Advertisement

Transformation by Polyomaviruses

  • Dweepanita Das
  • Michael J. Imperiale
Chapter

Abstract

Polyomaviruses are small DNA tumor viruses that encode tumor antigens which interfere with the two major tumor suppressor pathways, pRB and p53. The viral early proteins have been utilized by researchers as model systems to decipher mechanisms relating to oncogenesis and tumorigenesis. Investigation of molecular mechanisms of these early proteins has contributed significantly to our understanding of cell cycle regulation, cell proliferation and growth, and signal transduction pathways. This chapter discusses the oncoproteins of polyomaviruses and how they induce cellular transformation.

Keywords

Nijmegen Breakage Syndrome Host Cell Protein PP2A Activity Human Mesothelial Cell LXCXE Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the members of our laboratory for valuable suggestions and helpful comments. This work was supported by NIH grant CA118970.

References

  1. Ahuja, D., Saenz-Robles, M. T., and Pipas, J. M. (2005). SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24, 7729–7745.PubMedGoogle Scholar
  2. Ali, S. H., and DeCaprio, J. A. (2001). Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11, 15–23.PubMedGoogle Scholar
  3. Ali, S. H., Kasper, J. S., Arai, T., and DeCaprio, J. A. (2004). Cul7/p185/p193 binding to simian virus 40 large T antigen has a role in cellular transformation. J Virol 78, 2749–2757.PubMedGoogle Scholar
  4. Avantaggiati, M. L., Carbone, M., Graessmann, A., Nakatani, Y., Howard, B., and Levine, A. S. (1996). The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J 15, 2236–2248.PubMedGoogle Scholar
  5. Ballou, L. M., Jeno, P., and Thomas, G. (1988). Protein phosphatase 2A inactivates the mitogen-stimulated S6 kinase from Swiss mouse 3T3 cells. J Biol Chem 263, 1188–1194.PubMedGoogle Scholar
  6. Bargonetti, J., Reynisdottir, I., Friedman, P. N., and Prives, C. (1992). Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev 6, 1886–1898.PubMedGoogle Scholar
  7. Berger, L. C., Smith, D. B., Davidson, I., Hwang, J. J., Fanning, E., and Wildeman, A. G. (1996). Interaction between T antigen and TEA domain of the factor TEF-1 derepresses simian virus 40 late promoter in vitro: identification of T-antigen domains important for transcription control. J Virol 70, 1203–1212.PubMedGoogle Scholar
  8. Bikel, I., Montano, X., Agha, M. E., Brown, M., McCormack, M., Boltax, J., and Livingston, D. M. (1987). SV40 small t antigen enhances the transformation activity of limiting concentrations of SV40 large T antigen. Cell 48, 321–330.PubMedGoogle Scholar
  9. Bocchetta, M., Miele, L., Pass, H. I., and Carbone, M. (2003). Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells. Oncogene 22, 81–90.PubMedGoogle Scholar
  10. Bolen, J. B., Thiele, C. J., Israel, M. A., Yonemoto, W., Lipsich, L. A., and Brugge, J. S. (1984). Enhancement of cellular src gene product associated tyrosyl kinase activity following polyoma virus infection and transformation. Cell 38, 767–777.PubMedGoogle Scholar
  11. Bollag, B., Chuke, W. F., and Frisque, R. J. (1989). Hybrid genomes of the polyomaviruses JC virus, BK virus, and simian virus 40: identification of sequences important for efficient transformation. J Virol 63, 863–872.PubMedGoogle Scholar
  12. Bollag, B., Prins, C., Snyder, E. L., and Frisque, R. J. (2000). Purified JC Virus T and T′ Proteins Differentially Interact with the Retinoblastoma Family of Tumor Suppressor Proteins. Virology 274, 165–178.PubMedGoogle Scholar
  13. Borger, D. R., and DeCaprio, J. A. (2006). Targeting of p300/CREB Binding Protein Coactivators by Simian Virus 40 Is Mediated through p53. J Virol 80, 4292–4303.PubMedGoogle Scholar
  14. Boyapati, A., Wilson, M., Yu, J., and Rundell, K. (2003). SV40 17KT antigen complements dnaj mutations in large T antigen to restore transformation of primary human fibroblasts. Virology 315, 148–158.PubMedGoogle Scholar
  15. Brown, L., Boswell, S., Raj, L., and Lee, S. W. (2007). Transcriptional targets of p53 that regulate cellular proliferation. Crit Rev Eukaryot Gene Expr 17, 73–85.PubMedGoogle Scholar
  16. Brown, M., McCormack, M., Zinn, K. G., Farrell, M. P., Bikel, I., and Livingston, D. M. (1986). A recombinant murine retrovirus for simian virus 40 large T cDNA transforms mouse fibroblasts to anchorage-independent growth. J Virol 60, 290–293.PubMedGoogle Scholar
  17. Cacciotti, P., Libener, R., Betta, P., Martini, F., Porta, C., Procopio, A., Strizzi, L., Penengo, L., Tognon, M., Mutti, L., and Gaudino, G. (2001). SV40 replication in human mesothelial cells induces HGF/Met receptor activation: a model for viral-related carcinogenesis of human malignant mesothelioma. Proc Natl Acad Sci USA 98, 12032–12037.PubMedGoogle Scholar
  18. Cahill, D. P., Lengauer, C., Yu, J., Riggins, G. J., Willson, J. K., Markowitz, S. D., Kinzler, K. W., and Vogelstein, B. (1998). Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303.PubMedGoogle Scholar
  19. Campbell, K. S., Auger, K. R., Hemmings, B. A., Roberts, T. M., and Pallas, D. C. (1995). Identification of regions in polyomavirus middle T and small t antigens important for association with protein phosphatase 2A. J Virol 69, 3721–3728.PubMedGoogle Scholar
  20. Campbell, K. S., Ogris, E., Burke, B., Su, W., Auger, K. R., Druker, B. J., Schaffhausen, B. S., Roberts, T. M., and Pallas, D. C. (1994). Polyoma middle tumor antigen interacts with SHC protein via the NPTY (Asn-Pro-Thr-Tyr) motif in middle tumor antigen. Proc Natl Acad Sci USA 91, 6344–6348.PubMedGoogle Scholar
  21. Carbone, M., and Bedrossian, C. W. (2006). The pathogenesis of mesothelioma. Semin Diagn Pathol 23, 56–60.PubMedGoogle Scholar
  22. Cavender, J. F., Conn, A., Epler, M., Lacko, H., and Tevethia, M. J. (1995). Simian virus 40 large T antigen contains two independent activities that cooperate with a ras oncogene to transform rat embryo fibroblasts. J Virol 69, 923–934.PubMedGoogle Scholar
  23. Chang, L. S., Pan, S., Pater, M. M., and Di Mayorca, G. (1985). Differential requirement for SV40 early genes in immortalization and transformation of primary rat and human embryonic cells. Virology 146, 246–261.PubMedGoogle Scholar
  24. Chang, T. H., Ray, F. A., Thompson, D. A., and Schlegel, R. (1997). Disregulation of mitotic checkpoints and regulatory proteins following acute expression of SV40 large T antigen in diploid human cells. Oncogene 14, 2383–2393.PubMedGoogle Scholar
  25. Chen, J., Tobin, G. J., Pipas, J. M., and Van Dyke, T. (1992). T-antigen mutant activities in vivo: roles of p53 and pRB binding in tumorigenesis of the choroid plexus. Oncogene 7, 1167–1175.PubMedGoogle Scholar
  26. Chen, S., and Paucha, E. (1990). Identification of a region of simian virus 40 large T antigen required for cell transformation. J Virol 64, 3350–3357.PubMedGoogle Scholar
  27. Chen, W., and Hahn, W. C. (2003). SV40 early region oncoproteins and human cell transformation. Histol Histopathol 18, 541–550.PubMedGoogle Scholar
  28. Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., and Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5, 127–136.PubMedGoogle Scholar
  29. Chen, Y., Freund, R., Listerud, M., Wang, Z., and Talmage, D. A. (1999). Retinoic acid inhibits transformation by preventing phosphatidylinositol 3-kinase dependent activation of the c-fos promoter. Oncogene 18, 139–148.PubMedGoogle Scholar
  30. Cheng, S. H., Markland, W., Markham, A. F., and Smith, A. E. (1986). Mutations around the NG59 lesion indicate an active association of polyoma virus middle-T antigen with pp60c-src is required for cell transformation. EMBO J 5, 325–334.PubMedGoogle Scholar
  31. Cho, S., Tian, Y., and Benjamin, T. L. (2001). Binding of p300/CBP Co-activators by Polyoma Large T Antigen. J Biol Chem 276, 33533–33539.PubMedGoogle Scholar
  32. Cho, Y., Gorina, S., Jeffrey, P. D., and Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355.PubMedGoogle Scholar
  33. Christensen, J. B., and Imperiale, M. J. (1995). Inactivation of the retinoblastoma susceptibility protein is not sufficient for the transforming function of the conserved region 2-like domain of simian virus 40 large T antigen. J Virol 69, 3945–3948.PubMedGoogle Scholar
  34. Cotsiki, M., Lock, R. L., Cheng, Y., Williams, G. L., Zhao, J., Perera, D., Freire, R., Entwistle, A., Golemis, E. A., Roberts, T. M., et al. (2004). Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1. Proc Natl Acad Sci USA 101, 947–952.PubMedGoogle Scholar
  35. Courtneidge, S. A. (1985). Activation of the pp60c-src kinase by middle T antigen binding or by dephosphorylation. EMBO J 4, 1471–1477.PubMedGoogle Scholar
  36. Courtneidge, S. A., and Smith, A. E. (1983). Polyoma virus transforming protein associates with the product of the c-src cellular gene. Nature 303, 435–439.PubMedGoogle Scholar
  37. Coutts, A. S., and La Thangue, N. B. (2007). Mdm2 widens its repertoire. Cell Cycle 6, 827–829.PubMedGoogle Scholar
  38. Cullere, X., Rose, P., Thathamangalam, U., Chatterjee, A., Mullane, K. P., Pallas, D. C., Benjamin, T. L., Roberts, T. M., and Schaffhausen, B. S. (1998). Serine 257 phosphorylation regulates association of polyomavirus middle T antigen with 14-3-3 proteins. J Virol 72, 558–563.PubMedGoogle Scholar
  39. Cuzin, F. (1984). The polyoma virus oncogenes. Coordinated functions of three distinct proteins in the transformation of rodent cells in culture. Biochim Biophys Acta 781, 193–204.PubMedGoogle Scholar
  40. de Ronde, A., Sol, C. J., van Strien, A., ter Schegget, J., and van der Noordaa, J. (1989). The SV40 small t antigen is essential for the morphological transformation of human fibroblasts. Virology 171, 260–263.PubMedGoogle Scholar
  41. DeAngelis, T., Chen, J., Wu, A., Prisco, M., and Baserga, R. (2005). Transformation by the simian virus 40 T antigen is regulated by IGF-I receptor and IRS-1 signaling. Oncogene 25, 32–42.Google Scholar
  42. DeCaprio, J. A., Ludlow, J. W., Figge, J., Shew, J. Y., Huang, C. M., Lee, W. H., Marsilio, E., Paucha, E., and Livingston, D. M. (1988). Sv40 Large Tumor-Antigen Forms A Specific Complex With The Product Of The Retinoblastoma Susceptibility Gene. Cell 54, 275–283.PubMedGoogle Scholar
  43. DeGregori, J., and Johnson, D. G. (2006). Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Curr Mol Med 6, 739–748.PubMedGoogle Scholar
  44. Deppert, W., Steinmayer, T., and Richter, W. (1989). Cooperation of SV40 large T antigen and the cellular protein p53 in maintenance of cell transformation. Oncogene 4, 1103–1110.PubMedGoogle Scholar
  45. Dickmanns, A., Zeitvogel, A., Simmersbach, F., Weber, R., Arthur, A. K., Dehde, S., Wildeman, A. G., and Fanning, E. (1994). The kinetics of simian virus 40-induced progression of quiescent cells into S phase depend on four independent functions of large T antigen. J Virol 68, 5496–5508.PubMedGoogle Scholar
  46. Dilworth, S. M. (1990). Cell alterations induced by the large T-antigens of SV40 and polyoma virus. Semin Cancer Biol 1, 407–414.PubMedGoogle Scholar
  47. Dilworth, S. M., Brewster, C. E., Jones, M. D., Lanfrancone, L., Pelicci, G., and Pelicci, P. G. (1994). Transformation by polyoma virus middle T-antigen involves the binding and tyrosine phosphorylation of Shc. Nature 367, 87–90.PubMedGoogle Scholar
  48. Dilworth, S. M., Hansson, H. A., Darnfors, C., Bjursell, G., Streuli, C. H., and Griffin, B. E. (1986). Subcellular localisation of the middle and large T-antigens of polyoma virus. EMBO J 5, 491–499.PubMedGoogle Scholar
  49. Druker, B. J., Sibert, L., and Roberts, T. M. (1992). Polyomavirus middle T-antigen NPTY mutants. J Virol 66, 5770–5776.PubMedGoogle Scholar
  50. Dyson, N., Bernards, R., Friend, S. H., Gooding, L. R., Hassell, J. A., Major, E. O., Pipas, J. M., Vandyke, T., and Harlow, E. (1990). Large T antigens of many polyomaviruses are able to form complexes with the retinoblastoma protein. J Virol 64, 1353–1356.PubMedGoogle Scholar
  51. Dyson, N., Buchkovich, K., Whyte, P., and Harlow, E. (1989a). The cellular 107 K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 58, 249–255.Google Scholar
  52. Eckner, R., Ludlow, J. W., Lill, N. L., Oldread, E., Arany, Z., Modjtahedi, N., DeCaprio, J. A., Livingston, D. M., and Morgan, J. A. (1996). Association of p300 and CBP with simian virus 40 large T antigen. Mol Cell Biol 16, 3454–3464.PubMedGoogle Scholar
  53. Egan, C., Bayley, S. T., and Branton, P. E. (1989). Binding of the Rb1 protein to E1A products is required for adenovirus transformation. Oncogene 4, 383–388.PubMedGoogle Scholar
  54. Egan, C., Jelsma, T. N., Howe, J. A., Bayley, S. T., Ferguson, B., and Branton, P. E. (1988). Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Mol Cell Biol 8, 3955–3959.PubMedGoogle Scholar
  55. Ellman, M., Bikel, I., Figge, J., Roberts, T., Schlossman, R., and Livingston, D. M. (1984). Localization of the simian virus 40 small t antigen in the nucleus and cytoplasm of monkey and mouse cells. J Virol 50, 623–628.PubMedGoogle Scholar
  56. Enam, S., Del Valle, L., Lara, C., Gan, D. D., Ortiz-Hidalgo, C., Palazzo, J. P., and Khalili, K. (2002). Association of human polyomavirus JCV with colon cancer: evidence for interaction of viral T-antigen and beta-catenin. Cancer Res 62, 7093–7101.PubMedGoogle Scholar
  57. Fei, Z. L., D'Ambrosio, C., Li, S., Surmacz, E., and Baserga, R. (1995). Association of insulin receptor substrate 1 with simian virus 40 large T antigen. Mol Cell Biol 15, 4232–4239.PubMedGoogle Scholar
  58. Felsani, A., Mileo, A. M., and Paggi, M. G. (2006). Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 25, 5277–5285.PubMedGoogle Scholar
  59. Foddis, R., De Rienzo, A., Broccoli, D., Bocchetta, M., Stekala, E., Rizzo, P., Tosolini, A., Grobelny, J. V., Jhanwar, S. C., Pass, H. I., et al. (2002). SV40 infection induces telomerase activity in human mesothelial cells. Oncogene 21, 1434–1442.PubMedGoogle Scholar
  60. Freund, R., Bronson, R. T., and Benjamin, T. L. (1992). Separation of immortalization from tumor induction with polyoma large T mutants that fail to bind the retinoblastoma gene product. Oncogene 7, 1979–1987.PubMedGoogle Scholar
  61. Fromm, L., Shawlot, W., Gunning, K., Butel, J. S., and Overbeek, P. A. (1994). The Retinoblastoma Protein-Binding Region Of Simian-Virus-40 Large T-Antigen Alters Cell-Cycle Regulation In Lenses Of Transgenic Mice. Mol Cell Biol 14, 6743–6754.PubMedGoogle Scholar
  62. Gan, D.-D., Reiss, K., Carrill, T., Del Valle, L., Croul, S., Giordano, A., Fishman, P., and Khalili, K. (2001). Involvement of Wnt signaling pathway in murine medulloblastoma induced by human neurotropic JC virus. Oncogene 20, 4864–4870.PubMedGoogle Scholar
  63. Gan, D. D., and Khalili, K. (2004). Interaction between JCV large T-antigen and beta-catenin. Oncogene 23, 483–490.PubMedGoogle Scholar
  64. Gardner, S. D., Field, A. M., Coleman, D. V., and Hulme, B. (1971). New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 1, 1253–1257.PubMedGoogle Scholar
  65. Garimella, R., Liu, X., Qiao, W., Liang, X., Zuiderweg, E. R. P., Riley, M. I., and VanDoren, S. R. (2006). Hsc70 Contacts Helix III of the J Domain from Polyomavirus T Antigens: Addressing a Dilemma in the Chaperone Hypothesis of How They Release E2F from pRb. Biochemistry 45, 6917–6929.PubMedGoogle Scholar
  66. Genovese, C., Trani, D., Caputi, M., and Claudio, P. P. (2006). Cell cycle control and beyond: emerging roles for the retinoblastoma gene family. Oncogene 25, 5201–5209.PubMedGoogle Scholar
  67. Giacinti, C., and Giordano, A. (2006). RB and cell cycle progression. Oncogene 25, 5220–5227.PubMedGoogle Scholar
  68. Glenn, G. M., and Eckhart, W. (1995). Amino-terminal regions of polyomavirus middle T antigen are required for interactions with protein phosphatase 2A. J Virol 69, 3729–3736.PubMedGoogle Scholar
  69. Glover, H. R., Brewster, C. E., and Dilworth, S. M. (1999). Association between src-kinases and the polyoma virus oncogene middle T-antigen requires PP2A and a specific sequence motif. Oncogene 18, 4364–4370.PubMedGoogle Scholar
  70. Goodman, R. H., and Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev 14, 1553–1577.PubMedGoogle Scholar
  71. Gottlieb, K. A., and Villarreal, L. P. (2001). Natural biology of polyomavirus middle T antigen. Microb Mol Biol Rev 65, 288–318.Google Scholar
  72. Gross, L. (1953). A filterable agent, recovered from Ak leukemic extracts causing salivary gland carcinomas in C311 mice. Proceedings of the Society for Experimental Biology and Medicine 83, 414–421.PubMedGoogle Scholar
  73. Gruda, M. C., Zabolotny, J. M., Xiao, J. H., Davidson, I., and Alwine, J. C. (1993). Transcriptional activation by simian virus 40 large T antigen: interactions with multiple components of the transcription complex. Mol Cell Biol 13, 961–969.PubMedGoogle Scholar
  74. Grussenmeyer, T., Carbone-Wiley, A., Scheidtmann, K. H., and Walter, G. (1987). Interactions between polyomavirus medium T antigen and three cellular proteins of 88, 61, and 37 kilodaltons. J Virol 61, 3902–3909.PubMedGoogle Scholar
  75. Habel, K. (1965). Specific complement-fixing antigens in polyoma tumors and transformed cells. Virology 25, 55–61.PubMedGoogle Scholar
  76. Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W., and Weinberg, R. A. (1999). Creation of human tumour cells with defined genetic elements. Nature 400, 464–468.PubMedGoogle Scholar
  77. Hahn, W. C., Dessain, S. K., Brooks, M. W., King, J. E., Elenbaas, B., Sabatini, D. M., DeCaprio, J. A., and Weinberg, R. A. (2002). Enumeration of the Simian Virus 40 Early Region Elements Necessary for Human Cell Transformation. Mol Cell Biol 22, 2111–2123.PubMedGoogle Scholar
  78. Hahn, W. C., and Weinberg, R. A. (2002). Modelling the molecular circuitry of cancer. Nat Rev Cancer 2, 331–341.PubMedGoogle Scholar
  79. Harris, K. F., Chang, E., Christensen, J. B., and Imperiale, M. J. (1998a). BK virus as a Potential Co-factor in Human Cancer. Dev Biol Stand 94, 81–91.Google Scholar
  80. Harris, K. F., Christensen, J. B., and Imperiale, M. J. (1996). BK virus large T antigen: Interactions with the retinoblastoma family of tumor suppressor proteins and effects on cellular growth control. J Virol 70, 2378–2386.PubMedGoogle Scholar
  81. Harris, K. F., Christensen, J. B., Radany, E. H., and Imperiale, M. J. (1998b). Novel mechanisms of E2F induction by BK virus large-T antigen: Requirement of both the pRb-binding and the J domains. Mol Cell Biol 18, 1746–1756.Google Scholar
  82. Hayflick, L., and Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585–621.Google Scholar
  83. Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991). p53 mutations in human cancers. Science 253, 49–53.PubMedGoogle Scholar
  84. Holman, P. S., Gjoerup, O. V., Davin, T., and Schaffhausen, B. S. (1994). Characterization of an immortalizing N-terminal domain of polyomavirus large T antigen. J Virol 68, 668–673.PubMedGoogle Scholar
  85. Howard, C. M., Claudio, P. P., Gallia, G. L., Gordon, J., Giordano, G. G., Hauck, W. W., Khalili, K., and Giordano, A. (1998). Retinoblastoma-related protein pRb2/p130 and suppression of tumor growth in vivo. J Natl Cancer Inst 90, 1451–1460.PubMedGoogle Scholar
  86. Ichaso, N., and Dilworth, S. M. (2001). Cell transformation by the middle T-antigen of polyoma virus. Oncogene 20, 7908–7916.PubMedGoogle Scholar
  87. Imperiale, M. J., and Major, E. O. (2007). Polyomaviruses, In Fields Virology, D. M. Knipe, and P. M. Howley, eds. (Philadelphia: Lippincott Williams & Wilkins), pp. 2263–2298.Google Scholar
  88. Ito, Y., Brocklehurst, J. R., and Dulbecco, R. (1977). Virus-specific proteins in the plasma membrane of cells lytically infected or transformed by polyoma virus. Proc Natl Acad Sci USA 74, 4666–4670.PubMedGoogle Scholar
  89. Janssens, V., and Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353, 417–439.PubMedGoogle Scholar
  90. Jha, K. K., Banga, S., Palejwala, V., and Ozer, H. L. (1998). SV40-Mediated immortalization. Exp Cell Res 245, 1–7.PubMedGoogle Scholar
  91. Jiang, D., Srinivasan, A., Lozano, G., and Robbins, P. D. (1993). SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene 8, 2805–2812.PubMedGoogle Scholar
  92. Kalderon, D., and Smith, A. E. (1984). In vitro mutagenesis of a putative DNA binding domain of SV40 large-T. Virology 139, 109–137.PubMedGoogle Scholar
  93. Kasper, J. S., Kuwabara, H., Arai, T., Ali, S. H., and DeCaprio, J. A. (2005). Simian virus 40 large T antigen's association with the CUL7 SCF complex contributes to cellular transformation. J Virol 79, 11685–11692.PubMedGoogle Scholar
  94. Kim, S. H., Banga, S., Jha, K. K., and Ozer, H. L. (1998). SV40-mediated transformation and immortalization of human cells. Dev Biol Stand 94, 297–302.PubMedGoogle Scholar
  95. Kim, S. H., Roth, K. A., Coopersmith, C. M., Pipas, J. M., and Gordon, J. I. (1994). Expression of wild-type and mutant simian virus 40 large tumor antigens in villus-associated enterocytes of transgenic mice. Proc Natl Acad Sci USA 91, 6914–6918.PubMedGoogle Scholar
  96. Kohrman, D. C., and Imperiale, M. J. (1992). Simian virus 40 large T antigen stably complexes with a 185-kilodalton host protein. J Virol 66, 1752–1760.PubMedGoogle Scholar
  97. Kriegler, M., Perez, C. F., Hardy, C., and Botchan, M. (1984). Transformation mediated by the SV40 T antigens: separation of the overlapping SV40 early genes with a retroviral vector. Cell 38, 483–491.PubMedGoogle Scholar
  98. Krynska, B., Gordon, J., Otte, J., Franks, R., Knobler, R., DeLuca, A., Giordano, A., and Khalili, K. (1997). Role of cell cycle regulators in tumor formation in transgenic mice expressing the human neurotropic virus, JCV, early protein. J Cell Biochem 67, 223–230.PubMedGoogle Scholar
  99. Land, H., Parada, L. F., and Weinberg, R. A. (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602.PubMedGoogle Scholar
  100. Lane, D. P., and Crawford, L. V. (1979). T-Antigen Is Bound To A Host Protein In Sv40-Transformed Cells. Nature 278, 261–263.PubMedGoogle Scholar
  101. Lanson, N. A. J., Egeland, D. B., Royals, B. A., and Claycomb, W. C. (2000). The MRE11-NBS1-RAD50 pathway is perturbed in SV40 large T antigen-immortalized AT-1, AT-2 and HL-1 cardiomyocytes. Nucleic Acids Res 28, 2882–2892.PubMedGoogle Scholar
  102. Larose, A., Dyson, N., Sullivan, M., Harlow, E., and Bastin, M. (1991). Polyomavirus large T mutants affected in retinoblastoma protein binding are defective in immortalization. J Virol 65, 2308–2313.PubMedGoogle Scholar
  103. Lassak, A., Del Valle, L., Peruzzi, F., Wang, J. Y., Enam, S., Croul, S., Khalili, K., and Reiss, K. (2002). Insulin Receptor Substrate 1 Translocation to the Nucleus by the Human JC Virus T-antigen. J Biol Chem 277, 17231–17238.PubMedGoogle Scholar
  104. Laviola, L., Natalicchio, A., and Giorgino, F. (2007). The IGF-I signaling pathway. Curr Pharm Des 13, 663–669.PubMedGoogle Scholar
  105. Lazutka, J. R., Neel, J. V., Major, E. O., Dedonyte, V., Mierauskine, J., Slapsyte, G., and Kesminiene, A. (1996). High titers of antibodies to two human polyomaviruses, JCV and BKV, correlate with increased frequency of chromosomal damage in human lymphocytes. Cancer Lett 109, 177–183.PubMedGoogle Scholar
  106. Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell 88, 323–331.PubMedGoogle Scholar
  107. Lill, N. L., Tevethia, M. J., Eckner, R., Livingston, D. M., and Modjtahedi, N. (1997). p300 family members associate with the carboxyl terminus of simian virus 40 large tumor antigen. J Virol 71, 129–137.PubMedGoogle Scholar
  108. Lilyestrom, W., Klein, M. G., Zhang, R., Joachimiak, A., and Chen, X. S. (2006). Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor. Genes Dev 20, 2373–2382.PubMedGoogle Scholar
  109. Linzer, D. I. H., and Levine, A. J. (1979). Characterization Of A 54 k Dalton Cellular Sv40 Tumor-Antigen Present In Sv40-Transformed Cells And Uninfected Embryonal Carcinoma-Cells. Cell 17, 43–52.PubMedGoogle Scholar
  110. Lomax, M., and Fried, M. (2001). Polyoma virus disrupts ARF signaling to p53. Oncogene 20, 4951–4960.PubMedGoogle Scholar
  111. Ludlow, J. W., Decaprio, J. A., Huang, C. M., Lee, W. H., Paucha, E., and Livingston, D. M. (1989). SV40 Large T-Antigen Binds Preferentially To An Underphosphorylated Member Of The Retinoblastoma Susceptibility Gene-Product Family. Cell 56, 57–65.PubMedGoogle Scholar
  112. Ludlow, J. W., Shon, J., Pipas, J. M., Livingston, D. M., and Decaprio, J. A. (1990). The Retinoblastoma Susceptibility Gene-Product Undergoes Cell Cycle-Dependent Dephosphorylation And Binding To And Release From Sv40 Large-T. Cell 60, 387–396.PubMedGoogle Scholar
  113. Marcellus, R., Whitfield, J. F., and Raptis, L. (1991). Polyoma virus middle tumor antigen stimulates membrane-associated protein kinase C at lower levels than required for phosphatidylinositol kinase activation and neoplastic transformation. Oncogene 6, 1037–1040.PubMedGoogle Scholar
  114. Markland, W., Oostra, B. A., Harvey, R., Markham, A. F., Colledge, W. H., and Smith, A. E. (1986). Site-directed mutagenesis of polyomavirus middle-T antigen sequences encoding tyrosine 315 and tyrosine 250. J Virol 59, 384–391.PubMedGoogle Scholar
  115. Markland, W., and Smith, A. E. (1987). Mutants of polyomavirus middle-T antigen. Biochim Biophys Acta 907, 299–321.PubMedGoogle Scholar
  116. Mateer, S. C., Fedorov, S. A., and Mumby, M. C. (1998). Identification of structural elements involved in the interaction of simian virus 40 small tumor antigen with protein phosphatase 2A. J Biol Chem 273, 35339–35346.PubMedGoogle Scholar
  117. Michael-Michalovitz, D., Yehiely, F., Gottlieb, E., and Oren, M. (1991). Simian virus 40 can overcome the antiproliferative effect of wild-type p53 in the absence of stable large T antigen-p53 binding. Journal of Virology 65, 4160–4168.PubMedGoogle Scholar
  118. Mor, O., Read, M., and Fried, M. (1997). p53 in polyoma virus transformed REF52 cells. Oncogene 15, 3113–3119.PubMedGoogle Scholar
  119. Moule, M. G., Collins, C. H., McCormick, F., and Fried, M. (2004). Role for PP2A in ARF signaling to p53. Proc Natl Acad Sci USA 101, 14063–14066.PubMedGoogle Scholar
  120. Mungre, S., Enderle, K., Turk, B., Porrás, A., Wu, Y. Q., Mumby, M. C., and Rundell, K. (1994). Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation. J Virol 68, 1675–1681.PubMedGoogle Scholar
  121. Nemethova, M., Smutny, M., and Wintersberger, E. (2004). Transactivation of E2F-regulated genes by polyomavirus large T antigen: evidence for a two-step mechanism. Mol Cell Biol 24, 10986–10994.PubMedGoogle Scholar
  122. Nevins, J. R. (2001). The Rb/E2F pathway and cancer. Hum Mol Genet 10, 699–703.PubMedGoogle Scholar
  123. Newbold, R. F., and Overell, R. W. (1983). Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature 304, 648–651.PubMedGoogle Scholar
  124. Newbold, R. F., Overell, R. W., and Connell, J. R. (1982). Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens. Nature 299, 633–635.PubMedGoogle Scholar
  125. O'Shea, C. C. (2005a). DNA tumor viruses – the spies who lyse us. Curr Opin Genet Dev 15, 18–26.Google Scholar
  126. O'Shea, C. C. (2005b). Viruses – seeking and destroying the tumor program. Oncogene 24, 7640–7655.Google Scholar
  127. O'Shea, C. C., and Fried, M. (2005). Modulation of the ARF-p53 pathway by the small DNA tumor viruses. Cell Cycle 4, 449–452.PubMedGoogle Scholar
  128. Oren, M., Maltzman, W., and Levine, A. J. (1981). Post-translational regulation of the 54 K cellular tumor antigen in normal and transformed cells. Mol Cell Biol 1, 101–110.PubMedGoogle Scholar
  129. Ozer, H. L. (2000). SV40-mediated immortalization. Prog Mol Subcell Biol 24, 121–153.PubMedGoogle Scholar
  130. Ozer, H. L., Banga, S. S., Dasgupta, T., Houghton, J., Hubbard, K., Jha, K. K., Kim, S. H., Lenahan, M., Pang, Z., Pardinas, J. R., and Patsalis, P. C. (1996). SV40–mediated immortalization of human fibroblasts. Exp Gerontol 31, 303–310.PubMedGoogle Scholar
  131. Padgett, B. L., Walker, D. L., ZuRhein, G. M., Eckroade, R. J., and Dessel, B. H. (1971). Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1, 1257–1260.PubMedGoogle Scholar
  132. Pallas, D. C., Fu, H., Haehnel, L. C., Weller, W., Collier, R. J., and Roberts, T. M. (1994). Association of polyomavirus middle tumor antigen with 14-3-3 proteins. Science 265, 535–537.PubMedGoogle Scholar
  133. Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., and Roberts, T. M. (1990). Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60, 167–176.PubMedGoogle Scholar
  134. Peden, K. W., Srinivasan, A., Farber, J. M., and Pipas, J. M. (1989). Mutants with changes within or near a hydrophobic region of simian virus 40 large tumor antigen are defective for binding cellular protein p53. Virology 168, 13–21.PubMedGoogle Scholar
  135. Peden, K. W., Srinivasan, A., Vartikar, J. V., and Pipas, J. M. (1998). Effects of mutations within the SV40 large T antigen ATPase/p53 binding domain on viral replication and transformation. Virus Genes 16, 153–165.PubMedGoogle Scholar
  136. Peifer, M., and Polakis, P. (2000). Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287, 1606–1609.PubMedGoogle Scholar
  137. Pilon, A. A., Desjardins, P., Hassell, J. A., and Mes-Masson, A. M. (1996). Functional implications of mutations within polyomavirus large T antigen Rb-binding domain: effects on pRb and p107 binding in vitro and immortalization activity in vivo. J Virol 70, 4457–4465.PubMedGoogle Scholar
  138. Pipas, J. M. (1992). Common and unique features of T antigens encoded by the polyomavirus group. J Virol 66, 3979–3985.PubMedGoogle Scholar
  139. Pipas, J. M., Peden, K. W., and Nathans, D. (1983). Mutational analysis of simian virus 40 T antigen: isolation and characterization of mutants with deletions in the T antigen gene. Mol Cell Biol 3, 203–213.PubMedGoogle Scholar
  140. Polakis, P. (2007). The many ways of Wnt in cancer. Curr Opin Genet Dev 17, 45–51.PubMedGoogle Scholar
  141. Porcu, P., Ferber, A., Pietrzkowski, Z., Roberts, C. T., Adamo, M., LeRoith, D., and Baserga, R. (1992). The growth-stimulatory effect of simian virus 40 T antigen requires the interaction of insulinlike growth factor 1 with its receptor. Mol Cell Biol 12, 5069–5077.PubMedGoogle Scholar
  142. Porras, A., Bennett, J., Howe, A., Tokos, K., Bouck, N., Henglein, B., Sathyamangalam, S., Thimmapaya, B., and Rundell, K. (1996). A novel simian virus 40 early-region domain mediates transactivation of the cyclin A promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. J Virol 70, 6902–6908.PubMedGoogle Scholar
  143. Poulin, D. L., Kung, A. L., and DeCaprio, J. A. (2004). p53 Targets Simian Virus 40 Large T Antigen for Acetylation by CBP. J Virol 78, 8245–8253.PubMedGoogle Scholar
  144. Quartin, R. S., Cole, C. N., Pipas, J. M., and Levine, A. J. (1994). The amino-terminal functions of the simian virus 40 large T antigen are required to overcome wild-type p53-mediated growth arrest of cells. J Virol 68, 1334–1341.PubMedGoogle Scholar
  145. Rassoulzadegan, M., Cowie, A., Carr, A., Glaichenhaus, N., Kamen, R., and Cuzin, F. (1982). The roles of individual polyoma virus early proteins in oncogenic transformation. Nature 300, 713–718.PubMedGoogle Scholar
  146. Ray, F. A., Peabody, D. S., Cooper, J. L., Gram, L. S., and Kraemer, P. M. (1990). SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts. J Cell Biochem 42, 13–31.PubMedGoogle Scholar
  147. Reiss, K., Khalili, K., Giordano, A., and Trojanek, J. (2006). JC virus large T-antigen and IGF-I signaling system merge to affect DNA repair and genomic integrity. J Cell Physiol 206, 295–300.PubMedGoogle Scholar
  148. Riley, M. I., Yoo, W., Mda, N. Y., and Folk, W. R. (1997). Tiny T antigen: an autonomous polyomavirus T antigen amino-terminal domain. J Virol 71, 6068–6074.PubMedGoogle Scholar
  149. Rizzo, P., Bocchetta, M., Powers, A., Foddis, R., Stekala, E., Pass, H. I., and Carbone, M. (2001). SV40 and the pathogenesis of mesothelioma. Semin Cancer Biol 11, 63–71.PubMedGoogle Scholar
  150. Ru, H. Y., Chen, R. L., Lu, W. C., and Chen, J. H. (2002). hBUB1 defects in leukemia and lymphoma cells. Oncogene 21, 4673–4679.PubMedGoogle Scholar
  151. Ruediger, R., Roeckel, D., Fait, J., Bergqvist, A., Magnusson, G., and Walter, G. (1992). Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol 12, 4872–4882.PubMedGoogle Scholar
  152. Rundell, K., Gaillard, S., and Porras, A. (1998). Small-t and large-T antigens cooperate to drive cell proliferation. Dev Biol Stand 94, 289–295.PubMedGoogle Scholar
  153. Rundell, K., Major, E. O., and Lampert, M. (1981). Association of cellular 56,000- and 32,000-molecular-weight protein with BK virus and polyoma virus t-antigens. J Virol 37, 1090–1093.PubMedGoogle Scholar
  154. Rutila, J. E., Imperiale, M. J., and Brockman, W. W. (1986). Replication and transformation functions of in vitro-generated simian virus 40 large T antigen mutants. J Virol 58, 526–535.PubMedGoogle Scholar
  155. Ryan, Q. C., Goonewardene, I. M., and Murasko, D. M. (1992). Extension of lifespan of human T lymphocytes by transfection with SV40 large T antigen. Exp Cell Res 199, 387–391.PubMedGoogle Scholar
  156. Sachsenmeier, K. F., and Pipas, J. M. (2001). Inhibition of Rb and p53 is insufficient for SV40 T-antigen transformation. Virology 283, 40–48.PubMedGoogle Scholar
  157. Sáenz-Robles, M. T., Sullivan, C. S., and Pipas, J. M. (2001). Transforming functions of Simian Virus 40. Oncogene 20, 7899–7907.PubMedGoogle Scholar
  158. Sager, R., Tanaka, K., Lau, C. C., Ebina, Y., and Anisowicz, A. (1983). Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proc Natl Acad Sci USA 80, 7601–7605.PubMedGoogle Scholar
  159. Sell, C., Rubini, M., Rubin, R., Liu, J. P., Efstratiadis, A., and Baserga, R. (1993). Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor. Proc Natl Acad Sci USA 90, 11217–11221.PubMedGoogle Scholar
  160. Sheng, Q., Denis, D., Ratnofsky, M., Roberts, T. M., DeCaprio, J. A., and Schaffhausen, B. (1997). The DnaJ domain of polyomavirus large T antigen is required to regulate Rb family tumor suppressor function. J Virol 71, 9410–9416.PubMedGoogle Scholar
  161. Sheppard, H. M., Corneillie, S. I., Espiritu, C., Gatti, A., and Liu, X. (1999). New insights into the mechanism of inhibition of p53 by simian virus 40 large T antigen. Mol Cell Biol 19, 2746–2753.PubMedGoogle Scholar
  162. Sherr, C. J. (1998). Tumor surveillance via the ARF-p53 pathway. Genes Dev 12, 2984–2991.PubMedGoogle Scholar
  163. Sherr, C. J. (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6, 663–673.PubMedGoogle Scholar
  164. Shichiri, M., Yoshinaga, K., Hisatomi, H., Sugihara, K., and Hirata, Y. (2002). Genetic and epigenetic inactivation of mitotic checkpoint genes hBUB1 and hBUBR1 and their relationship to survival. Cancer Res 62, 13–17.PubMedGoogle Scholar
  165. Shimazu, T., Komatsu, Y., Nakayama, K. I., Fukazawa, H., Horinouchi, S., and Yoshida, M. (2006). Regulation of SV40 large T-antigen stability by reversible acetylation. Oncogene 25, 7391–7400.PubMedGoogle Scholar
  166. Skoczylas, C., Fahrbach, K. M., and Rundell, K. (2004). Cellular targets of the SV40 small-t antigen in human cell transformation. Cell Cycle 3, 606–610.PubMedGoogle Scholar
  167. Sontag, E. (2001). Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell Signal 13, 7–16.PubMedGoogle Scholar
  168. Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., and Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell 75, 887–897.PubMedGoogle Scholar
  169. Soussi, T., and Lozano, G. (2005). p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 331, 834–842.PubMedGoogle Scholar
  170. Srinivasan, A., McClellan, A. J., Vartikar, J., Marks, I., Cantalupo, P., Li, Y., Whyte, P., Rundell, K., Brodsky, J. L., and Pipas, J. M. (1997). The amino-terminal transforming region of Simian Virus 40 large T and small t antigens functions as a J domain. Mol Cell Biol 17, 4761–4773.PubMedGoogle Scholar
  171. Srinivasan, A., Peden, K. W., and Pipas, J. M. (1989). The large tumor antigen of simian virus 40 encodes at least two distinct transforming functions. J Virol 63, 5459–5463.PubMedGoogle Scholar
  172. Stewart, S. E., Eddy, B. E., and Borgese, N. (1958). Neoplasms in mice inoculated with a tumor agent carried in tissue culture. J Natl Cancer Inst 20, 1223–1243.PubMedGoogle Scholar
  173. Stubdal, H., Zalvide, J., Campbell, K. S., Schweitzer, C., Roberts, T. M., and DeCaprio, J. A. (1997). Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen. Mol Cell Biol 17, 4979–4990.PubMedGoogle Scholar
  174. Su, W., Liu, W., Schaffhausen, B. S., and Roberts, T. M. (1995). Association of Polyomavirus middle tumor antigen with phospholipase C-gamma 1. J Biol Chem 270, 12331–12334.PubMedGoogle Scholar
  175. Sullivan, C. S., Cantalupo, P., and Pipas, J. M. (2000b). The molecular chaperone activity of simian virus 40 large T antigen is required to disrupt Rb-E2F family complexes by an ATP-dependent mechanism. Mol Cell Biol 20, 6233–6243.Google Scholar
  176. Sullivan, C. S., and Pipas, J. M. (2002). T Antigens of Simian Virus 40: Molecular Chaperones for Viral Replication and Tumorigenesis. Microbiol Mol Biol Rev 66, 179–202.PubMedGoogle Scholar
  177. Sullivan, C. S., Tremblay, J. D., Fewell, S. W., Lewis, J. A., Brodsky, J. L., and Pipas, J. M. (2000a). Species-specific elements in the large T-antigen J domain are required for cellular transformation and DNA replication by simian virus 40. Mol Cell Biol 20, 5749–5757.Google Scholar
  178. Sweet, B. H., and Hilleman, M. R. (1960). The vacuolating virus, SV40. Proc Soc Exp Biol Med 105, 420–427.PubMedGoogle Scholar
  179. Tevethia, M. J., Bonneau, R. H., Griffith, J. W., and Mylin, L. (1997). A simian virus 40 large T-antigen segment containing amino acids 1 to 127 and expressed under the control of the rat elastase-1 promoter produces pancreatic acinar carcinomas in transgenic mice. J Virol 71, 8157–8166.PubMedGoogle Scholar
  180. Theile, M., and Grabowski, G. (1990). Mutagenic activity of BKV and JCV in human and other mammalian cells. Arch Virol 113, 221–233.PubMedGoogle Scholar
  181. Tiemann, F., and Deppert, W. (1994). Stabilization of the tumor suppressor p53 during cellular transformation by simian virus 40: influence of viral and cellular factors and biological consequences. J Virol 68, 2869–2878.PubMedGoogle Scholar
  182. Tognon, M., Casalone, R., Martini, F., De Mattei, M., Granata, P., Minelli, E., Arcuri, C., Collini, P., and Bocchini, V. (1996). Large T antigen coding sequences of two DNA tumor viruses, BK and SV40, and nonrandom chromosome changes in two glioblastoma cell lines. Cancer Genet Cytogenet 90, 17–23.PubMedGoogle Scholar
  183. Trabanelli, C., Corallini, A., Gruppioni, R., Sensi, A., Bonfatti, A., Campioni, D., Merlin, M., Calza, N., Possati, L., and Barbanti-Brodano, G. (1998). Chromosomal aberrations induced by BK virus T antigen in human fibroblasts. Virology 243, 492–496.PubMedGoogle Scholar
  184. Trojanek, J., Croul, S., Thu, H., Wang, J. Y., Darbinyan, A., Nowicki, M., Valle, L. D., Skorski, T., Khalili, K., and Reiss, K. (2006). T-antigen of the human polyomavirus JC attenuates faithful DNA repair by forcing nuclear interaction between IRS-1 and Rad51. J Cell Physiol 206, 35–46.PubMedGoogle Scholar
  185. Trowbridge, P. W., and Frisque, R. J. (1995). Identification of three new JC virus proteins generated by alternative splicing of the early viral mRNA. J Neurovirol 1, 195–206.PubMedGoogle Scholar
  186. Tsai, S. C., Pasumarthi, K. B., Pajak, L., Franklin, M., Patton, B., Wang, H., Henzel, W. J., Stults, J. T., and Field, L. J. (2000). Simian virus 40 large T antigen binds a novel Bcl-2 homology domain 3-containing proapoptosis protein in the cytoplasm. J Biol Chem 275, 3239–3246.PubMedGoogle Scholar
  187. Urich, M., Senften, M., Shaw, P. E., and Ballmer-Hofer, K. (1997). A role for the small GTPase Rac in polyomavirus middle-T antigen-mediated activation of the serum response element and in cell transformation. Oncogene 14, 1235–1241.PubMedGoogle Scholar
  188. Valentinis, B., Porcu, P. L., Quinn, K., and Baserga, R. (1994). The role of the insulin-like growth factor I receptor in the transformation by simian virus 40 T antigen. Oncogene 9, 825–831.PubMedGoogle Scholar
  189. Valls, E., Blanco-García, N., Aquizu, N., Piedra, D., Estarás, C., de la Cruz, X., and Martínez-Balbás, M. A. (2007). Involvement of chromatin and histone deacetylation in SV40 T antigen transcription regulation. Nucl Acids Res 35, 1958–1968.PubMedGoogle Scholar
  190. Valls, E., de la Cruz, X., and Martinez-Balbas, M. A. (2003). The SV40 T antigen modulates CBP histone acetyltransferase activity. Nucleic Acids Res 31, 3114–3122.PubMedGoogle Scholar
  191. Van Dyke, T. (2007). p53 and tumor suppression. N Engl J Med 356, 79–81.PubMedGoogle Scholar
  192. Walter, G., Ruediger, R., Slaughter, C., and Mumby, M. (1990). Association of Protein Phosphatase 2A with Polyoma Virus Medium Tumor Antigen. Proc Nat Acad Sci 87, 2521–2525.PubMedGoogle Scholar
  193. Watanabe, G., Howe, A., Lee, R. J., Albanese, C., Shu, I. W., Karnezis, A. N., Zon, L., Kyriakis, J., Rundell, K., and Pestell, R. G. (1996). Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc Natl Acad Sci USA 93, 12861–12866.PubMedGoogle Scholar
  194. Wei, W., Jobling, W. A., Chen, W., Hahn, W. C., and Sedivy, J. M. (2003). Abolition of cyclin-dependent kinase inhibitor p16Ink4a and p21Cip1/Waf1 functions permits Ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Mol Cell Biol 23, 2859–2870.PubMedGoogle Scholar
  195. Welcker, M., and Clurman, B. E. (2005). The SV40 large T antigen contains a decoy phosphodegron that mediates its interactions with Fbw7/hCdc4. J Biol Chem 280, 7654–7658.PubMedGoogle Scholar
  196. Westphal, R. S., Coffee, R. L. J., Marotta, A., Pelech, S. L., and Wadzinski, B. E. (1999). Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. J Biol Chem 274, 687–692.PubMedGoogle Scholar
  197. Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L., and Roberts, T. M. (1985). Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315, 239–242.PubMedGoogle Scholar
  198. Whyte, P., Buchkovich, K. J., Horowitz, J. M., Friend, S. H., Raybuck, M., Weinberg, R. A., and Harlow, E. (1988a). Association Between An Oncogene And An Anti-Oncogene – The Adenovirus E1a Proteins Bind To The Retinoblastoma Gene-Product. Nature 334, 124–129.Google Scholar
  199. Whyte, P., Ruley, H. E., and Harlow, E. (1988b). Two regions of the adenovirus early region 1A proteins are required for transformation. J Virol 62, 257–265.Google Scholar
  200. Wu, X., Avni, D., Chiba, T., Yan, F., Zhao, Q., Lin, Y., Heng, H., and Livingston, D. (2004). SV40 T antigen interacts with Nbs1 to disrupt DNA replication control. Genes Dev 18, 1305–1316.PubMedGoogle Scholar
  201. Yaciuk, P., Carter, M. C., Pipas, J. M., and Moran, E. (1991). Simian virus 40 large-T antigen expresses a biological activity complementary to the p300-associated transforming function of the adenovirus E1A gene products. Mol Cell Biol 11, 2116–2124.PubMedGoogle Scholar
  202. Yang, S. I., Lickteig, R. L., Estes, R., Rundell, K., Walter, G., and Mumby, M. C. (1991). Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol Cell Biol 11, 1988–1995.PubMedGoogle Scholar
  203. Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., Hahn, W. C., Stukenberg, P. T., Shenolikar, S., Uchida, T., et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6, 308–318.PubMedGoogle Scholar
  204. Yu, J., Boyapati, A., and Rundell, K. (2001). Critical role for SV40 small-t antigen in human cell transformation. Virology 290, 192–198.PubMedGoogle Scholar
  205. Yuan, H., Veldman, T., Rundell, K., and Schlegel, R. (2002). Simian virus 40 small tumor antigen activates AKT and telomerase and induces anchorage-independent growth of human epithelial cells. J Virol 76, 10685–10691.PubMedGoogle Scholar
  206. Zalvide, J., and Decaprio, J. A. (1995). Role Of Prb-Related Proteins In Simian-Virus-40 Large-T-Antigen-Mediated Transformation. Mol Cell Biol 15, 5800–5810.PubMedGoogle Scholar
  207. Zalvide, J., Stubdal, H., and DeCaprio, J. A. (1998). The J domain of Simian virus 40 large T antigen is required to functionally inactivate RB family proteins. Mol Cell Biol 18, 1408–1415.PubMedGoogle Scholar
  208. Zerrahn, J., Knippschild, U., Winkler, T., and Deppert, W. (1993). Independent expression of the transforming amino-terminal domain of SV40 large I antigen from an alternatively spliced third SV40 early mRNA. EMBO J 12, 4739–4746.PubMedGoogle Scholar
  209. Zhao, J. J., Gjoerup, O. V., Subramanian, R. R., Cheng, Y., Chen, W., Roberts, T. M., and Hahn, W. C. (2003). Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 3, 483–495.PubMedGoogle Scholar
  210. Zhu, J., Rice, P. W., Gorsch, L., Abate, M., and Cole, C. N. (1992). Transformation of a continuous rat embryo fibroblast cell line requires three separate domains of simian virus 40 large T antigen. J Virol 66, 2789–2791.Google Scholar
  211. Zhu, J. Y., Abate, M., Rice, P. W., and Cole, C. N. (1991). The ability of simian virus 40 large T antigen to immortalize primary mouse embryo fibroblasts cosegregates with its ability to bind to p53. J Virol 65, 6872–6880.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology and Comprehensive Cancer CenterUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations