.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, H. H., Sharma-Walia, N., Zeng, L., Gao, S. J., and Chandran, B. (2005) Envelope Glycoprotein gB of Kaposi's Sarcoma-Associated Herpesvirus Is Essential for Egress from Infected Cells. J. Virol. 79, 10952–10967.

    Article  PubMed  CAS  Google Scholar 

  • Lagunoff, M., Bechtel, J., Venetsanakos, E., Roy, A. M., Abbey, N., Herndier, B., McMahon, M., and Ganem, D. (2002). De novo infection and serial transmission of Kaposi's sarcoma-associated herpesvirus in cultured endothelial cells. J. Virol. 76, 2440–2448.

    Article  PubMed  CAS  Google Scholar 

  • Lake, C. M., Molesworth, S. J., and Hutt-Fletcher, L.M. (1998) The Epstein-Barr Virus (EBV) gN homolog BLRF1 encodes a 15-Kilodalton glycoprotein that cannot be authentically processed unless it is coexpressed with the EBV gM homolog BBRF3. J. Virol. 72, 5559–5564.

    PubMed  CAS  Google Scholar 

  • Liao, W., Tang, Y., Kuo, Y. L., Liu, B. Y., Xu, C. J., and Giam, C. Z. (2003) Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 transcriptional activator Rta is an oligomeric DNA-binding protein that interacts with tandem arrays of phased A/T-trinucleotide motifs. J. Virol. 77, 9399–9411.

    Article  PubMed  CAS  Google Scholar 

  • Lomonte, P., Filee, P., Lyaku, J. R., Bublot, M., Pastoret, P. P. and Thiry, E. (1997) Analysis of the biochemical properties of, and complex formation between, glycoproteins H and L of the gamma2 herpesvirus bovine herpesvirus-4. J. Gen.Virol. 78, 2015–2023.

    PubMed  CAS  Google Scholar 

  • Luna, R. E., Zhou, F., Baghian, A., Chouljenko, V., Forghani, B., Gao, S. J., and Kousoulas, K. G. (2004) Kaposi's sarcoma-associated herpesvirus glycoprotein K8.1 is dispensable for virus entry. J. Virol. 78, 6389–6398.

    Article  PubMed  CAS  Google Scholar 

  • Mach, M., Kropff, B., Monte, P. D., and Britt, W. (2000) Complex Formation by Human Cytomegalovirus Glycoproteins M (gpUL100) and N (gpUL73). J. Virol. 74. 11881–11892.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, S., Fujita, Y., Gomez, E., Tanese., N., and Wilson., A. C. (2005). Activation of the Kaposi's sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J. Virol. 79:8493–8505.

    Article  PubMed  CAS  Google Scholar 

  • Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G., and Baumeister, W. (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science. 298, 1209–1213.

    Article  PubMed  CAS  Google Scholar 

  • Moses, A. V., Fish, K. N., Ruhl, R., Smith, P. P., Strussenberg, J. G., Zhu, L., Chandran, B., and Nelson, J. A. (1999) Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J. Virol. 73, 6892–6902.

    PubMed  CAS  Google Scholar 

  • Naranatt, P. P., Akula, S. M., and Chandran, B. (2002) Characterization of gamma2-human herpesvirus-8 glycoproteins gH and gL. Arch. Virol. 147, 1349–1370.

    Article  PubMed  CAS  Google Scholar 

  • Naranatt, P. P., Akula, S. M., Zien, C. A., Krishnan, H. H., and Chandran, B. (2003) Kaposi's sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC--MEK-ERK signaling pathway in target cells early during infection: Implications for infectivity. J. Virol. 77, 1524–1539.

    Article  PubMed  CAS  Google Scholar 

  • Naranatt, P. P., Krishnan, H. H., Svojanovsky, S. R., Bloomer, C., Mathur, S., and Chandran B. (2004). Host gene induction and transcriptional reprogramming in Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8)-infected endothelial, fibroblast, and B cells: insights into modulation events early during infection. Cancer Res. 64, 72–84.

    Article  PubMed  CAS  Google Scholar 

  • Naranatt, P. P., Krishnan, H. H., Smith, M. S. and Chandran, B. (2005) Kaposi's sarcoma-associated herpesvirus modulates microtubule dynamics via RhoA-GTP diaphanous 2 signaling and utilizes the dynein motors to deliver its DNA to the nucleus. J. Virol. 79, 1191–1206.

    Article  PubMed  CAS  Google Scholar 

  • Neipel, F., Albrecht, J. C., and Fleckenstein, B. (1997) Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J. Virol. 71, 4187–4192.

    PubMed  CAS  Google Scholar 

  • Nicola, A. V., Hou, J., Major, E. O., and Straus, S. E. (2005) Herpes Simplex Virus Type 1 Enters Human Epidermal Keratinocytes, but Not Neurons, via a pH-Dependent Endocytic Pathway. J. Virol. 79, 7609–7616.

    Article  PubMed  CAS  Google Scholar 

  • Okuno, T., Jiang, Y. B., Ueda, K., Nishimura, K., Tamura, T., and Yamanishi, K. (2002). Activation of human herpesvirus 8 open reading frame K5 independent of ORF50 expression. Virus Res. 90, 77–89.

    Article  PubMed  CAS  Google Scholar 

  • Palazzo, A. F., Cook, T. A., Alberts, A. S., and Gundersen, G. G. (2001) mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 3, 723–729.

    Article  PubMed  CAS  Google Scholar 

  • Perry, S. T. and Compton, T. (2006) Kaposi’s Sarcoma-Associated Herpesvirus virions inhibit interferon responses induced by envelope glycoprotein gpK8.1 J. Virol. 80, 11105–11114.

    Article  PubMed  CAS  Google Scholar 

  • Poole, L. J., Yu, Y., Kim, P. S., Zheng, Q. Z., Pevsner, J., and Hayward G. S. (2002). Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi’s sarcoma-associated herpesvirus. J. Virol., 76, 3395–3420.

    Article  PubMed  CAS  Google Scholar 

  • Rappocciolo, G., Jenkins, F. J., Hensler, H. R., Piazza, P., Jais, M., Borowski, L. S., Watkins, C., and Rinaldo, C. R. Jr. (2006) DC-SIGN is a receptor for human herpesvirus 8 on dendritic cells and macrophages. J. Immunol. 176, 1741–1749.

    PubMed  CAS  Google Scholar 

  • Renne, R., Blackbourn, D., Whitby, D., Levy, J., and Ganem, D. (1998) Limited transmission of Kaposi's sarcoma-associated herpesvirus in cultured cells. J. Virol. 72, 5182–5188.

    PubMed  CAS  Google Scholar 

  • Russo, J. J., Bohenzky, R. A., Chien, M. C., Chen, J., Yan, M., Maddalena, D., Parry, J. P., Peruzzi, D., Edelman, I. S., Chang, Y., and Moore, P. S. (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl. Acad. Sci. USA. 93, 14862–14867.

    Google Scholar 

  • Ryckman, B. J., Jarvis, M. A., Drummond, D. D., Nelson, J. A., Johnson, D. C. (2006) Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J. Virol. 80, 710–722.

    Article  PubMed  CAS  Google Scholar 

  • Sarid, R., Olsen, S. J., and Moore, P. S. (1999) Kaposi's sarcoma-associated herpesvirus: epidemiology, virology, and molecular biology. Adv. Virus Res. 52, 139–232.

    Article  CAS  Google Scholar 

  • Sastry, S. K., and Burridge, K. (2000) Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell. Res. 261, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, T. F., Sheldon, J., and Greensill, J. (2002) Kaposi's sarcoma associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8). Virus. Res. 82, 115–126.

    Article  PubMed  CAS  Google Scholar 

  • Sharma-Walia, N., Krishnan, H. H., Naranatt, P. P., Zeng, L., Smith, M. S., and Chandran, B. (2005) ERK1/2 and MEK1/2 induced by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. J. Virol. 79, 10308–10329.

    Article  PubMed  CAS  Google Scholar 

  • Sharma-Walia, N., Naranatt, P. P., Krishnan, H. H., Zeng, L., and Chandran, B. (2004) Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-Src-phosphatidylinositol 3-kinase rho GTPase signal pathways and cytoskeletal rearrangements. J. Virol. 78, 4207–4223.

    Article  PubMed  CAS  Google Scholar 

  • Sharma-Walia, N., Raghu, H., Sadagopan, S., Sivakumar, R., Veettil, M. V., Naranatt, P. P., Smith, M. M., and Chandran, B. (2006). Cyclooxygenase 2 induced by Kaposi's sarcoma-associated herpesvirus early during in vitro infection of target cells plays a role in the maintenance of latent viral gene expression. J. Virol. 80, 6534–6552.

    Article  PubMed  CAS  Google Scholar 

  • Sieczkarski, S.B. and Whittaker, G.R. (2002) Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis, J. Virol. 76, 10455–10464.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, S. A., Manchak, M.D., Hager, E.J., Krummenacher, C., Whitbeck, J., Levin, M.J., Freed, C.R., Wilcox, C.L., Cohen, G.H., Eisenberg, R. J., Pizer, L.I. (2005) Nectin-1/HveC Mediates herpes simplex virus type-1 entry into primary human sensory neurons and fibroblasts. J Neurovirol. 11: 208–218.

    Article  PubMed  CAS  Google Scholar 

  • Tischer, B., Schumacher, K. D., Messerle, M., Wagner, M. and Osterrieder, N. (2002) The products of the UL10 (gM) and the UL49.5 genes of Marek’s disease virus serotype 1 are essential for virus growth in cultured cells. J. Gen. Virol. 83, 997–1003.

    PubMed  CAS  Google Scholar 

  • Tomescu, C., Law, W. K., and Kedes, D. H. (2003) Surface downregulation of major histocompatibility complex class I, PE-CAM, and ICAM-1 following de novo infection of endothelial cells with Kaposi's sarcoma-associated herpesvirus. J. Virol. 77, 9669–9684.

    Article  PubMed  CAS  Google Scholar 

  • Veettil, M. V., Sharma-Walia, N., Sadagopan, S., Raghu, H., Sivakumar, R., Naranatt, P. P. and Chandran, B. (2006) RhoA-GTPase Facilitates Entry of Kaposi's Sarcoma-Associated Herpesvirus into adherent target cells in a Src-Dependent Manner. J. Virol. 80, 11432–11446.

    Article  PubMed  CAS  Google Scholar 

  • Vieira, J., Hearn, O., Kimball, L. E., Chandran, B., and Corey, L. (2001) Activation of KSHV (HHV-8) lytic replication by human cytomegalovirus. J. Virol. 75, 1378–1386.

    Article  PubMed  CAS  Google Scholar 

  • Virji, M. (1996) Microbial utilization of human signalling molecules. Microbiology. 142, 3319–3336.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F. Z., Akula, S. M., Pramod, N. P., Zeng, L., and Chandran, B. (2001) Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. J. Virol. 75, 7517–7527.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F. Z., Akula, S. M., Sharma-Walia, N., Zeng, L., and Chandran, B. (2003) Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J. Virol. 77, 3131–3147.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, L., Puri, V., and Chandran, B. (1999a) Characterization of human herpesvirus-8 K8.1A/B glycoproteins by monoclonal antibodies. Virology. 262, 237–249.

    Google Scholar 

  • Zhu, L., Wang, R., Sweat, A., Goldstein, E., Horvat, R., and Chandran, B. (1999b) Comparison of human sera reactivities in immunoblots with recombinant humanherpesvirus (HHV)-8 proteins associated with the latent (ORF73) and lytic (ORFs 65, K8.1A, and K8.1B) replicative cycles and in immunofluorescence assays with KSHV- infected BCBL-1 cells. Virology. 256, 381–392.

    Google Scholar 

Download references

Acknowledgment

This study was supported in part by Public Health Service Grants AI057349 and CA 075911, and Rosalind Franklin University of Medicine and Science – H.M. Bligh Cancer Research Fund to BC. We thank Keith Philibert for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Chandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Chandran, B., Sharma-Walia, N. (2009). KSHV Entry and Infection of Target Cells. In: Damania, B., Pipas, J.M. (eds) DNA Tumor Viruses. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68945-6_23

Download citation

Publish with us

Policies and ethics