Skip to main content

Regulation of Expression, Mode of Action and Downstream Targets of ORF50 Protein in KSHV Lytic Cycle Activation

  • Chapter
  • First Online:

Abstract

Kaposi’s sarcoma-associated herpesvirus (KSHV), human herpesvirus 8, is a gamma class herpesvirus associated with at least three human malignancies which are increased in prevalence in patients with HIV/AIDS: Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. In common with all herpesviruses, KSHV can exist in a latent or a lytic state. Since both latent and lytic viral gene products play essential roles in the viral life cycle and in oncogenesis by KSHV, understanding the control of the latent to lytic switch provides important insights into KSHV pathogenesis. The switch between latency and lytic replication of KSHV is initiated by a single multifunctional protein encoded by open reading frame 50 (ORF50) of the viral genome. During latency the ORF50 gene is repressed. When the ORF50 protein, also called RTA (replication and transcription activator) is expressed, it is sufficient to induce the complete viral lytic replication cycle. Here we discuss the regulation of the ORF50 promoter, summarize recent efforts to characterize the molecular actions of ORF50 protein, and describe how viral targets of ORF50 protein may contribute to KSHV replication and pathogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akula SM, Pramod NP, Wang FZ, Chandran B (2001) Human herpesvirus 8 envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology 284: 235–49

    PubMed  CAS  Google Scholar 

  • Albrecht JC, Nicholas J, Biller D, Cameron KR, Biesinger B, Newman C, Wittmann S, Craxton MA, Coleman H, Fleckenstein B, et al. (1992) Primary structure of the herpesvirus saimiri genome. J Virol 66: 5047–58.

    PubMed  CAS  Google Scholar 

  • Alexander L, Denekamp L, Knapp A, Auerbach MR, Damania B, Desrosiers RC (2000) The primary sequence of rhesus monkey rhadinovirus isolate 26– 95: sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J Virol 74: 3388–98

    PubMed  CAS  Google Scholar 

  • Aoki Y, Jaffe ES, Chang Y, Jones K, Teruya-Feldstein J, Moore PS, Tosato G (1999) Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93: 4034–43

    PubMed  CAS  Google Scholar 

  • Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E (1997) Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385: 347–50

    PubMed  CAS  Google Scholar 

  • AuCoin DP, Colletti KS, Cei SA, Papouskova I, Tarrant M, Pari GS (2004) Amplification of the Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (K-bZIP). Virology 318: 542–55

    PubMed  CAS  Google Scholar 

  • Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310: 207–11

    PubMed  CAS  Google Scholar 

  • Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, Asch AS, Cesarman E, Gershengorn MC, Mesri EA (1998) G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391: 86–9

    PubMed  CAS  Google Scholar 

  • Bechtel JT, Winant RC, Ganem D (2005) Host and viral proteins in the virion of Kaposi's sarcoma-associated herpesvirus. J Virol 79: 4952–64

    PubMed  CAS  Google Scholar 

  • Bello LJ, Davison AJ, Glenn MA, Whitehouse A, Rethmeier N, Schulz TF, Barklie Clements J (1999) The human herpesvirus-8 ORF 57 gene and its properties. J Gen Virol 80 ( Pt 12): 3207–15

    PubMed  CAS  Google Scholar 

  • Boshoff C, Endo Y, Collins PD, Takeuchi Y, Reeves JD, Schweickart VL, Siani MA, Sasaki T, williams TJ, Gray PW, Moore PS, Chang Y, Weiss RA (1997) Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 278: 290–94

    PubMed  CAS  Google Scholar 

  • Boshoff C, Schulz TF, Kennedy MM, Graham AK, Fisher C, Thomas A, McGee JO, Weiss RA, O'Leary JJ (1995) Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat Med 1: 1274–8

    PubMed  CAS  Google Scholar 

  • Boshoff C, Weiss RA (1998) Kaposi's sarcoma-associated herpesvirus. Adv Cancer Res 75: 57–86

    PubMed  CAS  Google Scholar 

  • Bowser BS, DeWire SM, Damania B. (2002). Transcriptional regulation of the K1 gene product of Kaposi's sarcoma-associated herpesvirus. J Virol. (24): 12574–83.

    Google Scholar 

  • Bowser BS, Morris S, Song MJ, Sun R, Damania B. (2006) Characterization of Kaposi's sarcoma-associated herpesvirus (KSHV) K1 promoter activation by Rta.Virology. 348(2): 309–27.

    PubMed  CAS  Google Scholar 

  • Burysek L, Yeow WS, Lubyova B, Kellum M, Schafer SL, Huang YQ, Pitha PM (1999) Functional analysis of human herpesvirus 8-encoded viral interferon regulatory factor 1 and its association with cellular interferon regulatory factors and p300. J Virol 73: 7334–42

    PubMed  CAS  Google Scholar 

  • Cai Q, Lan K, Verma SC, Si H, Lin D, Robertson ES (2006) Kaposi's sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: Latency control under low oxygen conditions. J Virol 80: 7965–75

    PubMed  CAS  Google Scholar 

  • Cannon M, Philpott NJ, Cesarman E (2003) The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J Virol 77: 57–67

    PubMed  CAS  Google Scholar 

  • Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995) Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS- related body-cavity-based lymphomas. N Engl J Med 332: 1186–91.

    PubMed  CAS  Google Scholar 

  • Chang H, Gwack Y, Kingston D, Souvlis J, Liang X, Means RE, Cesarman E, Hutt-Fletcher L, Jung JU (2005a) Activation of CD21 and CD23 gene expression by Kaposi's sarcoma-associated herpesvirus RTA. J Virol 79: 4651–63

    Google Scholar 

  • Chang J, Renne R, Dittmer D, Ganem D (2000) Inflammatory cytokines and the reactivation of Kaposi's sarcoma-associated herpesvirus lytic replication. Virology 266: 17–25

    PubMed  CAS  Google Scholar 

  • Chang M, Brown HJ, Collado-Hidalgo A, Arevalo JM, Galic Z, Symensma TL, Tanaka L, Deng H, Zack JA, Sun R, Cole SW (2005b) beta-Adrenoreceptors reactivate Kaposi's sarcoma-associated herpesvirus lytic replication via PKA-dependent control of viral RTA. J Virol 79: 13538–47

    Google Scholar 

  • Chang PJ, Miller G (2004) Autoregulation of DNA binding and protein stability of Kaposi's sarcoma-associated herpesvirus ORF50 protein. J Virol 78: 10657–73

    PubMed  CAS  Google Scholar 

  • Chang PJ, Shedd D, Gradoville L, Cho MS, Chen LW, Chang J, Miller G (2002) Open reading frame 50 protein of Kaposi's sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J Virol 76: 3168–78

    PubMed  CAS  Google Scholar 

  • Chang PJ, Shedd D, Miller G (2005c) Two subclasses of Kaposi's sarcoma-associated herpesvirus lytic cycle promoters distinguished by open reading frame 50 mutant proteins that are deficient in binding to DNA. J Virol 79: 8750–63

    Google Scholar 

  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266: 1865–9

    PubMed  CAS  Google Scholar 

  • Chatterjee M, Osborne J, Bestetti G, Chang Y, Moore PS (2002) Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science 298: 1432–5

    PubMed  CAS  Google Scholar 

  • Chen J, Ueda K, Sakakibara S, Okuno T, Parravicini C, Corbellino M, Yamanishi K (2001) Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci USA 98: 4119–24

    PubMed  CAS  Google Scholar 

  • Chen J, Ueda K, Sakakibara S, Okuno T, Yamanishi K (2000) Transcriptional regulation of the Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor gene. J Virol 74: 8623–34.

    PubMed  CAS  Google Scholar 

  • Choi J, Means RE, Damania B, Jung JU (2001) Molecular piracy of Kaposi's sarcoma associated herpesvirus. Cytokine Growth Factor Rev 12: 245–57

    PubMed  CAS  Google Scholar 

  • Chung YH, Means RE, Choi JK, Lee BS, Jung JU (2002) Kaposi's sarcoma-associated herpesvirus OX2 glycoprotein activates myeloid-lineage cells to induce inflammatory cytokine production. J Virol 76: 4688–98

    PubMed  CAS  Google Scholar 

  • Cohen A, Brodie C, Sarid R (2006) An essential role of ERK signalling in TPA-induced reactivation of Kaposi's sarcoma-associated herpesvirus. J Gen Virol 87: 795–802

    PubMed  CAS  Google Scholar 

  • Coscoy L, Ganem D (2000) Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc Natl Acad Sci U S A 97: 8051–6

    PubMed  CAS  Google Scholar 

  • Coscoy L, Ganem D (2001) A viral protein that selectively downregulates ICAM-1 and B7-2 and modulates T cell costimulation. J Clin Invest 107: 1599–606

    PubMed  CAS  Google Scholar 

  • Curreli F, Cerimele F, Muralidhar S, Rosenthal LJ, Cesarman E, Friedman-Kien AE, Flore O (2002) Transcriptional downregulation of ORF50/Rta by methotrexate inhibits the switch of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 from latency to lytic replication. J Virol 76: 5208–19

    PubMed  CAS  Google Scholar 

  • Dairaghi DJ, Fan RA, McMaster BE, Hanley MR, Schall TJ (1999) HHV8-encoded vMIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J Biol Chem 274: 21569–74

    Google Scholar 

  • Damania B, Jeong JH, Bowser BS, DeWire SM, Staudt MR, Dittmer DP (2004) Comparison of the Rta/Orf50 transactivator proteins of gamma-2-herpesviruses. J Virol 78: 5491–9

    PubMed  CAS  Google Scholar 

  • Davis DA, Rinderknecht AS, Zoeteweij JP, Aoki Y, Read-Connole EL, Tosato G, Blauvelt A, Yarchoan R (2001) Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 97: 3244–50

    PubMed  CAS  Google Scholar 

  • Dela Cruz CS, Lee Y, Viswanathan SR, El-Guindy AS, Gerlach J, Nikiforow S, Shedd D, Gradoville L, Miller G (2004) N-linked glycosylation is required for optimal function of Kaposi's sarcoma herpesvirus-encoded, but not cellular, interleukin 6. J Exp Med 199: 503–14

    PubMed  CAS  Google Scholar 

  • Deng H, Song MJ, Chu JT, Sun R (2002) Transcriptional regulation of the interleukin-6 gene of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus). J Virol 76: 8252–64

    PubMed  CAS  Google Scholar 

  • Deng H, Young A, Sun R (2000) Auto-activation of the rta gene of human herpesvirus-8/Kaposi's sarcoma-associated herpesvirus. J Gen Virol 81 Pt 12: 3043–8.

    Google Scholar 

  • Dittmer D, Lagunoff M, Renne R, Staskus K, Haase A, Ganem D (1998) A cluster of latently expressed genes in Kaposi's sarcoma-associated herpesvirus. J Virol 72: 8309–15.

    PubMed  CAS  Google Scholar 

  • Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM (2003) Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) epidemiology and pathogenesis. Microbiol Mol Biol Reviews 67: 175–212

    CAS  Google Scholar 

  • Ford PW, Bryan BA, Dyson OF, Weidner DA, Chintalgattu V, Akula SM (2006) Raf/MEK/ERK signalling triggers reactivation of Kaposi's sarcoma-associated herpesvirus latency. J Gen Virol 87: 1139–44

    PubMed  CAS  Google Scholar 

  • Gao SJ, Boshoff C, Jayachandra S, Weiss RA, Chang Y, Moore PS (1997) KSHV ORF K9 (vIRF) is an oncogene which inhibits the interferon signaling pathway. Oncogene 15: 1979–85

    PubMed  CAS  Google Scholar 

  • Goudsmit J, Renwick N, Dukers NH, Coutinho RA, Heisterkamp S, Bakker M, Schulz TF, Cornelissen M, Weverling GJ (2000) Human herpesvirus 8 infections in the Amsterdam Cohort Studies (1984–1997): analysis of seroconversions to ORF65 and ORF73. Proc Natl Acad Sci U S A 97: 4838–43

    PubMed  CAS  Google Scholar 

  • Gradoville L, Gerlach J, Grogan E, Shedd D, Nikiforow S, Metroka C, Miller G (2000) Kaposi's sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J Virol 74: 6207–12.

    PubMed  CAS  Google Scholar 

  • Gwack Y, Baek HJ, Nakamura H, Lee SH, Meisterernst M, Roeder RG, Jung JU (2003a) Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi's sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol Cell Biol 23: 2055–67

    Google Scholar 

  • Gwack Y, Byun H, Hwang S, Lim C, Choe J (2001) CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi's sarcoma-associated herpesvirus open reading frame 50. J Virol 75: 1909–17.

    PubMed  CAS  Google Scholar 

  • Gwack Y, Hwang S, Lim C, Won YS, Lee CH, Choe J (2002) Kaposi's Sarcoma-associated herpesvirus open reading frame 50 stimulates the transcriptional activity of STAT3. J Biol Chem 277: 6438–42

    PubMed  CAS  Google Scholar 

  • Gwack Y, Nakamura H, Lee SH, Souvlis J, Yustein JT, Gygi S, Kung HJ, Jung JU (2003b) Poly(ADP-ribose) polymerase 1 and Ste20-like kinase hKFC act as transcriptional repressors for gamma-2 herpesvirus lytic replication. Mol Cell Biol 23: 8282–94

    Google Scholar 

  • Han Z, Swaminathan S (2006) Kaposi's sarcoma-associated herpesvirus lytic gene ORF57 is essential for infectious virion production. J Virol 80: 5251–60

    PubMed  CAS  Google Scholar 

  • Haque M, Chen J, Ueda K, Mori Y, Nakano K, Hirata Y, Kanamori S, Uchiyama Y, Inagi R, Okuno T, Yamanishi K (2000) Identification and analysis of the K5 gene of Kaposi's sarcoma-associated herpesvirus. J Virol 74: 2867–75

    PubMed  CAS  Google Scholar 

  • Haque M, Davis DA, Wang V, Widmer I, Yarchoan R (2003) Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia. J Virol 77: 6761–8

    PubMed  CAS  Google Scholar 

  • Haque M, Ueda K, Nakano K, Hirata Y, Parravicini C, Corbellino M, Yamanishi K (2001) Major histocompatibility complex class I molecules are down-regulated at the cell surface by the K5 protein encoded by Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8. J Gen Virol 82: 1175–80

    PubMed  CAS  Google Scholar 

  • Ishido S, Choi JK, Lee BS, Wang C, DeMaria M, Johnson RP, Cohen GB, Jung JU (2000a) Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein. Immunity 13: 365–74

    Google Scholar 

  • Ishido S, Wang C, Lee BS, Cohen GB, Jung JU (2000b) Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J Virol 74: 5300–9

    Google Scholar 

  • Izumiya Y, Ellison TJ, Yeh ET, Jung JU, Luciw PA, Kung HJ (2005) Kaposi's sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. J Virol 79: 9912–25

    PubMed  CAS  Google Scholar 

  • Izumiya Y, Izumiya C, Van Geelen A, Wang DH, Lam KS, Luciw PA, Kung HJ (2007) Kaposi's sarcoma-associated herpesvirus-encoded protein kinase and its interaction with K-bZIP. J Virol 81: 1072–82

    PubMed  CAS  Google Scholar 

  • Izumiya Y, Lin SF, Ellison T, Chen LY, Izumiya C, Luciw P, Kung HJ (2003a) Kaposi's sarcoma-associated herpesvirus K-bZIP is a coregulator of K-Rta: physical association and promoter-dependent transcriptional repression. J Virol 77: 1441–51

    Google Scholar 

  • Izumiya Y, Lin SF, Ellison TJ, Levy AM, Mayeur GL, Izumiya C, Kung HJ (2003b) Cell cycle regulation by Kaposi's sarcoma-associated herpesvirus K-bZIP: direct interaction with cyclin-CDK2 and induction of G1 growth arrest. J Virol 77: 9652–61

    Google Scholar 

  • Jayachandra S, Low KG, Thlick AE, Yu J, Ling PD, Chang Y, Moore PS (1999) Three unrelated viral transforming proteins (vIRF, EBNA2, and E1A) induce the MYC oncogene through the interferon-responsive PRF element by using different transcription coadaptors. Proc Natl Acad Sci U S A 96: 11566–71

    PubMed  CAS  Google Scholar 

  • Jeong J, Papin J, Dittmer D (2001) Differential regulation of the overlapping Kaposi's sarcoma-associated herpesvirus vGCR (orf74) and LANA (orf73) promoters. J Virol 75: 1798–807

    PubMed  CAS  Google Scholar 

  • Kedes DH, Lagunoff M, Renne R, Ganem D (1997) Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi's sarcoma-associated herpesvirus. J Clin Invest 100: 2606–10.

    PubMed  CAS  Google Scholar 

  • Kirshner JR, Lukac DM, Chang J, Ganem D (2000) Kaposi's sarcoma-associated herpesvirus open reading frame 57 encodes a posttranscriptional regulator with multiple distinct activities. J Virol 74: 3586–97

    PubMed  CAS  Google Scholar 

  • Kirshner JR, Staskus K, Haase A, Lagunoff M, Ganem D (1999) Expression of the open reading frame 74 (G-protein-coupled receptor) gene of Kaposi's sarcoma (KS)-associated herpesvirus: implications for KS pathogenesis. J Virol 73: 6006–14

    PubMed  CAS  Google Scholar 

  • Kliche S, Nagel W, Kremmer E, Atzler C, Ege A, Knorr T, Koszinowski U, Kolanus W, Haas J (2001) Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Mol Cell 7: 833–43

    PubMed  CAS  Google Scholar 

  • Krishnan HH, Naranatt PP, Smith MS, Zeng L, Bloomer C, Chandran B (2004) Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi's sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J Virol 78: 3601–20

    PubMed  CAS  Google Scholar 

  • Krishnan HH, Sharma-Walia N, Streblow DN, Naranatt PP, Chandran B (2006) Focal adhesion kinase is critical for entry of Kaposi's sarcoma-associated herpesvirus into target cells. J Virol 80: 1167–80

    PubMed  CAS  Google Scholar 

  • Krishnan HH, Sharma-Walia N, Zeng L, Gao SJ, Chandran B (2005) Envelope glycoprotein gB of Kaposi's sarcoma-associated herpesvirus is essential for egress from infected cells. J Virol 79: 10952–67

    Google Scholar 

  • Lai EC (2002) Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. EMBO Rep 3: 840–5

    PubMed  CAS  Google Scholar 

  • Lan K, Kuppers DA, Robertson ES (2005) Kaposi's sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jk, the major downstream effector of the Notch signaling pathway. J Virol 79: 3468–78

    PubMed  CAS  Google Scholar 

  • Lan K, Kuppers DA, Verma SC, Robertson ES (2004) Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol 78: 6585–6594

    PubMed  CAS  Google Scholar 

  • Lan K, Murakami M, Choudhuri T, Kuppers DA, Robertson ES (2006) Intracellular-activated Notch1 can reactivate Kaposi's sarcoma-associated herpesvirus from latency. Virology 351: 393–403

    PubMed  CAS  Google Scholar 

  • Li M, Damania B, Alvarez X, Ogryzko V, Ozato K, Jung JU (2000) Inhibition of p300 histone acetyltransferase by viral interferon regulatory factor. Mol Cell Biol 20: 8254–63

    PubMed  CAS  Google Scholar 

  • Li M, Lee H, Guo J, Neipel F, Fleckenstein B, Ozato K, Jung JU (1998) Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor. J Virol 72: 5433–40

    PubMed  CAS  Google Scholar 

  • Li Q, Means R, Lang S, Jung JU (2007) Downregulation of gamma interferon receptor 1 by Kaposi's sarcoma-associated herpesvirus K3 and K5. J Virol 81: 2117–27

    PubMed  CAS  Google Scholar 

  • Liang Y, Chang J, Lynch SJ, Lukac DM, Ganem D (2002) The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jkappa (CSL), the target of the Notch signaling pathway. Genes Dev 16: 1977–89

    PubMed  CAS  Google Scholar 

  • Liang Y, Ganem D (2003) Lytic but not latent infection by Kaposi's sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc Natl Acad Sci U S A 100: 8490–5

    PubMed  CAS  Google Scholar 

  • Liang Y, Ganem D (2004) RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi's sarcoma-associated herpesvirus by the lytic switch protein RTA. J Virol 78: 6818–26

    PubMed  CAS  Google Scholar 

  • Liao W, Tang Y, Kuo YL, Liu BY, Xu CJ, Giam CZ (2003) Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 transcriptional activator Rta is an oligomeric DNA-binding protein that interacts with tandem arrays of phased A/T-trinucleotide motifs. J Virol 77: 9399–411

    PubMed  CAS  Google Scholar 

  • Lin CL, Li H, Wang Y, Zhu FX, Kudchodkar S, Yuan Y (2003) Kaposi's sarcoma-associated herpesvirus lytic origin (ori-Lyt)-dependent DNA replication: identification of the ori-Lyt and association of K8 bZip protein with the origin. J Virol 77: 5578–88

    PubMed  CAS  Google Scholar 

  • Lin R, Genin P, Mamane Y, Sgarbanti M, Battistini A, Harrington WJ, Jr., Barber GN, Hiscott J (2001) HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators. Oncogene 20: 800–11

    PubMed  CAS  Google Scholar 

  • Lin SF, Robinson DR, Miller G, Kung HJ (1999) Kaposi's sarcoma-associated herpesvirus encodes a bZIP protein with homology to BZLF1 of Epstein-Barr virus. J Virol 73: 1909–17.

    PubMed  CAS  Google Scholar 

  • Liu C, Okruzhnov Y, Li H, Nicholas J (2001) Human herpesvirus 8 (HHV-8)-encoded cytokines induce expression of and autocrine signaling by vascular endothelial growth factor (VEGF) in HHV-8-infected primary effusion lymphoma cell lines and mediate VEGF-independent antiapoptotic effects. J Virol 75: 10933–40

    Google Scholar 

  • Lu C, Zeng Y, Huang Z, Huang L, Qian C, Tang G, Qin D (2005a) Human herpesvirus 6 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus. Am J Pathol 166: 173–83

    Google Scholar 

  • Lu F, Day L, Gao SJ, Lieberman PM (2006) Acetylation of the latency-associated nuclear antigen regulates repression of Kaposi's sarcoma-associated herpesvirus lytic transcription. J Virol 80: 5273–82

    PubMed  CAS  Google Scholar 

  • Lu F, Day L, Lieberman PM (2005b) Kaposi's sarcoma-associated herpesvirus virion-induced transcription activation of the ORF50 immediate-early promoter. J Virol 79: 13180–5

    Google Scholar 

  • Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM (2003) Chromatin remodeling of the Kaposi's sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol 77: 11425–35

    PubMed  CAS  Google Scholar 

  • Lukac DM, Garibyan L, Kirshner JR, Palmeri D, Ganem D (2001) Dna binding by kaposi's sarcoma-associated herpesvirus lytic switch protein is necessary for transcriptional activation of two viral delayed early promoters. J Virol 75: 6786–99.

    PubMed  CAS  Google Scholar 

  • Lukac DM, Kirshner JR, Ganem D (1999) Transcriptional activation by the product of open reading frame 50 of Kaposi's sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73: 9348–61.

    PubMed  CAS  Google Scholar 

  • Lukac DM, Renne R, Kirshner JR, Ganem D (1998) Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252: 304–12.

    PubMed  CAS  Google Scholar 

  • Luna RE, Zhou F, Baghian A, Chouljenko V, Forghani B, Gao SJ, Kousoulas KG (2004) Kaposi's sarcoma-associated herpesvirus glycoprotein K8.1 is dispensable for virus entry. J Virol 78: 6389–98

    PubMed  CAS  Google Scholar 

  • Majerciak V, Pripuzova N, McCoy JP, Gao SJ, Zheng ZM (2007) Targeted disruption of Kaposi's sarcoma-associated herpesvirus ORF57 in the viral genome is detrimental for the expression of ORF59, K8alpha, and K8.1 and the production of infectious virus. J Virol 81: 1062–71

    PubMed  CAS  Google Scholar 

  • Malik P, Blackbourn DJ, Cheng MF, Hayward GS, Clements JB (2004a) Functional co-operation between the Kaposi's sarcoma-associated herpesvirus ORF57 and ORF50 regulatory proteins. J Gen Virol 85: 2155–66

    Google Scholar 

  • Malik P, Blackbourn DJ, Clements JB (2004b) The evolutionarily conserved Kaposi's sarcoma-associated herpesvirus ORF57 protein interacts with REF protein and acts as an RNA export factor. J Biol Chem 279: 33001–11

    Google Scholar 

  • Martin DF, Kuppermann BD, Wolitz RA, Palestine AG, Li H, Robinson CA (1999) Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N Engl J Med 340: 1063–70.

    PubMed  CAS  Google Scholar 

  • Matsumura S, Fujita Y, Gomez E, Tanese N, Wilson AC (2005) Activation of the Kaposi's sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol 79: 8493–505

    PubMed  CAS  Google Scholar 

  • McCormick C, Ganem D (2005) The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307: 739–41

    PubMed  CAS  Google Scholar 

  • McCormick C, Ganem D (2006) Phosphorylation and function of the kaposin B direct repeats of Kaposi's sarcoma-associated herpesvirus. J Virol 80: 6165–70

    PubMed  CAS  Google Scholar 

  • Means RE, Lang SM, Jung JU (2007) The Kaposi's sarcoma-associated herpesvirus K5 E3 ubiquitin ligase modulates targets by multiple molecular mechanisms. J Virol 81: 6573–83

    PubMed  CAS  Google Scholar 

  • Mercader M, Taddeo B, Panella JR, Chandran B, Nickoloff BJ, Foreman KE (2000) Induction of HHV-8 lytic cycle replication by inflammatory cytokines produced by HIV-1-infected T cells. Am J Pathol 156: 1961–71

    PubMed  CAS  Google Scholar 

  • Miller G, Heston L, Grogan E, Gradoville L, Rigsby M, Sun R, Shedd D, Kushnaryov VM, Grossberg S, Chang Y (1997) Selective switch between latency and lytic replication of Kaposi's sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol 71: 314–24.

    PubMed  CAS  Google Scholar 

  • Molden J, Chang Y, You Y, Moore PS, Goldsmith MA (1997) A Kaposi's sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit. J Biol Chem 272: 19625–31

    PubMed  CAS  Google Scholar 

  • Monini P, Colombini S, Sturzl M, Goletti D, Cafaro A, Sgadari C, Butto S, Franco M, Leone P, Fais S, Leone P, Melucci-Vigo G, Chiozzini C, Carlini F, Ascherl G, Cornali E, Zietz C, Ramazzotti E, Ensoli F, Andreoni M, Pezzotti P, Rezza G, Yarchoan R, Gallo RC, Ensoli B (1999) Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi's sarcoma. Blood 93: 4044–58

    PubMed  CAS  Google Scholar 

  • Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y, Li Y, Ray PE, Gutkind JS (2003) Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3: 23–36

    PubMed  CAS  Google Scholar 

  • Moore PS, Boshoff C, Weiss RA, Chang Y (1996) Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274: 1739–44

    PubMed  CAS  Google Scholar 

  • Morin KW, Atrazheva ED, Knaus EE, Wiebe LI (1997) Synthesis and cellular uptake of 2'-substituted analogues of (E)-5-(2-[125I]iodovinyl)-2'-deoxyuridine in tumor cells transduced with the herpes simplex type-1 thymidine kinase gene. Evaluation as probes for monitoring gene therapy. J Med Chem 40: 2184–90

    CAS  Google Scholar 

  • Muralidhar S, Pumfery AM, Hassani M, Sadaie MR, Kishishita M, Brady JN, Doniger J, Medveczky P, Rosenthal LJ (1998) Identification of kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) transforming gene. J Virol 72: 4980–8.

    PubMed  CAS  Google Scholar 

  • Muralidhar S, Veytsmann G, Chandran B, Ablashi D, Doniger J, Rosenthal LJ (2000) Characterization of the human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) oncogene, kaposin (ORF K12). J Clin Virol 16: 203–13

    PubMed  CAS  Google Scholar 

  • Nakamura H, Li M, Zarycki J, Jung JU (2001) Inhibition of p53 tumor suppressor by viral interferon regulatory factor. J Virol 75: 7572–82

    PubMed  CAS  Google Scholar 

  • Neipel F, Albrecht JC, Fleckenstein B (1997) Cell-homologous genes in the Kaposi's sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol 71: 4187–92

    PubMed  CAS  Google Scholar 

  • Nekorchuk M, Han Z, Hsieh TT, Swaminathan S (2007) Kaposi's sarcoma-associated herpesvirus ORF57 protein enhances mRNA accumulation independently of effects on nuclear RNA export. J Virol 81: 9990–8

    PubMed  CAS  Google Scholar 

  • Nicholas J, Ruvolo VR, Burns WH, Sandford G, Wan X, Ciufo D, Hendrickson SB, Guo HG, Hayward GS, Reitz MS (1997) Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat Med 3: 287–92.

    PubMed  CAS  Google Scholar 

  • Osborne J, Moore PS, Chang Y (1999) KSHV-encoded viral IL-6 activates multiple human IL-6 signaling pathways. Hum Immunol 60: 921–7

    PubMed  CAS  Google Scholar 

  • Pan H, Xie J, Ye F, Gao SJ (2006) Modulation of Kaposi's sarcoma-associated herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J Virol 80: 5371–82

    PubMed  CAS  Google Scholar 

  • Park J, Seo T, Hwang S, Lee D, Gwack Y, Choe J (2000) The K-bZIP protein from Kaposi's sarcoma-associated herpesvirus interacts with p53 and represses its transcriptional activity. J Virol 74: 11977–82

    Google Scholar 

  • Parravicini C, Chandran B, Corbellino M, Berti E, Paulli M, Moore PS, Chang Y (2000) Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am J Pathol 156: 743–9

    Google Scholar 

  • Pertel PE (2002) Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion. J Virol 76: 4390–400

    PubMed  CAS  Google Scholar 

  • Polson AG, Wang D, DeRisi J, Ganem D (2002) Modulation of host gene expression by the constitutively active G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus. Cancer Res 62: 4525–30

    PubMed  CAS  Google Scholar 

  • Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D (1996) Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2: 342–6.

    PubMed  CAS  Google Scholar 

  • Roan F, Zimring JC, Goodbourn S, Offermann MK (1999) Transcriptional activation by the human herpesvirus-8-encoded interferon regulatory factor. J Gen Virol 80 ( Pt 8): 2205–9

    PubMed  CAS  Google Scholar 

  • Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93: 14862–7

    Google Scholar 

  • Sadler R, Wu L, Forghani B, Renne R, Zhong W, Herndier B, Ganem D (1999) A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi's sarcoma- associated herpesvirus. J Virol 73: 5722–30.

    PubMed  CAS  Google Scholar 

  • Sakakibara S, Ueda K, Chen J, Okuno T, Yamanishi K (2001) Octamer-binding sequence is a key element for the autoregulation of kaposi's sarcoma-associated herpesvirus orf50/lyta gene expression. J Virol 75: 6894–900.

    PubMed  CAS  Google Scholar 

  • Schindler C, Darnell JE, Jr. (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64: 621–51.

    PubMed  CAS  Google Scholar 

  • Seo T, Park J, Lee D, Hwang SG, Choe J (2001) Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus binds to p53 and represses p53-dependent transcription and apoptosis. J Virol 75: 6193–8.

    PubMed  CAS  Google Scholar 

  • Sharma-Walia N, Krishnan HH, Naranatt PP, Zeng L, Smith MS, Chandran B (2005) ERK1/2 and MEK1/2 induced by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. J Virol 79: 10308–29.

    Google Scholar 

  • Sharma-Walia N, Naranatt PP, Krishnan HH, Zeng L, Chandran B (2004) Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-Src-phosphatidylinositol 3-kinase-rho GTPase signal pathways and cytoskeletal rearrangements. J Virol 78: 4207–23.

    PubMed  CAS  Google Scholar 

  • Shepard LW, Yang M, Xie P, Browning DD, Voyno-Yasenetskaya T, Kozasa T, Ye RD (2001) Constitutive activation of NF-kappa B and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus involve G alpha(13) and RhoA. J Biol Chem 276: 45979–87.

    PubMed  CAS  Google Scholar 

  • Shin YC, Nakamura H, Liang X, Feng P, Chang H, Kowalik TF, Jung JU (2006) Inhibition of the ATM/p53 signal transduction pathway by Kaposi's sarcoma-associated herpesvirus interferon regulatory factor 1. J Virol 80: 2257–66.

    PubMed  CAS  Google Scholar 

  • Sodhi A, Chaisuparat R, Hu J, Ramsdell AK, Manning BD, Sausville EA, Sawai ET, Molinolo A, Gutkind JS, Montaner S (2006) The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell 10: 133–43.

    PubMed  CAS  Google Scholar 

  • Sodhi A, Montaner S, Patel V, Gomez-Roman JJ, Li Y, Sausville EA, Sawai ET, Gutkind JS (2004) Akt plays a central role in sarcomagenesis induced by Kaposi's sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci U S A 101: 4821–6.

    PubMed  CAS  Google Scholar 

  • Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, Gutkind JS (2000) The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 60: 4873–80.

    PubMed  CAS  Google Scholar 

  • Song MJ, Brown HJ, Wu TT, Sun R (2001) Transcription activation of polyadenylated nuclear rna by rta in human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus. J Virol 75: 3129–40.

    PubMed  CAS  Google Scholar 

  • Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d'Agay MF, Clauvel JP, Raphael M, Degos L, et al. (1995) Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86: 1276–80.

    PubMed  CAS  Google Scholar 

  • Sun R, Lin SF, Gradoville L, Miller G (1996) Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 93: 11883–8.

    Google Scholar 

  • Sun R, Lin SF, Gradoville L, Yuan Y, Zhu F, Miller G (1998) A viral gene that activates lytic cycle expression of Kaposi's sarcoma- associated herpesvirus. Proc Natl Acad Sci U S A 95: 10866–71.

    Google Scholar 

  • Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G (1999) Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J Virol 73: 2232–42.

    PubMed  CAS  Google Scholar 

  • Ueda K, Ishikawa K, Nishimura K, Sakakibara S, Do E, Yamanishi K (2002) Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) replication and transcription factor activates the K9 (vIRF) gene through two distinct cis elements by a non-DNA-binding mechanism. J Virol 76: 12044–54.

    Google Scholar 

  • Varthakavi V, Browning PJ, Spearman P (1999) Human immunodeficiency virus replication in a primary effusion lymphoma cell line stimulates lytic-phase replication of Kaposi's sarcoma-associated herpesvirus. J Virol 73: 10329–38.

    Google Scholar 

  • Vieira J, O'Hearn P, Kimball L, Chandran B, Corey L (2001) Activation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol 75: 1378–86

    PubMed  CAS  Google Scholar 

  • Virgin HWt, Latreille P, Wamsley P, Hallsworth K, Weck KE, Dal Canto AJ, Speck SH (1997) Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71: 5894–904.

    PubMed  CAS  Google Scholar 

  • Wan X, Wang H, Nicholas J (1999) Human herpesvirus 8 interleukin-6 (vIL-6) signals through gp130 but has structural and receptor-binding properties distinct from those of human IL-6. J Virol 73: 8268–78.

    PubMed  CAS  Google Scholar 

  • Wang FZ, Akula SM, Sharma-Walia N, Zeng L, Chandran B (2003a) Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J Virol 77: 3131–47

    Google Scholar 

  • Wang S, Liu S, Wu M, Geng Y, Wood C (2001a) Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8 ORF50 gene product contains a potent C-terminal activation domain which activates gene expression via a specific target sequence. Arch Virol 146: 1415–26.

    Google Scholar 

  • Wang S, Liu S, Wu MH, Geng Y, Wood C (2001b) Identification of a cellular protein that interacts and synergizes with the RTA (ORF50) protein of Kaposi's sarcoma-associated herpesvirus in transcriptional activation. J Virol 75: 11961–73

    Google Scholar 

  • Wang SE, Wu FY, Chen H, Shamay M, Zheng Q, Hayward GS (2004a) Early activation of the Kaposi's sarcoma-associated herpesvirus RTA, RAP, and MTA promoters by the tetradecanoyl phorbol acetate-induced AP1 pathway. J Virol 78: 4248–67

    Google Scholar 

  • Wang SE, Wu FY, Fujimuro M, Zong J, Hayward SD, Hayward GS (2003b) Role of CCAAT/enhancer-binding protein alpha (C/EBPalpha) in activation of the Kaposi's sarcoma-associated herpesvirus (KSHV) lytic-cycle replication-associated protein (RAP) promoter in cooperation with the KSHV replication and transcription activator (RTA) and RAP. J Virol 77: 600–23.

    Google Scholar 

  • Wang SE, Wu FY, Yu Y, Hayward GS (2003c) CCAAT/enhancer-binding protein-alpha is induced during the early stages of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. J Virol 77: 9590–612.

    Google Scholar 

  • Wang Y, Li H, Chan MY, Zhu FX, Lukac DM, Yuan Y (2004b) Kaposi's sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: cis-acting requirements for replication and ori-Lyt-associated RNA transcription. J Virol 78: 8615–8629.

    Google Scholar 

  • Wang Y, Tang Q, Maul GG, Yuan Y (2006) Kaposi's sarcoma-associated herpesvirus ori-Lyt-dependent DNA replication: dual role of replication and transcription activator. J Virol 80: 12171–86.

    Google Scholar 

  • Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, Muller M, Gaestel M, Resch K, Holtmann H (1999) The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. Embo J 18: 4969–80.

    PubMed  CAS  Google Scholar 

  • Wong EL and Damania B. (2006). Transcriptional regulation of the Kaposi's sarcoma-associated herpesvirus K15 gene.J Virol. 2006 Feb;80(3): 1385–92.

    Google Scholar 

  • Wu FY, Ahn JH, Alcendor DJ, Jang WJ, Xiao J, Hayward SD, Hayward GS (2001) Origin-independent assembly of Kaposi's sarcoma-associated herpesvirus DNA replication compartments in transient cotransfection assays and association with the ORF-K8 protein and cellular PML. J Virol 75: 1487–506.

    PubMed  CAS  Google Scholar 

  • Xu Y, AuCoin DP, Huete AR, Cei SA, Hanson LJ, Pari GS (2005) A Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication. J Virol 79: 3479–87.

    PubMed  CAS  Google Scholar 

  • Yang TY, Chen SC, Leach MW, Manfra D, Homey B, Wiekowski M, Sullivan L, Jenh CH, Narula SK, Chensue SW, Lira SA (2000) Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J Exp Med 191: 445–54.

    PubMed  CAS  Google Scholar 

  • Ye J, Shedd D, Miller G (2005) An Sp1 response element in the Kaposi's sarcoma-associated herpesvirus open reading frame 50 promoter mediates lytic cycle induction by butyrate. J Virol 79: 1397–408.

    PubMed  CAS  Google Scholar 

  • Yu Y, Wang SE, Hayward GS (2005) The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22: 59–70.

    PubMed  CAS  Google Scholar 

  • Zhang J, Wang J, Wood C, Xu D, Zhang L (2005) Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 replication and transcription activator regulates viral and cellular genes via interferon-stimulated response elements. J Virol 79: 5640–52.

    PubMed  CAS  Google Scholar 

  • Zhang L, Chiu J, Lin JC (1998) Activation of human herpesvirus 8 (HHV-8) thymidine kinase (TK) TATAA-less promoter by HHV-8 ORF50 gene product is SP1 dependent. DNA Cell Biol 17: 735–42.

    PubMed  CAS  Google Scholar 

  • Zhong W, Ganem D (1997) Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8). J Virol 71: 1207–12.

    PubMed  CAS  Google Scholar 

  • Zhu J, Trang P, Kim K, Zhou T, Deng H, Liu F (2004) Effective inhibition of Rta expression and lytic replication of Kaposi's sarcoma-associated herpesvirus by human RNase P. Proc Natl Acad Sci U S A 101: 9073–8.

    PubMed  CAS  Google Scholar 

  • Ziegelbauer J, Grundhoff A, Ganem D (2006) Exploring the DNA binding interactions of the Kaposi's sarcoma-associated herpesvirus lytic switch protein by selective amplification of bound sequences in vitro. J Virol 80: 2958–67.

    PubMed  CAS  Google Scholar 

  • Zimring JC, Goodbourn S, Offermann MK (1998) Human herpesvirus 8 encodes an interferon regulatory factor (IRF) homolog that represses IRF-1-mediated transcription. J Virol 72: 701–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories was supported by grants CA16038 and CA12055 from NIH and by a grant CMRPD650012 from Chang-Gung Memorial Hospital (Taiwan) and by a grant NSC95-2320-B-182-054-MY3 from National Science Council (Taiwan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Chang, PJ., Ye, J., Miller, G. (2009). Regulation of Expression, Mode of Action and Downstream Targets of ORF50 Protein in KSHV Lytic Cycle Activation. In: Damania, B., Pipas, J.M. (eds) DNA Tumor Viruses. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68945-6_21

Download citation

Publish with us

Policies and ethics