Skip to main content

Transformation by Polyomaviruses

  • Chapter
  • First Online:

Abstract

Polyomaviruses are small DNA tumor viruses that encode tumor antigens which interfere with the two major tumor suppressor pathways, pRB and p53. The viral early proteins have been utilized by researchers as model systems to decipher mechanisms relating to oncogenesis and tumorigenesis. Investigation of molecular mechanisms of these early proteins has contributed significantly to our understanding of cell cycle regulation, cell proliferation and growth, and signal transduction pathways. This chapter discusses the oncoproteins of polyomaviruses and how they induce cellular transformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahuja, D., Saenz-Robles, M. T., and Pipas, J. M. (2005). SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 24, 7729–7745.

    PubMed  CAS  Google Scholar 

  • Ali, S. H., and DeCaprio, J. A. (2001). Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 11, 15–23.

    PubMed  CAS  Google Scholar 

  • Ali, S. H., Kasper, J. S., Arai, T., and DeCaprio, J. A. (2004). Cul7/p185/p193 binding to simian virus 40 large T antigen has a role in cellular transformation. J Virol 78, 2749–2757.

    PubMed  CAS  Google Scholar 

  • Avantaggiati, M. L., Carbone, M., Graessmann, A., Nakatani, Y., Howard, B., and Levine, A. S. (1996). The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J 15, 2236–2248.

    PubMed  CAS  Google Scholar 

  • Ballou, L. M., Jeno, P., and Thomas, G. (1988). Protein phosphatase 2A inactivates the mitogen-stimulated S6 kinase from Swiss mouse 3T3 cells. J Biol Chem 263, 1188–1194.

    PubMed  CAS  Google Scholar 

  • Bargonetti, J., Reynisdottir, I., Friedman, P. N., and Prives, C. (1992). Site-specific binding of wild-type p53 to cellular DNA is inhibited by SV40 T antigen and mutant p53. Genes Dev 6, 1886–1898.

    PubMed  CAS  Google Scholar 

  • Berger, L. C., Smith, D. B., Davidson, I., Hwang, J. J., Fanning, E., and Wildeman, A. G. (1996). Interaction between T antigen and TEA domain of the factor TEF-1 derepresses simian virus 40 late promoter in vitro: identification of T-antigen domains important for transcription control. J Virol 70, 1203–1212.

    PubMed  CAS  Google Scholar 

  • Bikel, I., Montano, X., Agha, M. E., Brown, M., McCormack, M., Boltax, J., and Livingston, D. M. (1987). SV40 small t antigen enhances the transformation activity of limiting concentrations of SV40 large T antigen. Cell 48, 321–330.

    PubMed  CAS  Google Scholar 

  • Bocchetta, M., Miele, L., Pass, H. I., and Carbone, M. (2003). Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells. Oncogene 22, 81–90.

    PubMed  CAS  Google Scholar 

  • Bolen, J. B., Thiele, C. J., Israel, M. A., Yonemoto, W., Lipsich, L. A., and Brugge, J. S. (1984). Enhancement of cellular src gene product associated tyrosyl kinase activity following polyoma virus infection and transformation. Cell 38, 767–777.

    PubMed  CAS  Google Scholar 

  • Bollag, B., Chuke, W. F., and Frisque, R. J. (1989). Hybrid genomes of the polyomaviruses JC virus, BK virus, and simian virus 40: identification of sequences important for efficient transformation. J Virol 63, 863–872.

    PubMed  CAS  Google Scholar 

  • Bollag, B., Prins, C., Snyder, E. L., and Frisque, R. J. (2000). Purified JC Virus T and T′ Proteins Differentially Interact with the Retinoblastoma Family of Tumor Suppressor Proteins. Virology 274, 165–178.

    PubMed  CAS  Google Scholar 

  • Borger, D. R., and DeCaprio, J. A. (2006). Targeting of p300/CREB Binding Protein Coactivators by Simian Virus 40 Is Mediated through p53. J Virol 80, 4292–4303.

    PubMed  CAS  Google Scholar 

  • Boyapati, A., Wilson, M., Yu, J., and Rundell, K. (2003). SV40 17KT antigen complements dnaj mutations in large T antigen to restore transformation of primary human fibroblasts. Virology 315, 148–158.

    PubMed  CAS  Google Scholar 

  • Brown, L., Boswell, S., Raj, L., and Lee, S. W. (2007). Transcriptional targets of p53 that regulate cellular proliferation. Crit Rev Eukaryot Gene Expr 17, 73–85.

    PubMed  CAS  Google Scholar 

  • Brown, M., McCormack, M., Zinn, K. G., Farrell, M. P., Bikel, I., and Livingston, D. M. (1986). A recombinant murine retrovirus for simian virus 40 large T cDNA transforms mouse fibroblasts to anchorage-independent growth. J Virol 60, 290–293.

    PubMed  CAS  Google Scholar 

  • Cacciotti, P., Libener, R., Betta, P., Martini, F., Porta, C., Procopio, A., Strizzi, L., Penengo, L., Tognon, M., Mutti, L., and Gaudino, G. (2001). SV40 replication in human mesothelial cells induces HGF/Met receptor activation: a model for viral-related carcinogenesis of human malignant mesothelioma. Proc Natl Acad Sci USA 98, 12032–12037.

    PubMed  CAS  Google Scholar 

  • Cahill, D. P., Lengauer, C., Yu, J., Riggins, G. J., Willson, J. K., Markowitz, S. D., Kinzler, K. W., and Vogelstein, B. (1998). Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303.

    PubMed  CAS  Google Scholar 

  • Campbell, K. S., Auger, K. R., Hemmings, B. A., Roberts, T. M., and Pallas, D. C. (1995). Identification of regions in polyomavirus middle T and small t antigens important for association with protein phosphatase 2A. J Virol 69, 3721–3728.

    PubMed  CAS  Google Scholar 

  • Campbell, K. S., Ogris, E., Burke, B., Su, W., Auger, K. R., Druker, B. J., Schaffhausen, B. S., Roberts, T. M., and Pallas, D. C. (1994). Polyoma middle tumor antigen interacts with SHC protein via the NPTY (Asn-Pro-Thr-Tyr) motif in middle tumor antigen. Proc Natl Acad Sci USA 91, 6344–6348.

    PubMed  CAS  Google Scholar 

  • Carbone, M., and Bedrossian, C. W. (2006). The pathogenesis of mesothelioma. Semin Diagn Pathol 23, 56–60.

    PubMed  Google Scholar 

  • Cavender, J. F., Conn, A., Epler, M., Lacko, H., and Tevethia, M. J. (1995). Simian virus 40 large T antigen contains two independent activities that cooperate with a ras oncogene to transform rat embryo fibroblasts. J Virol 69, 923–934.

    PubMed  CAS  Google Scholar 

  • Chang, L. S., Pan, S., Pater, M. M., and Di Mayorca, G. (1985). Differential requirement for SV40 early genes in immortalization and transformation of primary rat and human embryonic cells. Virology 146, 246–261.

    PubMed  CAS  Google Scholar 

  • Chang, T. H., Ray, F. A., Thompson, D. A., and Schlegel, R. (1997). Disregulation of mitotic checkpoints and regulatory proteins following acute expression of SV40 large T antigen in diploid human cells. Oncogene 14, 2383–2393.

    PubMed  CAS  Google Scholar 

  • Chen, J., Tobin, G. J., Pipas, J. M., and Van Dyke, T. (1992). T-antigen mutant activities in vivo: roles of p53 and pRB binding in tumorigenesis of the choroid plexus. Oncogene 7, 1167–1175.

    PubMed  CAS  Google Scholar 

  • Chen, S., and Paucha, E. (1990). Identification of a region of simian virus 40 large T antigen required for cell transformation. J Virol 64, 3350–3357.

    PubMed  CAS  Google Scholar 

  • Chen, W., and Hahn, W. C. (2003). SV40 early region oncoproteins and human cell transformation. Histol Histopathol 18, 541–550.

    PubMed  CAS  Google Scholar 

  • Chen, W., Possemato, R., Campbell, K. T., Plattner, C. A., Pallas, D. C., and Hahn, W. C. (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5, 127–136.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Freund, R., Listerud, M., Wang, Z., and Talmage, D. A. (1999). Retinoic acid inhibits transformation by preventing phosphatidylinositol 3-kinase dependent activation of the c-fos promoter. Oncogene 18, 139–148.

    PubMed  CAS  Google Scholar 

  • Cheng, S. H., Markland, W., Markham, A. F., and Smith, A. E. (1986). Mutations around the NG59 lesion indicate an active association of polyoma virus middle-T antigen with pp60c-src is required for cell transformation. EMBO J 5, 325–334.

    PubMed  CAS  Google Scholar 

  • Cho, S., Tian, Y., and Benjamin, T. L. (2001). Binding of p300/CBP Co-activators by Polyoma Large T Antigen. J Biol Chem 276, 33533–33539.

    PubMed  CAS  Google Scholar 

  • Cho, Y., Gorina, S., Jeffrey, P. D., and Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265, 346–355.

    PubMed  CAS  Google Scholar 

  • Christensen, J. B., and Imperiale, M. J. (1995). Inactivation of the retinoblastoma susceptibility protein is not sufficient for the transforming function of the conserved region 2-like domain of simian virus 40 large T antigen. J Virol 69, 3945–3948.

    PubMed  CAS  Google Scholar 

  • Cotsiki, M., Lock, R. L., Cheng, Y., Williams, G. L., Zhao, J., Perera, D., Freire, R., Entwistle, A., Golemis, E. A., Roberts, T. M., et al. (2004). Simian virus 40 large T antigen targets the spindle assembly checkpoint protein Bub1. Proc Natl Acad Sci USA 101, 947–952.

    PubMed  CAS  Google Scholar 

  • Courtneidge, S. A. (1985). Activation of the pp60c-src kinase by middle T antigen binding or by dephosphorylation. EMBO J 4, 1471–1477.

    PubMed  CAS  Google Scholar 

  • Courtneidge, S. A., and Smith, A. E. (1983). Polyoma virus transforming protein associates with the product of the c-src cellular gene. Nature 303, 435–439.

    PubMed  CAS  Google Scholar 

  • Coutts, A. S., and La Thangue, N. B. (2007). Mdm2 widens its repertoire. Cell Cycle 6, 827–829.

    PubMed  CAS  Google Scholar 

  • Cullere, X., Rose, P., Thathamangalam, U., Chatterjee, A., Mullane, K. P., Pallas, D. C., Benjamin, T. L., Roberts, T. M., and Schaffhausen, B. S. (1998). Serine 257 phosphorylation regulates association of polyomavirus middle T antigen with 14-3-3 proteins. J Virol 72, 558–563.

    PubMed  CAS  Google Scholar 

  • Cuzin, F. (1984). The polyoma virus oncogenes. Coordinated functions of three distinct proteins in the transformation of rodent cells in culture. Biochim Biophys Acta 781, 193–204.

    PubMed  CAS  Google Scholar 

  • de Ronde, A., Sol, C. J., van Strien, A., ter Schegget, J., and van der Noordaa, J. (1989). The SV40 small t antigen is essential for the morphological transformation of human fibroblasts. Virology 171, 260–263.

    PubMed  Google Scholar 

  • DeAngelis, T., Chen, J., Wu, A., Prisco, M., and Baserga, R. (2005). Transformation by the simian virus 40 T antigen is regulated by IGF-I receptor and IRS-1 signaling. Oncogene 25, 32–42.

    Google Scholar 

  • DeCaprio, J. A., Ludlow, J. W., Figge, J., Shew, J. Y., Huang, C. M., Lee, W. H., Marsilio, E., Paucha, E., and Livingston, D. M. (1988). Sv40 Large Tumor-Antigen Forms A Specific Complex With The Product Of The Retinoblastoma Susceptibility Gene. Cell 54, 275–283.

    PubMed  CAS  Google Scholar 

  • DeGregori, J., and Johnson, D. G. (2006). Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Curr Mol Med 6, 739–748.

    PubMed  CAS  Google Scholar 

  • Deppert, W., Steinmayer, T., and Richter, W. (1989). Cooperation of SV40 large T antigen and the cellular protein p53 in maintenance of cell transformation. Oncogene 4, 1103–1110.

    PubMed  CAS  Google Scholar 

  • Dickmanns, A., Zeitvogel, A., Simmersbach, F., Weber, R., Arthur, A. K., Dehde, S., Wildeman, A. G., and Fanning, E. (1994). The kinetics of simian virus 40-induced progression of quiescent cells into S phase depend on four independent functions of large T antigen. J Virol 68, 5496–5508.

    PubMed  CAS  Google Scholar 

  • Dilworth, S. M. (1990). Cell alterations induced by the large T-antigens of SV40 and polyoma virus. Semin Cancer Biol 1, 407–414.

    PubMed  CAS  Google Scholar 

  • Dilworth, S. M., Brewster, C. E., Jones, M. D., Lanfrancone, L., Pelicci, G., and Pelicci, P. G. (1994). Transformation by polyoma virus middle T-antigen involves the binding and tyrosine phosphorylation of Shc. Nature 367, 87–90.

    PubMed  CAS  Google Scholar 

  • Dilworth, S. M., Hansson, H. A., Darnfors, C., Bjursell, G., Streuli, C. H., and Griffin, B. E. (1986). Subcellular localisation of the middle and large T-antigens of polyoma virus. EMBO J 5, 491–499.

    PubMed  CAS  Google Scholar 

  • Druker, B. J., Sibert, L., and Roberts, T. M. (1992). Polyomavirus middle T-antigen NPTY mutants. J Virol 66, 5770–5776.

    PubMed  CAS  Google Scholar 

  • Dyson, N., Bernards, R., Friend, S. H., Gooding, L. R., Hassell, J. A., Major, E. O., Pipas, J. M., Vandyke, T., and Harlow, E. (1990). Large T antigens of many polyomaviruses are able to form complexes with the retinoblastoma protein. J Virol 64, 1353–1356.

    PubMed  CAS  Google Scholar 

  • Dyson, N., Buchkovich, K., Whyte, P., and Harlow, E. (1989a). The cellular 107 K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 58, 249–255.

    Google Scholar 

  • Eckner, R., Ludlow, J. W., Lill, N. L., Oldread, E., Arany, Z., Modjtahedi, N., DeCaprio, J. A., Livingston, D. M., and Morgan, J. A. (1996). Association of p300 and CBP with simian virus 40 large T antigen. Mol Cell Biol 16, 3454–3464.

    PubMed  CAS  Google Scholar 

  • Egan, C., Bayley, S. T., and Branton, P. E. (1989). Binding of the Rb1 protein to E1A products is required for adenovirus transformation. Oncogene 4, 383–388.

    PubMed  CAS  Google Scholar 

  • Egan, C., Jelsma, T. N., Howe, J. A., Bayley, S. T., Ferguson, B., and Branton, P. E. (1988). Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Mol Cell Biol 8, 3955–3959.

    PubMed  CAS  Google Scholar 

  • Ellman, M., Bikel, I., Figge, J., Roberts, T., Schlossman, R., and Livingston, D. M. (1984). Localization of the simian virus 40 small t antigen in the nucleus and cytoplasm of monkey and mouse cells. J Virol 50, 623–628.

    PubMed  CAS  Google Scholar 

  • Enam, S., Del Valle, L., Lara, C., Gan, D. D., Ortiz-Hidalgo, C., Palazzo, J. P., and Khalili, K. (2002). Association of human polyomavirus JCV with colon cancer: evidence for interaction of viral T-antigen and beta-catenin. Cancer Res 62, 7093–7101.

    PubMed  CAS  Google Scholar 

  • Fei, Z. L., D'Ambrosio, C., Li, S., Surmacz, E., and Baserga, R. (1995). Association of insulin receptor substrate 1 with simian virus 40 large T antigen. Mol Cell Biol 15, 4232–4239.

    PubMed  CAS  Google Scholar 

  • Felsani, A., Mileo, A. M., and Paggi, M. G. (2006). Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 25, 5277–5285.

    PubMed  CAS  Google Scholar 

  • Foddis, R., De Rienzo, A., Broccoli, D., Bocchetta, M., Stekala, E., Rizzo, P., Tosolini, A., Grobelny, J. V., Jhanwar, S. C., Pass, H. I., et al. (2002). SV40 infection induces telomerase activity in human mesothelial cells. Oncogene 21, 1434–1442.

    PubMed  CAS  Google Scholar 

  • Freund, R., Bronson, R. T., and Benjamin, T. L. (1992). Separation of immortalization from tumor induction with polyoma large T mutants that fail to bind the retinoblastoma gene product. Oncogene 7, 1979–1987.

    PubMed  CAS  Google Scholar 

  • Fromm, L., Shawlot, W., Gunning, K., Butel, J. S., and Overbeek, P. A. (1994). The Retinoblastoma Protein-Binding Region Of Simian-Virus-40 Large T-Antigen Alters Cell-Cycle Regulation In Lenses Of Transgenic Mice. Mol Cell Biol 14, 6743–6754.

    PubMed  CAS  Google Scholar 

  • Gan, D.-D., Reiss, K., Carrill, T., Del Valle, L., Croul, S., Giordano, A., Fishman, P., and Khalili, K. (2001). Involvement of Wnt signaling pathway in murine medulloblastoma induced by human neurotropic JC virus. Oncogene 20, 4864–4870.

    PubMed  CAS  Google Scholar 

  • Gan, D. D., and Khalili, K. (2004). Interaction between JCV large T-antigen and beta-catenin. Oncogene 23, 483–490.

    PubMed  CAS  Google Scholar 

  • Gardner, S. D., Field, A. M., Coleman, D. V., and Hulme, B. (1971). New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 1, 1253–1257.

    PubMed  CAS  Google Scholar 

  • Garimella, R., Liu, X., Qiao, W., Liang, X., Zuiderweg, E. R. P., Riley, M. I., and VanDoren, S. R. (2006). Hsc70 Contacts Helix III of the J Domain from Polyomavirus T Antigens: Addressing a Dilemma in the Chaperone Hypothesis of How They Release E2F from pRb. Biochemistry 45, 6917–6929.

    PubMed  CAS  Google Scholar 

  • Genovese, C., Trani, D., Caputi, M., and Claudio, P. P. (2006). Cell cycle control and beyond: emerging roles for the retinoblastoma gene family. Oncogene 25, 5201–5209.

    PubMed  CAS  Google Scholar 

  • Giacinti, C., and Giordano, A. (2006). RB and cell cycle progression. Oncogene 25, 5220–5227.

    PubMed  CAS  Google Scholar 

  • Glenn, G. M., and Eckhart, W. (1995). Amino-terminal regions of polyomavirus middle T antigen are required for interactions with protein phosphatase 2A. J Virol 69, 3729–3736.

    PubMed  CAS  Google Scholar 

  • Glover, H. R., Brewster, C. E., and Dilworth, S. M. (1999). Association between src-kinases and the polyoma virus oncogene middle T-antigen requires PP2A and a specific sequence motif. Oncogene 18, 4364–4370.

    PubMed  CAS  Google Scholar 

  • Goodman, R. H., and Smolik, S. (2000). CBP/p300 in cell growth, transformation, and development. Genes Dev 14, 1553–1577.

    PubMed  CAS  Google Scholar 

  • Gottlieb, K. A., and Villarreal, L. P. (2001). Natural biology of polyomavirus middle T antigen. Microb Mol Biol Rev 65, 288–318.

    CAS  Google Scholar 

  • Gross, L. (1953). A filterable agent, recovered from Ak leukemic extracts causing salivary gland carcinomas in C311 mice. Proceedings of the Society for Experimental Biology and Medicine 83, 414–421.

    PubMed  CAS  Google Scholar 

  • Gruda, M. C., Zabolotny, J. M., Xiao, J. H., Davidson, I., and Alwine, J. C. (1993). Transcriptional activation by simian virus 40 large T antigen: interactions with multiple components of the transcription complex. Mol Cell Biol 13, 961–969.

    PubMed  CAS  Google Scholar 

  • Grussenmeyer, T., Carbone-Wiley, A., Scheidtmann, K. H., and Walter, G. (1987). Interactions between polyomavirus medium T antigen and three cellular proteins of 88, 61, and 37 kilodaltons. J Virol 61, 3902–3909.

    PubMed  CAS  Google Scholar 

  • Habel, K. (1965). Specific complement-fixing antigens in polyoma tumors and transformed cells. Virology 25, 55–61.

    PubMed  CAS  Google Scholar 

  • Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W., and Weinberg, R. A. (1999). Creation of human tumour cells with defined genetic elements. Nature 400, 464–468.

    PubMed  CAS  Google Scholar 

  • Hahn, W. C., Dessain, S. K., Brooks, M. W., King, J. E., Elenbaas, B., Sabatini, D. M., DeCaprio, J. A., and Weinberg, R. A. (2002). Enumeration of the Simian Virus 40 Early Region Elements Necessary for Human Cell Transformation. Mol Cell Biol 22, 2111–2123.

    PubMed  CAS  Google Scholar 

  • Hahn, W. C., and Weinberg, R. A. (2002). Modelling the molecular circuitry of cancer. Nat Rev Cancer 2, 331–341.

    PubMed  CAS  Google Scholar 

  • Harris, K. F., Chang, E., Christensen, J. B., and Imperiale, M. J. (1998a). BK virus as a Potential Co-factor in Human Cancer. Dev Biol Stand 94, 81–91.

    Google Scholar 

  • Harris, K. F., Christensen, J. B., and Imperiale, M. J. (1996). BK virus large T antigen: Interactions with the retinoblastoma family of tumor suppressor proteins and effects on cellular growth control. J Virol 70, 2378–2386.

    PubMed  CAS  Google Scholar 

  • Harris, K. F., Christensen, J. B., Radany, E. H., and Imperiale, M. J. (1998b). Novel mechanisms of E2F induction by BK virus large-T antigen: Requirement of both the pRb-binding and the J domains. Mol Cell Biol 18, 1746–1756.

    Google Scholar 

  • Hayflick, L., and Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585–621.

    Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. (1991). p53 mutations in human cancers. Science 253, 49–53.

    PubMed  CAS  Google Scholar 

  • Holman, P. S., Gjoerup, O. V., Davin, T., and Schaffhausen, B. S. (1994). Characterization of an immortalizing N-terminal domain of polyomavirus large T antigen. J Virol 68, 668–673.

    PubMed  CAS  Google Scholar 

  • Howard, C. M., Claudio, P. P., Gallia, G. L., Gordon, J., Giordano, G. G., Hauck, W. W., Khalili, K., and Giordano, A. (1998). Retinoblastoma-related protein pRb2/p130 and suppression of tumor growth in vivo. J Natl Cancer Inst 90, 1451–1460.

    PubMed  CAS  Google Scholar 

  • Ichaso, N., and Dilworth, S. M. (2001). Cell transformation by the middle T-antigen of polyoma virus. Oncogene 20, 7908–7916.

    PubMed  CAS  Google Scholar 

  • Imperiale, M. J., and Major, E. O. (2007). Polyomaviruses, In Fields Virology, D. M. Knipe, and P. M. Howley, eds. (Philadelphia: Lippincott Williams & Wilkins), pp. 2263–2298.

    Google Scholar 

  • Ito, Y., Brocklehurst, J. R., and Dulbecco, R. (1977). Virus-specific proteins in the plasma membrane of cells lytically infected or transformed by polyoma virus. Proc Natl Acad Sci USA 74, 4666–4670.

    PubMed  CAS  Google Scholar 

  • Janssens, V., and Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353, 417–439.

    PubMed  CAS  Google Scholar 

  • Jha, K. K., Banga, S., Palejwala, V., and Ozer, H. L. (1998). SV40-Mediated immortalization. Exp Cell Res 245, 1–7.

    PubMed  CAS  Google Scholar 

  • Jiang, D., Srinivasan, A., Lozano, G., and Robbins, P. D. (1993). SV40 T antigen abrogates p53-mediated transcriptional activity. Oncogene 8, 2805–2812.

    PubMed  CAS  Google Scholar 

  • Kalderon, D., and Smith, A. E. (1984). In vitro mutagenesis of a putative DNA binding domain of SV40 large-T. Virology 139, 109–137.

    PubMed  CAS  Google Scholar 

  • Kasper, J. S., Kuwabara, H., Arai, T., Ali, S. H., and DeCaprio, J. A. (2005). Simian virus 40 large T antigen's association with the CUL7 SCF complex contributes to cellular transformation. J Virol 79, 11685–11692.

    PubMed  CAS  Google Scholar 

  • Kim, S. H., Banga, S., Jha, K. K., and Ozer, H. L. (1998). SV40-mediated transformation and immortalization of human cells. Dev Biol Stand 94, 297–302.

    PubMed  CAS  Google Scholar 

  • Kim, S. H., Roth, K. A., Coopersmith, C. M., Pipas, J. M., and Gordon, J. I. (1994). Expression of wild-type and mutant simian virus 40 large tumor antigens in villus-associated enterocytes of transgenic mice. Proc Natl Acad Sci USA 91, 6914–6918.

    PubMed  CAS  Google Scholar 

  • Kohrman, D. C., and Imperiale, M. J. (1992). Simian virus 40 large T antigen stably complexes with a 185-kilodalton host protein. J Virol 66, 1752–1760.

    PubMed  CAS  Google Scholar 

  • Kriegler, M., Perez, C. F., Hardy, C., and Botchan, M. (1984). Transformation mediated by the SV40 T antigens: separation of the overlapping SV40 early genes with a retroviral vector. Cell 38, 483–491.

    PubMed  CAS  Google Scholar 

  • Krynska, B., Gordon, J., Otte, J., Franks, R., Knobler, R., DeLuca, A., Giordano, A., and Khalili, K. (1997). Role of cell cycle regulators in tumor formation in transgenic mice expressing the human neurotropic virus, JCV, early protein. J Cell Biochem 67, 223–230.

    PubMed  CAS  Google Scholar 

  • Land, H., Parada, L. F., and Weinberg, R. A. (1983). Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602.

    PubMed  CAS  Google Scholar 

  • Lane, D. P., and Crawford, L. V. (1979). T-Antigen Is Bound To A Host Protein In Sv40-Transformed Cells. Nature 278, 261–263.

    PubMed  CAS  Google Scholar 

  • Lanson, N. A. J., Egeland, D. B., Royals, B. A., and Claycomb, W. C. (2000). The MRE11-NBS1-RAD50 pathway is perturbed in SV40 large T antigen-immortalized AT-1, AT-2 and HL-1 cardiomyocytes. Nucleic Acids Res 28, 2882–2892.

    PubMed  CAS  Google Scholar 

  • Larose, A., Dyson, N., Sullivan, M., Harlow, E., and Bastin, M. (1991). Polyomavirus large T mutants affected in retinoblastoma protein binding are defective in immortalization. J Virol 65, 2308–2313.

    PubMed  CAS  Google Scholar 

  • Lassak, A., Del Valle, L., Peruzzi, F., Wang, J. Y., Enam, S., Croul, S., Khalili, K., and Reiss, K. (2002). Insulin Receptor Substrate 1 Translocation to the Nucleus by the Human JC Virus T-antigen. J Biol Chem 277, 17231–17238.

    PubMed  CAS  Google Scholar 

  • Laviola, L., Natalicchio, A., and Giorgino, F. (2007). The IGF-I signaling pathway. Curr Pharm Des 13, 663–669.

    PubMed  CAS  Google Scholar 

  • Lazutka, J. R., Neel, J. V., Major, E. O., Dedonyte, V., Mierauskine, J., Slapsyte, G., and Kesminiene, A. (1996). High titers of antibodies to two human polyomaviruses, JCV and BKV, correlate with increased frequency of chromosomal damage in human lymphocytes. Cancer Lett 109, 177–183.

    PubMed  CAS  Google Scholar 

  • Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division. Cell 88, 323–331.

    PubMed  CAS  Google Scholar 

  • Lill, N. L., Tevethia, M. J., Eckner, R., Livingston, D. M., and Modjtahedi, N. (1997). p300 family members associate with the carboxyl terminus of simian virus 40 large tumor antigen. J Virol 71, 129–137.

    PubMed  CAS  Google Scholar 

  • Lilyestrom, W., Klein, M. G., Zhang, R., Joachimiak, A., and Chen, X. S. (2006). Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor. Genes Dev 20, 2373–2382.

    PubMed  CAS  Google Scholar 

  • Linzer, D. I. H., and Levine, A. J. (1979). Characterization Of A 54 k Dalton Cellular Sv40 Tumor-Antigen Present In Sv40-Transformed Cells And Uninfected Embryonal Carcinoma-Cells. Cell 17, 43–52.

    PubMed  CAS  Google Scholar 

  • Lomax, M., and Fried, M. (2001). Polyoma virus disrupts ARF signaling to p53. Oncogene 20, 4951–4960.

    PubMed  CAS  Google Scholar 

  • Ludlow, J. W., Decaprio, J. A., Huang, C. M., Lee, W. H., Paucha, E., and Livingston, D. M. (1989). SV40 Large T-Antigen Binds Preferentially To An Underphosphorylated Member Of The Retinoblastoma Susceptibility Gene-Product Family. Cell 56, 57–65.

    PubMed  CAS  Google Scholar 

  • Ludlow, J. W., Shon, J., Pipas, J. M., Livingston, D. M., and Decaprio, J. A. (1990). The Retinoblastoma Susceptibility Gene-Product Undergoes Cell Cycle-Dependent Dephosphorylation And Binding To And Release From Sv40 Large-T. Cell 60, 387–396.

    PubMed  CAS  Google Scholar 

  • Marcellus, R., Whitfield, J. F., and Raptis, L. (1991). Polyoma virus middle tumor antigen stimulates membrane-associated protein kinase C at lower levels than required for phosphatidylinositol kinase activation and neoplastic transformation. Oncogene 6, 1037–1040.

    PubMed  CAS  Google Scholar 

  • Markland, W., Oostra, B. A., Harvey, R., Markham, A. F., Colledge, W. H., and Smith, A. E. (1986). Site-directed mutagenesis of polyomavirus middle-T antigen sequences encoding tyrosine 315 and tyrosine 250. J Virol 59, 384–391.

    PubMed  CAS  Google Scholar 

  • Markland, W., and Smith, A. E. (1987). Mutants of polyomavirus middle-T antigen. Biochim Biophys Acta 907, 299–321.

    PubMed  CAS  Google Scholar 

  • Mateer, S. C., Fedorov, S. A., and Mumby, M. C. (1998). Identification of structural elements involved in the interaction of simian virus 40 small tumor antigen with protein phosphatase 2A. J Biol Chem 273, 35339–35346.

    PubMed  CAS  Google Scholar 

  • Michael-Michalovitz, D., Yehiely, F., Gottlieb, E., and Oren, M. (1991). Simian virus 40 can overcome the antiproliferative effect of wild-type p53 in the absence of stable large T antigen-p53 binding. Journal of Virology 65, 4160–4168.

    PubMed  CAS  Google Scholar 

  • Mor, O., Read, M., and Fried, M. (1997). p53 in polyoma virus transformed REF52 cells. Oncogene 15, 3113–3119.

    PubMed  CAS  Google Scholar 

  • Moule, M. G., Collins, C. H., McCormick, F., and Fried, M. (2004). Role for PP2A in ARF signaling to p53. Proc Natl Acad Sci USA 101, 14063–14066.

    PubMed  CAS  Google Scholar 

  • Mungre, S., Enderle, K., Turk, B., Porrás, A., Wu, Y. Q., Mumby, M. C., and Rundell, K. (1994). Mutations which affect the inhibition of protein phosphatase 2A by simian virus 40 small-t antigen in vitro decrease viral transformation. J Virol 68, 1675–1681.

    PubMed  CAS  Google Scholar 

  • Nemethova, M., Smutny, M., and Wintersberger, E. (2004). Transactivation of E2F-regulated genes by polyomavirus large T antigen: evidence for a two-step mechanism. Mol Cell Biol 24, 10986–10994.

    PubMed  CAS  Google Scholar 

  • Nevins, J. R. (2001). The Rb/E2F pathway and cancer. Hum Mol Genet 10, 699–703.

    PubMed  CAS  Google Scholar 

  • Newbold, R. F., and Overell, R. W. (1983). Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene. Nature 304, 648–651.

    PubMed  CAS  Google Scholar 

  • Newbold, R. F., Overell, R. W., and Connell, J. R. (1982). Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens. Nature 299, 633–635.

    PubMed  CAS  Google Scholar 

  • O'Shea, C. C. (2005a). DNA tumor viruses – the spies who lyse us. Curr Opin Genet Dev 15, 18–26.

    Google Scholar 

  • O'Shea, C. C. (2005b). Viruses – seeking and destroying the tumor program. Oncogene 24, 7640–7655.

    Google Scholar 

  • O'Shea, C. C., and Fried, M. (2005). Modulation of the ARF-p53 pathway by the small DNA tumor viruses. Cell Cycle 4, 449–452.

    PubMed  Google Scholar 

  • Oren, M., Maltzman, W., and Levine, A. J. (1981). Post-translational regulation of the 54 K cellular tumor antigen in normal and transformed cells. Mol Cell Biol 1, 101–110.

    PubMed  CAS  Google Scholar 

  • Ozer, H. L. (2000). SV40-mediated immortalization. Prog Mol Subcell Biol 24, 121–153.

    PubMed  CAS  Google Scholar 

  • Ozer, H. L., Banga, S. S., Dasgupta, T., Houghton, J., Hubbard, K., Jha, K. K., Kim, S. H., Lenahan, M., Pang, Z., Pardinas, J. R., and Patsalis, P. C. (1996). SV40–mediated immortalization of human fibroblasts. Exp Gerontol 31, 303–310.

    PubMed  CAS  Google Scholar 

  • Padgett, B. L., Walker, D. L., ZuRhein, G. M., Eckroade, R. J., and Dessel, B. H. (1971). Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1, 1257–1260.

    PubMed  CAS  Google Scholar 

  • Pallas, D. C., Fu, H., Haehnel, L. C., Weller, W., Collier, R. J., and Roberts, T. M. (1994). Association of polyomavirus middle tumor antigen with 14-3-3 proteins. Science 265, 535–537.

    PubMed  CAS  Google Scholar 

  • Pallas, D. C., Shahrik, L. K., Martin, B. L., Jaspers, S., Miller, T. B., Brautigan, D. L., and Roberts, T. M. (1990). Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 60, 167–176.

    PubMed  CAS  Google Scholar 

  • Peden, K. W., Srinivasan, A., Farber, J. M., and Pipas, J. M. (1989). Mutants with changes within or near a hydrophobic region of simian virus 40 large tumor antigen are defective for binding cellular protein p53. Virology 168, 13–21.

    PubMed  CAS  Google Scholar 

  • Peden, K. W., Srinivasan, A., Vartikar, J. V., and Pipas, J. M. (1998). Effects of mutations within the SV40 large T antigen ATPase/p53 binding domain on viral replication and transformation. Virus Genes 16, 153–165.

    PubMed  CAS  Google Scholar 

  • Peifer, M., and Polakis, P. (2000). Wnt signaling in oncogenesis and embryogenesis – a look outside the nucleus. Science 287, 1606–1609.

    PubMed  CAS  Google Scholar 

  • Pilon, A. A., Desjardins, P., Hassell, J. A., and Mes-Masson, A. M. (1996). Functional implications of mutations within polyomavirus large T antigen Rb-binding domain: effects on pRb and p107 binding in vitro and immortalization activity in vivo. J Virol 70, 4457–4465.

    PubMed  CAS  Google Scholar 

  • Pipas, J. M. (1992). Common and unique features of T antigens encoded by the polyomavirus group. J Virol 66, 3979–3985.

    PubMed  CAS  Google Scholar 

  • Pipas, J. M., Peden, K. W., and Nathans, D. (1983). Mutational analysis of simian virus 40 T antigen: isolation and characterization of mutants with deletions in the T antigen gene. Mol Cell Biol 3, 203–213.

    PubMed  CAS  Google Scholar 

  • Polakis, P. (2007). The many ways of Wnt in cancer. Curr Opin Genet Dev 17, 45–51.

    PubMed  CAS  Google Scholar 

  • Porcu, P., Ferber, A., Pietrzkowski, Z., Roberts, C. T., Adamo, M., LeRoith, D., and Baserga, R. (1992). The growth-stimulatory effect of simian virus 40 T antigen requires the interaction of insulinlike growth factor 1 with its receptor. Mol Cell Biol 12, 5069–5077.

    PubMed  CAS  Google Scholar 

  • Porras, A., Bennett, J., Howe, A., Tokos, K., Bouck, N., Henglein, B., Sathyamangalam, S., Thimmapaya, B., and Rundell, K. (1996). A novel simian virus 40 early-region domain mediates transactivation of the cyclin A promoter by small-t antigen and is required for transformation in small-t antigen-dependent assays. J Virol 70, 6902–6908.

    PubMed  CAS  Google Scholar 

  • Poulin, D. L., Kung, A. L., and DeCaprio, J. A. (2004). p53 Targets Simian Virus 40 Large T Antigen for Acetylation by CBP. J Virol 78, 8245–8253.

    PubMed  CAS  Google Scholar 

  • Quartin, R. S., Cole, C. N., Pipas, J. M., and Levine, A. J. (1994). The amino-terminal functions of the simian virus 40 large T antigen are required to overcome wild-type p53-mediated growth arrest of cells. J Virol 68, 1334–1341.

    PubMed  CAS  Google Scholar 

  • Rassoulzadegan, M., Cowie, A., Carr, A., Glaichenhaus, N., Kamen, R., and Cuzin, F. (1982). The roles of individual polyoma virus early proteins in oncogenic transformation. Nature 300, 713–718.

    PubMed  CAS  Google Scholar 

  • Ray, F. A., Peabody, D. S., Cooper, J. L., Gram, L. S., and Kraemer, P. M. (1990). SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts. J Cell Biochem 42, 13–31.

    PubMed  CAS  Google Scholar 

  • Reiss, K., Khalili, K., Giordano, A., and Trojanek, J. (2006). JC virus large T-antigen and IGF-I signaling system merge to affect DNA repair and genomic integrity. J Cell Physiol 206, 295–300.

    PubMed  CAS  Google Scholar 

  • Riley, M. I., Yoo, W., Mda, N. Y., and Folk, W. R. (1997). Tiny T antigen: an autonomous polyomavirus T antigen amino-terminal domain. J Virol 71, 6068–6074.

    PubMed  CAS  Google Scholar 

  • Rizzo, P., Bocchetta, M., Powers, A., Foddis, R., Stekala, E., Pass, H. I., and Carbone, M. (2001). SV40 and the pathogenesis of mesothelioma. Semin Cancer Biol 11, 63–71.

    PubMed  CAS  Google Scholar 

  • Ru, H. Y., Chen, R. L., Lu, W. C., and Chen, J. H. (2002). hBUB1 defects in leukemia and lymphoma cells. Oncogene 21, 4673–4679.

    PubMed  CAS  Google Scholar 

  • Ruediger, R., Roeckel, D., Fait, J., Bergqvist, A., Magnusson, G., and Walter, G. (1992). Identification of binding sites on the regulatory A subunit of protein phosphatase 2A for the catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol Cell Biol 12, 4872–4882.

    PubMed  CAS  Google Scholar 

  • Rundell, K., Gaillard, S., and Porras, A. (1998). Small-t and large-T antigens cooperate to drive cell proliferation. Dev Biol Stand 94, 289–295.

    PubMed  CAS  Google Scholar 

  • Rundell, K., Major, E. O., and Lampert, M. (1981). Association of cellular 56,000- and 32,000-molecular-weight protein with BK virus and polyoma virus t-antigens. J Virol 37, 1090–1093.

    PubMed  CAS  Google Scholar 

  • Rutila, J. E., Imperiale, M. J., and Brockman, W. W. (1986). Replication and transformation functions of in vitro-generated simian virus 40 large T antigen mutants. J Virol 58, 526–535.

    PubMed  CAS  Google Scholar 

  • Ryan, Q. C., Goonewardene, I. M., and Murasko, D. M. (1992). Extension of lifespan of human T lymphocytes by transfection with SV40 large T antigen. Exp Cell Res 199, 387–391.

    PubMed  CAS  Google Scholar 

  • Sachsenmeier, K. F., and Pipas, J. M. (2001). Inhibition of Rb and p53 is insufficient for SV40 T-antigen transformation. Virology 283, 40–48.

    PubMed  CAS  Google Scholar 

  • Sáenz-Robles, M. T., Sullivan, C. S., and Pipas, J. M. (2001). Transforming functions of Simian Virus 40. Oncogene 20, 7899–7907.

    PubMed  Google Scholar 

  • Sager, R., Tanaka, K., Lau, C. C., Ebina, Y., and Anisowicz, A. (1983). Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proc Natl Acad Sci USA 80, 7601–7605.

    PubMed  CAS  Google Scholar 

  • Sell, C., Rubini, M., Rubin, R., Liu, J. P., Efstratiadis, A., and Baserga, R. (1993). Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor. Proc Natl Acad Sci USA 90, 11217–11221.

    PubMed  CAS  Google Scholar 

  • Sheng, Q., Denis, D., Ratnofsky, M., Roberts, T. M., DeCaprio, J. A., and Schaffhausen, B. (1997). The DnaJ domain of polyomavirus large T antigen is required to regulate Rb family tumor suppressor function. J Virol 71, 9410–9416.

    PubMed  CAS  Google Scholar 

  • Sheppard, H. M., Corneillie, S. I., Espiritu, C., Gatti, A., and Liu, X. (1999). New insights into the mechanism of inhibition of p53 by simian virus 40 large T antigen. Mol Cell Biol 19, 2746–2753.

    PubMed  CAS  Google Scholar 

  • Sherr, C. J. (1998). Tumor surveillance via the ARF-p53 pathway. Genes Dev 12, 2984–2991.

    PubMed  CAS  Google Scholar 

  • Sherr, C. J. (2006). Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6, 663–673.

    PubMed  CAS  Google Scholar 

  • Shichiri, M., Yoshinaga, K., Hisatomi, H., Sugihara, K., and Hirata, Y. (2002). Genetic and epigenetic inactivation of mitotic checkpoint genes hBUB1 and hBUBR1 and their relationship to survival. Cancer Res 62, 13–17.

    PubMed  CAS  Google Scholar 

  • Shimazu, T., Komatsu, Y., Nakayama, K. I., Fukazawa, H., Horinouchi, S., and Yoshida, M. (2006). Regulation of SV40 large T-antigen stability by reversible acetylation. Oncogene 25, 7391–7400.

    PubMed  CAS  Google Scholar 

  • Skoczylas, C., Fahrbach, K. M., and Rundell, K. (2004). Cellular targets of the SV40 small-t antigen in human cell transformation. Cell Cycle 3, 606–610.

    PubMed  CAS  Google Scholar 

  • Sontag, E. (2001). Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell Signal 13, 7–16.

    PubMed  CAS  Google Scholar 

  • Sontag, E., Fedorov, S., Kamibayashi, C., Robbins, D., Cobb, M., and Mumby, M. (1993). The interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the map kinase pathway and induces cell proliferation. Cell 75, 887–897.

    PubMed  CAS  Google Scholar 

  • Soussi, T., and Lozano, G. (2005). p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 331, 834–842.

    PubMed  CAS  Google Scholar 

  • Srinivasan, A., McClellan, A. J., Vartikar, J., Marks, I., Cantalupo, P., Li, Y., Whyte, P., Rundell, K., Brodsky, J. L., and Pipas, J. M. (1997). The amino-terminal transforming region of Simian Virus 40 large T and small t antigens functions as a J domain. Mol Cell Biol 17, 4761–4773.

    PubMed  CAS  Google Scholar 

  • Srinivasan, A., Peden, K. W., and Pipas, J. M. (1989). The large tumor antigen of simian virus 40 encodes at least two distinct transforming functions. J Virol 63, 5459–5463.

    PubMed  CAS  Google Scholar 

  • Stewart, S. E., Eddy, B. E., and Borgese, N. (1958). Neoplasms in mice inoculated with a tumor agent carried in tissue culture. J Natl Cancer Inst 20, 1223–1243.

    PubMed  CAS  Google Scholar 

  • Stubdal, H., Zalvide, J., Campbell, K. S., Schweitzer, C., Roberts, T. M., and DeCaprio, J. A. (1997). Inactivation of pRB-related proteins p130 and p107 mediated by the J domain of simian virus 40 large T antigen. Mol Cell Biol 17, 4979–4990.

    PubMed  CAS  Google Scholar 

  • Su, W., Liu, W., Schaffhausen, B. S., and Roberts, T. M. (1995). Association of Polyomavirus middle tumor antigen with phospholipase C-gamma 1. J Biol Chem 270, 12331–12334.

    PubMed  CAS  Google Scholar 

  • Sullivan, C. S., Cantalupo, P., and Pipas, J. M. (2000b). The molecular chaperone activity of simian virus 40 large T antigen is required to disrupt Rb-E2F family complexes by an ATP-dependent mechanism. Mol Cell Biol 20, 6233–6243.

    Google Scholar 

  • Sullivan, C. S., and Pipas, J. M. (2002). T Antigens of Simian Virus 40: Molecular Chaperones for Viral Replication and Tumorigenesis. Microbiol Mol Biol Rev 66, 179–202.

    PubMed  CAS  Google Scholar 

  • Sullivan, C. S., Tremblay, J. D., Fewell, S. W., Lewis, J. A., Brodsky, J. L., and Pipas, J. M. (2000a). Species-specific elements in the large T-antigen J domain are required for cellular transformation and DNA replication by simian virus 40. Mol Cell Biol 20, 5749–5757.

    Google Scholar 

  • Sweet, B. H., and Hilleman, M. R. (1960). The vacuolating virus, SV40. Proc Soc Exp Biol Med 105, 420–427.

    PubMed  CAS  Google Scholar 

  • Tevethia, M. J., Bonneau, R. H., Griffith, J. W., and Mylin, L. (1997). A simian virus 40 large T-antigen segment containing amino acids 1 to 127 and expressed under the control of the rat elastase-1 promoter produces pancreatic acinar carcinomas in transgenic mice. J Virol 71, 8157–8166.

    PubMed  CAS  Google Scholar 

  • Theile, M., and Grabowski, G. (1990). Mutagenic activity of BKV and JCV in human and other mammalian cells. Arch Virol 113, 221–233.

    PubMed  CAS  Google Scholar 

  • Tiemann, F., and Deppert, W. (1994). Stabilization of the tumor suppressor p53 during cellular transformation by simian virus 40: influence of viral and cellular factors and biological consequences. J Virol 68, 2869–2878.

    PubMed  CAS  Google Scholar 

  • Tognon, M., Casalone, R., Martini, F., De Mattei, M., Granata, P., Minelli, E., Arcuri, C., Collini, P., and Bocchini, V. (1996). Large T antigen coding sequences of two DNA tumor viruses, BK and SV40, and nonrandom chromosome changes in two glioblastoma cell lines. Cancer Genet Cytogenet 90, 17–23.

    PubMed  CAS  Google Scholar 

  • Trabanelli, C., Corallini, A., Gruppioni, R., Sensi, A., Bonfatti, A., Campioni, D., Merlin, M., Calza, N., Possati, L., and Barbanti-Brodano, G. (1998). Chromosomal aberrations induced by BK virus T antigen in human fibroblasts. Virology 243, 492–496.

    PubMed  CAS  Google Scholar 

  • Trojanek, J., Croul, S., Thu, H., Wang, J. Y., Darbinyan, A., Nowicki, M., Valle, L. D., Skorski, T., Khalili, K., and Reiss, K. (2006). T-antigen of the human polyomavirus JC attenuates faithful DNA repair by forcing nuclear interaction between IRS-1 and Rad51. J Cell Physiol 206, 35–46.

    PubMed  CAS  Google Scholar 

  • Trowbridge, P. W., and Frisque, R. J. (1995). Identification of three new JC virus proteins generated by alternative splicing of the early viral mRNA. J Neurovirol 1, 195–206.

    PubMed  CAS  Google Scholar 

  • Tsai, S. C., Pasumarthi, K. B., Pajak, L., Franklin, M., Patton, B., Wang, H., Henzel, W. J., Stults, J. T., and Field, L. J. (2000). Simian virus 40 large T antigen binds a novel Bcl-2 homology domain 3-containing proapoptosis protein in the cytoplasm. J Biol Chem 275, 3239–3246.

    PubMed  CAS  Google Scholar 

  • Urich, M., Senften, M., Shaw, P. E., and Ballmer-Hofer, K. (1997). A role for the small GTPase Rac in polyomavirus middle-T antigen-mediated activation of the serum response element and in cell transformation. Oncogene 14, 1235–1241.

    PubMed  CAS  Google Scholar 

  • Valentinis, B., Porcu, P. L., Quinn, K., and Baserga, R. (1994). The role of the insulin-like growth factor I receptor in the transformation by simian virus 40 T antigen. Oncogene 9, 825–831.

    PubMed  CAS  Google Scholar 

  • Valls, E., Blanco-García, N., Aquizu, N., Piedra, D., Estarás, C., de la Cruz, X., and Martínez-Balbás, M. A. (2007). Involvement of chromatin and histone deacetylation in SV40 T antigen transcription regulation. Nucl Acids Res 35, 1958–1968.

    PubMed  CAS  Google Scholar 

  • Valls, E., de la Cruz, X., and Martinez-Balbas, M. A. (2003). The SV40 T antigen modulates CBP histone acetyltransferase activity. Nucleic Acids Res 31, 3114–3122.

    PubMed  CAS  Google Scholar 

  • Van Dyke, T. (2007). p53 and tumor suppression. N Engl J Med 356, 79–81.

    PubMed  Google Scholar 

  • Walter, G., Ruediger, R., Slaughter, C., and Mumby, M. (1990). Association of Protein Phosphatase 2A with Polyoma Virus Medium Tumor Antigen. Proc Nat Acad Sci 87, 2521–2525.

    PubMed  CAS  Google Scholar 

  • Watanabe, G., Howe, A., Lee, R. J., Albanese, C., Shu, I. W., Karnezis, A. N., Zon, L., Kyriakis, J., Rundell, K., and Pestell, R. G. (1996). Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc Natl Acad Sci USA 93, 12861–12866.

    PubMed  CAS  Google Scholar 

  • Wei, W., Jobling, W. A., Chen, W., Hahn, W. C., and Sedivy, J. M. (2003). Abolition of cyclin-dependent kinase inhibitor p16Ink4a and p21Cip1/Waf1 functions permits Ras-induced anchorage-independent growth in telomerase-immortalized human fibroblasts. Mol Cell Biol 23, 2859–2870.

    PubMed  CAS  Google Scholar 

  • Welcker, M., and Clurman, B. E. (2005). The SV40 large T antigen contains a decoy phosphodegron that mediates its interactions with Fbw7/hCdc4. J Biol Chem 280, 7654–7658.

    PubMed  CAS  Google Scholar 

  • Westphal, R. S., Coffee, R. L. J., Marotta, A., Pelech, S. L., and Wadzinski, B. E. (1999). Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. J Biol Chem 274, 687–692.

    PubMed  CAS  Google Scholar 

  • Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L., and Roberts, T. M. (1985). Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315, 239–242.

    PubMed  CAS  Google Scholar 

  • Whyte, P., Buchkovich, K. J., Horowitz, J. M., Friend, S. H., Raybuck, M., Weinberg, R. A., and Harlow, E. (1988a). Association Between An Oncogene And An Anti-Oncogene – The Adenovirus E1a Proteins Bind To The Retinoblastoma Gene-Product. Nature 334, 124–129.

    Google Scholar 

  • Whyte, P., Ruley, H. E., and Harlow, E. (1988b). Two regions of the adenovirus early region 1A proteins are required for transformation. J Virol 62, 257–265.

    Google Scholar 

  • Wu, X., Avni, D., Chiba, T., Yan, F., Zhao, Q., Lin, Y., Heng, H., and Livingston, D. (2004). SV40 T antigen interacts with Nbs1 to disrupt DNA replication control. Genes Dev 18, 1305–1316.

    PubMed  CAS  Google Scholar 

  • Yaciuk, P., Carter, M. C., Pipas, J. M., and Moran, E. (1991). Simian virus 40 large-T antigen expresses a biological activity complementary to the p300-associated transforming function of the adenovirus E1A gene products. Mol Cell Biol 11, 2116–2124.

    PubMed  CAS  Google Scholar 

  • Yang, S. I., Lickteig, R. L., Estes, R., Rundell, K., Walter, G., and Mumby, M. C. (1991). Control of protein phosphatase 2A by simian virus 40 small-t antigen. Mol Cell Biol 11, 1988–1995.

    PubMed  CAS  Google Scholar 

  • Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., Hahn, W. C., Stukenberg, P. T., Shenolikar, S., Uchida, T., et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6, 308–318.

    PubMed  CAS  Google Scholar 

  • Yu, J., Boyapati, A., and Rundell, K. (2001). Critical role for SV40 small-t antigen in human cell transformation. Virology 290, 192–198.

    PubMed  CAS  Google Scholar 

  • Yuan, H., Veldman, T., Rundell, K., and Schlegel, R. (2002). Simian virus 40 small tumor antigen activates AKT and telomerase and induces anchorage-independent growth of human epithelial cells. J Virol 76, 10685–10691.

    PubMed  CAS  Google Scholar 

  • Zalvide, J., and Decaprio, J. A. (1995). Role Of Prb-Related Proteins In Simian-Virus-40 Large-T-Antigen-Mediated Transformation. Mol Cell Biol 15, 5800–5810.

    PubMed  CAS  Google Scholar 

  • Zalvide, J., Stubdal, H., and DeCaprio, J. A. (1998). The J domain of Simian virus 40 large T antigen is required to functionally inactivate RB family proteins. Mol Cell Biol 18, 1408–1415.

    PubMed  CAS  Google Scholar 

  • Zerrahn, J., Knippschild, U., Winkler, T., and Deppert, W. (1993). Independent expression of the transforming amino-terminal domain of SV40 large I antigen from an alternatively spliced third SV40 early mRNA. EMBO J 12, 4739–4746.

    PubMed  CAS  Google Scholar 

  • Zhao, J. J., Gjoerup, O. V., Subramanian, R. R., Cheng, Y., Chen, W., Roberts, T. M., and Hahn, W. C. (2003). Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 3, 483–495.

    PubMed  CAS  Google Scholar 

  • Zhu, J., Rice, P. W., Gorsch, L., Abate, M., and Cole, C. N. (1992). Transformation of a continuous rat embryo fibroblast cell line requires three separate domains of simian virus 40 large T antigen. J Virol 66, 2789–2791.

    Google Scholar 

  • Zhu, J. Y., Abate, M., Rice, P. W., and Cole, C. N. (1991). The ability of simian virus 40 large T antigen to immortalize primary mouse embryo fibroblasts cosegregates with its ability to bind to p53. J Virol 65, 6872–6880.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of our laboratory for valuable suggestions and helpful comments. This work was supported by NIH grant CA118970.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Imperiale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Das, D., Imperiale, M.J. (2009). Transformation by Polyomaviruses. In: Damania, B., Pipas, J.M. (eds) DNA Tumor Viruses. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68945-6_2

Download citation

Publish with us

Policies and ethics