Advertisement

EBV Immunotherapy

  • Leslie E. Huye
  • Cliona M. Rooney
Chapter

Abstract

Epstein–Barr virus (EBV) is associated with a range of malignancies including Burkitt’s lymphoma (BL), Hodgkin’s disease (HD), nasopharyngeal carcinoma (NPC), and lymphoproliferative disease (LPD), and EBV proteins expressed in these malignancies provide targets for cytotoxic T lymphocytes (CTL). Adoptive immunotherapy with ex vivo-generated EBV-specific CTLs has proven safe and effective as prophylaxis and treatment for EBV-driven lymphoproliferative disease after hematopoietic stem cell transplant. EBV-specific CTLs have also shown promise as therapy for other EBV-associated malignancies, but genetic manipulation of the CTL to circumvent immune evasion strategies employed by tumors may be required before CTLs can reliably eliminate tumors in immunocompetent individuals.

Keywords

Hematopoietic Stem Cell Transplant Graft Versus Host Disease Chimeric Antigen Receptor Solid Organ Transplant Recipient Hematopoietic Stem Cell Transplant Recipient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Babcock, G. J., Decker, L. L., Freeman, R. B. and Thorley-Lawson, D. A. (1999) Epstein-barr virus-infected resting memory B cells, not proliferating lymphoblasts, accumulate in the peripheral blood of immunosuppressed patients. The Journal of Experimental Medicine 190, 567–576.PubMedCrossRefGoogle Scholar
  2. Beecham, E., Ma, Q., Ripley, R. and Junghans, R. (2000) Coupling CD28 co-stimulation to immunoglobulin T-cell receptor molecules: The dynamics of T-cell proliferation and death. Journal of Immunotherapy 23, 631–642.PubMedCrossRefGoogle Scholar
  3. Bhatia, S., Ramsay, N. K., Steinbuch, M., Dusenbery, K. E., Shapiro, R. S., Weisdorf, D. J., Robison, L. L., Miller, J. S. and Neglia, J. P. (1996) Malignant neoplasms following bone marrow transplantation. Blood 87, 3633–3639.PubMedGoogle Scholar
  4. Bollard, C. M., Aguilar, L., Straathof, K. C., Gahn, B., Huls, M. H., Rousseau, A., Sixbey, J., Gresik, M. V., Carrum, G., Hudson, M., Dilloo, D., Gee, A., Brenner, M. K., Rooney, C. M. and Heslop, H. E. (2004) Cytotoxic T lymphocyte therapy for epstein-barr virus+ hodgkin's disease. The Journal of Experimental Medicine 200, 1623–1633.PubMedCrossRefGoogle Scholar
  5. Bollard, C. M., Huls, M. H., Buza, E., Weiss, H., Torrano, V., Gresik, M. V., Chang, J., Gee, A., Gottschalk, S., Carrum, G., Brenner, M. K., Rooney, C. M. and Heslop, H. E. (2006) Administration of latent membrane protein 2-specific cytotoxic T lymphocytes to patients with relapsed Epstein-Barr virus-positive lymphoma. Clinical Lymphoma & Myeloma 6, 342–347.CrossRefGoogle Scholar
  6. Bollard, C. M., Kuehnle, I., Leen, A., Rooney, C. M. and Heslop, H. E. (2004) Adoptive immunotherapy for posttransplantation viral infections. Biology of Blood and Marrow Transplantation 10, 143–155.PubMedCrossRefGoogle Scholar
  7. Bollard, C. M., Rossig, C., Calonge, M. J., Huls, M. H., Wagner, H. J., Massague, J., Brenner, M. K., Heslop, H. E. and Rooney, C. M. (2002) Adapting a transforming growth factor beta -related tumor protection strategy to enhance antitumor immunity. Blood 99, 3179–3187.PubMedCrossRefGoogle Scholar
  8. Bollard, C. M., Straathof, K. C., Huls, M. H., Leen, A., Lacuesta, K., Davis, A., Gottschalk, S., Brenner, M. K., Heslop, H. E. and Rooney, C. M. (2004) The generation and characterization of LMP2-Specific CTLs for use as adoptive transfer from patients with relapsed ebv-positive hodgkin disease. Journal of Immunotherapy 27, 317–327.PubMedCrossRefGoogle Scholar
  9. Bonini, C., Ferrari, G., Verzeletti, S., Servida, P., Zappone, E., Ruggieri, L., Ponzoni, M., Rossini, S., Mavilio, F., Traversari, C. and Bordignon, C. (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 276, 1719–1724.PubMedCrossRefGoogle Scholar
  10. Busson, P., Edwards, R. H., Tursz, T. and Raab-Traub, N. (1995) Sequence polymorphism in the Epstein-Barr virus latent membrane protein (LMP)-2 gene. Journal of General Virology 76, 139–145.PubMedCrossRefGoogle Scholar
  11. Chen, J., Zheng, X., Brown, E. J. and Schreiber, S. L. (1995) Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289- kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue. Proceedings of the National Academy of Sciences 92, 4947–4951.Google Scholar
  12. Chua, D., Huang, J., Zheng, B., Lau, S., Luk, W., Kwong, D., Sham, J., Moss, D., Yuen, K., IM, S. and Ng, M. (2001) Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. International Journal of Cancer 94, 73–80.CrossRefGoogle Scholar
  13. Clave, E., Agbalika, F., Bajzik, V., Peffault de Latour, R., Trillard, M., Rabian, C., Scieux, C., Devergie, A., Socie, G., Ribaud, P., Ades, L., Ferry, C., Gluckman, E., Charron, D., Esperou, H., Toubert, A. and Moins-Teisserenc, H. (2004) Epstein-Barr virus (EBV) reactivation in allogeneic stem-cell transplantation: relationship between viral load, EBV-specific T cell reconstitution and rituximab therapy. Transplantation 77, 76–84.PubMedCrossRefGoogle Scholar
  14. Cole, C., Qiao, J., Kottke, T., Diaz, R. M., Ahmed, A., Sanchez-Perez, L., Brunn, G., Thompson, J., Chester, J. and Vile, R. G. (2005) Tumor-targeted, systemic delivery of therapeutic viral vectors using hitchhiking on antigen-specific T cells. Nature Medicine 11, 1073–1081.PubMedCrossRefGoogle Scholar
  15. Comoli, P., Labirio, M., Basso, S., Baldanti, F., Grossi, P., Furione, M., Vigano, M., Fiocchi, R., Rossi, G., Ginevri, F., Gridelli, B., Moretta, A., Montagna, D., Locatelli, F., Gerna, G. and Maccario, R. (2002) Infusion of autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for prevention of EBV-related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication. Blood 99, 2592–2598.PubMedCrossRefGoogle Scholar
  16. Comoli, P., Pedrazzoli, P., Maccario, R., Basso, S., Carminati, O., Labirio, M., Schiavo, R., Secondino, S., Frasson, C., Perotti, C., Moroni, M., Locatelli, F. and Siena, S. (2005) Cell therapy of stage IV nasopharyngeal carcinoma with autologous epstein-barr virus-targeted cytotoxic T lymphocytes. Journal of Clinical Oncology 23, 8942–8949.PubMedCrossRefGoogle Scholar
  17. Curtis, R. E., Travis, L. B., Rowlings, P. A., Socie, G., Kingma, D. W., Banks, P. M., Jaffe, E. S., Sale, G. E., Horowitz, M. M., Witherspoon, R. P., Shriner, D. A., Weisdorf, D. J., Kolb, H. J., Sullivan, K. M., Sobocinski, K. A., Gale, R. P., Hoover, R. N., Fraumeni, J. F., Jr. and Deeg, H. J. (1999) Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study. Blood 94, 2208–2216.PubMedGoogle Scholar
  18. Devita, V., Chapner, B., Livingston, D. and Oliverio, V. (1971) Anergy and tryptophan metabolism in Hodgkin's disease. The American Journal of Clinical Nutrition 24, 835–840.PubMedGoogle Scholar
  19. Dotti, G., Savoldo, B., Pule, M., Straathof, K. C., Biagi, E., Yvon, E., Vigouroux, S., Brenner, M. K. and Rooney, C. M. (2005) Human cytotoxic T lymphocytes with reduced sensitivity to Fas-induced apoptosis. Blood 105, 4677–4684.PubMedCrossRefGoogle Scholar
  20. Dudley, M., Wunderlich, J., Yang JC, Sherry, R., Topalian, S., Restifo, N., Royal RE, Kammula, U., White, D., Mavroukakis, S., Rogers, L., Gracia GL, Jones, S., Mangiameli, D., Pelletier, M., Gea-Banacloche, J., Robinson, M., Berman, D., Filie, A., Abati, A. and Rosenberg, S. (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. Journal of Clinical Oncology 23, 2346–2357.PubMedCrossRefGoogle Scholar
  21. Eshhar, Z., Waks, T., Gross, G. and Schindler, D. G. (1993) Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the {gamma} or {zeta} subunits of the immunoglobulin and T-cell receptors. Proceedings of the National Academy of Sciences 90, 720–724.Google Scholar
  22. Estevez, M., Ballart, I., de Macedo, M., Magnasco, H., Nicastro, M. and Sen, L. (1988) Dysfunction of monocytes in Hodgkin's disease by excessive production of PGE-2 in long-term remission patients. Cancer 62, 2128–2133.PubMedCrossRefGoogle Scholar
  23. Fallarino, F., Grohmann, U., You, S., McGrath, B., Cavener, D., Vacca, C., Orabona, C., Bianchi, R., Belladonna, M., Volpi, C., Santamaria, P., Fioretti, M. and Puccetti, P. (2006) The combined effects of tryptophan starvation and tryptophan catabolites down-regulate t cell receptor {zeta}-chain and induce a regulatory phenotype in naive T cells. Journal of Immunology 176, 6752–6761.Google Scholar
  24. Finney, H. M., Lawson, A. D. G., Bebbington, C. R. and Weir, A. N. (1998) Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. The Journal of Immunology 161, 2791–2797.PubMedGoogle Scholar
  25. Gahn, B., Siller-Lopez, F., Pirooz, A. D., Yvon, E., Gottschalk, S., Longnecker, R., Brenner, M. K., Heslop, H. E., Aguilar-Cordova, E. and Rooney, C. M. (2001) Adenoviral gene transfer into dendritic cells efficiently amplifies the immune response to LMP2A antigen: a potential treatment strategy for Epstein-Barr virus-positive Hodgkin's lymphoma. International Journal of Cancer 93, 706–713.CrossRefGoogle Scholar
  26. Gan, Y. J., Razzouk, B. I., Su, T. and Sixbey, J. W. (2002) A defective, rearranged epstein-barr virus genome in EBER-negative and EBER-positive hodgkin's disease. American Journal of Pathology 160, 781–786.PubMedCrossRefGoogle Scholar
  27. Ganne, V., Siddiqi, N., Kamaplath, B., Chang, C. C., Cohen, E. P., Bresnahan, B. A. and Hariharan, S. (2003) Humanized anti-CD20 monoclonal antibody (Rituximab) treatment for post-transplant lymphoproliferative disorder*. Clinical Transplantation 17, 417–422.PubMedCrossRefGoogle Scholar
  28. Gattinoni, L., Powell, D. J., Rosenberg, S. A. and Restifo, N. P. (2006) Adoptive immunotherapy for cancer: building on success. Nature Reviews Immunology 6, 383–393.PubMedCrossRefGoogle Scholar
  29. Geiger, T. L., Nguyen, P., Leitenberg, D. and Flavell, R. A. (2001) Integrated src kinase and costimulatory activity enhances signal transduction through single-chain chimeric receptors in T lymphocytes. Blood 98, 2364–2371.PubMedCrossRefGoogle Scholar
  30. Gottschalk, S., Ng, C. Y. C., Perez, M., Smith, C. A., Sample, C., Brenner, M. K., Heslop, H. E. and Rooney, C. M. (2001) An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood 97, 835–843.PubMedCrossRefGoogle Scholar
  31. Gustafsson, A., Levitsky, V., Zou, J. Z., Frisan, T., Dalianis, T., Ljungman, P., Ringden, O., Winiarski, J., Ernberg, I. and Masucci, M. G. (2000) Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells. Blood 95, 807–814.PubMedGoogle Scholar
  32. Haque, T., Amlot, P. L., Helling, N., Thomas, J. A., Sweny, P., Rolles, K., Burroughs, A. K., Prentice, H. G. and Crawford, D. H. (1998) Reconstitution of EBV-specific t cell immunity in solid organ transplant recipients. The Journal of Immunology 160, 6204–6209.PubMedGoogle Scholar
  33. Haque, T., Wilkie, G. M., Taylor, C., Amlot, P. L., Murad, P., Iley, A., Dombagoda, D., Britton, K. M., Swerdlow, A. J. and Crawford, D. H. (2002) Treatment of Epstein-Barr-virus-positive post-transplantation lymphoproliferative disease with partly HLA-matched allogeneic cytotoxic T cells. The Lancet 360, 436–442.CrossRefGoogle Scholar
  34. Heslop, H. E., Brenner, M. K., Rooney, C. M., Papadopoulos, E. B. and O'Reilly, R. J. (1994) Donor T Cells to Treat EBV-Associated Lymphoma. The New England Journal of Medicine 331, 679–680.PubMedCrossRefGoogle Scholar
  35. Heslop, H. E., Ng, C. Y., Li, C., Smith, C. A., Loftin, S. K., Krance, R. A., Brenner, M. K. and Rooney, C. M. (1996) Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nature Medicine 2, 551–555.PubMedCrossRefGoogle Scholar
  36. Ho, M., Jaffe, R., Miller, G., Breinig, M. K., Drummer, J. S., Makowka, L., Atchison, R. W., Karrer, F., Nalesnik, M. A. and Starzl, T. E. (1988) The frequency of Epstein-Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestations in children. Transplantation 45, 719–727.PubMedCrossRefGoogle Scholar
  37. Hombach, A., Sent, D., Schneider, C., Heuser, C., Koch, D., Pohl, C., Seliger, B. and Abken, H. (2001) T-Cell activation by recombinant receptors: CD28 costimulation is required for interleukin 2 secretion and receptor-mediated T-cell proliferation but does not affect receptor-mediated target cell lysis. Cancer Research 61, 1976–1982.PubMedGoogle Scholar
  38. Khanim, F., Yao, Q. Y., Niedobitek, G., Sihota, S., Rickinson, A. B. and Young, L. S. (1996) Analysis of Epstein-Barr virus gene polymorphisms in normal donors and in virus-associated tumors from different geographic locations. Blood 88, 3491–3501.PubMedGoogle Scholar
  39. Khanna, R., Bell, S., Sherritt, M., Galbraith, A., Burrows, S. R., Rafter, L., Clarke, B., Slaughter, R., Falk, M. C., Douglass, J., Williams, T., Elliott, S. L. and Moss, D. J. (1999) Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proceedings of the National Academy of Sciences 96, 10391–10396.Google Scholar
  40. Knaus, P. I., Lindemann, D., DeCoteau, J. F., Perlman, R., Yankelev, H., Hille, M., Kadin, M. E. and Lodish, H. F. (1996) A dominant inhibitory mutant of the type II transforming growth factor beta receptor in the malignant progression of a cutaneous T-cell lymphoma. Molecular and Cellular Biology 16, 3480–3489.PubMedGoogle Scholar
  41. Kuehnle, I., Huls, M. H., Liu, Z., Semmelmann, M., Krance, R. A., Brenner, M. K., Rooney, C. M. and Heslop, H. E. (2000) CD20 monoclonal antibody (rituximab) for therapy of Epstein-Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood 95, 1502–1505.PubMedGoogle Scholar
  42. Lacuesta, K., Buza, E., Hauser, H., Granville, L., Pule, M., Corboy, G., Finegold, M., Weiss, H., Chen, S. Y., Brenner, M. K., Heslop, H. E., Rooney, C. M. and Bollard, C. M. (2006) Assessing the safety of cytotoxic T lymphocytes transduced with a dominant negative transforming growth factor-beta receptor. Journal of Immunotherapy 29, 250–260.PubMedCrossRefGoogle Scholar
  43. Landais, E., Saulquin, X. and Houssaint, E. (2005) The human T cell immune response to Epstein-Barr virus. The International Journal of Developmental Biology 49, 285–292.PubMedCrossRefGoogle Scholar
  44. Lau, K., Cheng, S., Lo, K., Lee, S., Woo, J., van Hasselt, C., Lee, S., Rickinson, A. and Ng, M. (2007) Increase in circulating Foxp3+CD4+CD25(high) regulatory T cells in nasopharyngeal carcinoma patients. British Journal of Cancer 96, 617–622.PubMedCrossRefGoogle Scholar
  45. Lee, T. C., Goss, J. A., Rooney, C. M., Heslop, H. E., Barshes, N. R., Caldwell, Y. M., Gee, A. P., Scott, J. D. and Savoldo, B. (2006a) Quantification of a low cellular immune response to aid in identification of pediatric liver transplant recipients at high-risk for EBV infection. Clinical Transplantation 20, 689–694.Google Scholar
  46. Lee, T. C., Savoldo, B., Barshes, N. R., Rooney, C. M., Heslop, H. E., Gee, A. P., Caldwell, Y., Scott, J. D. and Goss, J. A. (2006b) Use of cytokine polymorphisms and Epstein-Barr virus viral load to predict development of post-transplant lymphoproliferative disorder in paediatric liver transplant recipients. Clinical Transplantation 20, 389–393.Google Scholar
  47. Lee, S., Thomas, W. A., Murray, R. J., Khanim, F., Kaur, S., Young, L. S., Rowe, M., Kurilla, M. and Rickinson, A. B. (1993) HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. Journal of Virology 67, 7428–7435.PubMedGoogle Scholar
  48. Leen, A. M., Myers, G. D., Sili, U., Huls, M. H., Weiss, H., Leung, K. S., Carrum, G., Krance, R. A., Chang, C. C., Molldrem, J. J., Gee, A. P., Brenner, M. K., Heslop, H. E., Rooney, C. M. and Bollard, C. M. (2006) Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nature Medicine 12, 1160–1166.PubMedCrossRefGoogle Scholar
  49. Levitskaya, J., Coram, M., Levitsky, V., Imreh, S., Steigerwald-Mullen, P. M., Klein, G., Kurilla, M. G. and Masucci, M. G. (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375, 685–688.PubMedCrossRefGoogle Scholar
  50. Longnecker, R. (2000) Epstein-Barr virus latency: LMP2, a regulator or means for Epstein-Barr virus persistence? Advances in Cancer Research 79, 175–200.PubMedCrossRefGoogle Scholar
  51. Lucas, K.G., Burton, R. L., Zimmerman, S. E., Wang, J., Cornetta, K. G., Robertson, K. A., Lee, C. H. and Emanuel, D. J. (1998) Semiquantitative Epstein-Barr Virus (EBV) Polymerase chain reaction for the determination of patients at risk for EBV-induced lymphoproliferative disease after stem cell transplantation. Blood 91, 3654–3661.PubMedGoogle Scholar
  52. Marshall, N. A., Christie, L. E., Munro, L. R., Culligan, D. J., Johnston, P. W., Barker, R. N. and Vickers, M. A. (2004) Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103, 1755–1762.PubMedCrossRefGoogle Scholar
  53. Mellor, A. L. and Munn, D. H. (2004) IDO Expression by dendritic cells: tolerance and tryptophan catabolism. Nature Reviews Immunology 4, 762–774.PubMedCrossRefGoogle Scholar
  54. Metes, D., Storkus, W., Zeevi, A., Patterson, K., Logar, A., Rowe, D., Nalesnik, M. A., Fung, J. J. and Rao, A. S. (2000) Ex vivo generation of effective Epstein-Barr virus (EBV)-specific CD*+ cytotoxic T lymphocytes from the peripheral blood of immunocompetent Epstein Barr virus-seronegative individuals. Transplantation 70, 1507–1515.PubMedCrossRefGoogle Scholar
  55. Milpied, N., Vasseur, B., Parquet, N., Garnier, J. L., Antoine, C., Quartier, P., Carret, A. S., Bouscary, D., Faye, A., Bourbiquot, B., Requerre, Y., Stoppa, A. M., Bourguard, P., Hurault de Lingy, B., Dubief, F., Mathieu-Boue, A. and Leblond, V. (2000) Humanized anti-CD20 monoclonal antibody (Rituximab) in post transplant B-lymphoproliferative disorder: a retrospective analysis on 32 patients. Annual of Oncology11(supplement I), 113–116.CrossRefGoogle Scholar
  56. Muller, A. J. and Scherle, P. A. (2006) Targeting the mechanisms of tumoral immune tolerance with small-molecule inhibitors. Nature Review Cancer 6, 613–625.CrossRefGoogle Scholar
  57. Munn, D. H., Sharma, M. D., Baban, B., Harding, H. P., Zhang, Y., Ron, D. and Mellor, A. L. (2005) GCN2 Kinase in T Cells Mediates Proliferative Arrest and Anergy Induction in Response to Indoleamine 2,3-Dioxygenase. Immunity 22, 633–642.PubMedCrossRefGoogle Scholar
  58. Munn, D. H., Zhou, M., Attwood, J. T., Bondarev, I., Conway, S. J., Marshall, B., Brown, C. and Mellor, A. L. (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193.PubMedCrossRefGoogle Scholar
  59. Murray, P. G., Constandinou, C. M., Crocker, J., Young, L. S. and Ambinder, R. F. (1998) Analysis of major histocompatibility complex class I, TAP expression, and LMP2 epitope sequence in epstein-barr virus-positive hodgkin's disease. Blood 92, 2477–2483.PubMedGoogle Scholar
  60. Nikiforow S, Bottomly, K. and Miller, G. (2001) CD4+ T-cell effectors inhibit Epstein-Barr virus-induced B-cell proliferation. Journal of Virology 75, 3740–3752.PubMedCrossRefGoogle Scholar
  61. Nikiforow S, Bottomly, K., Miller, G. and Munz, C. (2003) Cytolytic CD4+-T-Cell clones reactive to EBNA1 inhibit Epstein-Barr virus-induced B-Cell Proliferation. Journal of Virology 77, 12088–12104.PubMedCrossRefGoogle Scholar
  62. Paludan, C., Bickham, K., Nikiforow, S., Tsang, M. L., Goodman, K., Hanekom, W. A., Fonteneau, J. F., Stevanovic, S. and Munz, C. (2002) Epstein-Barr Nuclear Antigen 1-Specific CD4+ Th1 Cells Kill Burkitt's Lymphoma Cells. The Journal of Immunology 169, 1593–1603.PubMedGoogle Scholar
  63. Papadopoulos, E. B., Ladanyi, M., Emanuel, D., Mackinnon, S., Boulad, F., Carabasi, M. H., Castro-Malaspina, H., Childs, B. H., Gillio, A. P., Small, T. N., Young, J. W., Kernan, N. A. and O'Reilly, R. J. (1994) Infusions of Donor Leukocytes to Treat Epstein-Barr Virus-Associated Lymphoproliferative Disorders after Allogeneic Bone Marrow Transplantation. The New England Journal of Medicine 330, 1185–1191.PubMedCrossRefGoogle Scholar
  64. Park, K., Kim, S., Bang, Y., Park, J., Kim, N. K., Roberts, A. B. and Sporn, M. B. (1994) Genetic Changes in the Transforming Growth Factor {beta} (TGF-{beta}) Type II Receptor Gene in Human Gastric Cancer Cells: Correlation with Sensitivity to Growth Inhibition by TGF-{beta}. Proceedings of the National Academy of Sciences 91, 8772–8776.Google Scholar
  65. Passwell, J., Levanon, M., Davidsohn, J. and Ramot, B. (1983) Monocyte PGE2 secretion in Hodgkin's disease and its relation to decreased cellular immunity. Clinical and Experimental Immunology 51, 68Google Scholar
  66. Pegtel, D., Middeldorp, J. and Thorley-Lawson, D. A. (2004) Epstein-Barr virus infection in ex vivo tonsil epithelial cell cultures of asymptomatic carriers. Journal of Virology 78, 12613–12624.PubMedCrossRefGoogle Scholar
  67. Pule, M. A., Straathof, K. C., Dotti, G., Heslop, H. E., Rooney, C. M. and Brenner, M. K. (2005) A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Molecular Therapy 12, 933–941.PubMedCrossRefGoogle Scholar
  68. Ranieri, E., Herr, W., Gambotto, A., Olson, W., Rowe, D., Robbins, P. D., Kierstead, L. S., Watkins, S. C., Gesualdo, L. and Storkus, W. J. (1999) Dendritic cells transduced with an adenovirus vector encoding Epstein-Barr virus latent membrane protein 2B: a new modality for vaccination. The Journal of Virology 73, 10416–10425.Google Scholar
  69. Redchenko, I. V. and Rickinson, A. B. (1999) Accessing epstein-barr virus-specific t-cell memory with peptide-loaded dendritic cells. The Journal of Virology 73, 334–342.Google Scholar
  70. Regn, S., Raffegerst, S., Chen, X., Schendel, D., Kolb, H. J. and Roskrow, M. (2001) Ex vivo generation of cytotoxic T lymphocytes specific for one or two distinct viruses for the prophylaxis of patients receiving an allogeneic bone marrow transplant. Bone marrow Transplant 27, 53–64.PubMedCrossRefGoogle Scholar
  71. Renner, C., Ohnesorge, S., Held, G., Bauer, S., Jung, W., Pfitzenmeier, J. P. and Pfreundschuh, M. (1996) T cells from patients with Hodgkin's disease have a defective T-cell receptor zeta chain expression that is reversible by T-cell stimulation with CD3 and CD28. Blood 88, 236–241.PubMedGoogle Scholar
  72. Rickinson, A. B. and Kieff, E. (2001) Epstein-Barr virus. In: Knipe, D. M. and Howley, P. M. (Eds.) Fields Virology. Lippincott Williams & Williams, pp. 2575–2628.Google Scholar
  73. Rickinson, A. B. and Moss, D. J. (1997) Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annual Review of Immunology 15, 405–431.PubMedCrossRefGoogle Scholar
  74. Rodriguez, P. C., Quiceno, D. G. and Ochoa, A. C. (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573.PubMedCrossRefGoogle Scholar
  75. Rooney, C. M., Loftin, S. K., Holladay, M. S., Brenner, M. K., Krance, R. A. and Heslop, H. E. (1995a) Early identification of Epstein-Barr virus-associated post-transplantation lymphoproliferative disease. British Journal of Haematology 89, 98–103.Google Scholar
  76. Rooney, C. M., Smith, C., Ng, C. Y., Loftin, S., Li, C., Krance, R. A., Brenner, M. K. and Heslop, H. E. (1995b) Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet 345, 9–13.Google Scholar
  77. Rooney, C. M., Smith, C. A., Ng, C. Y. C., Loftin, S. K., Sixbey, J. W., Gan, Y., Srivastava, D. K., Bowman, L. C., Krance, R. A., Brenner, M. K. and Heslop, H. E. (1998) Infusion of Cytotoxic T Cells for the Prevention and Treatment of Epstein-Barr Virus-Induced Lymphoma in Allogeneic Transplant Recipients. Blood 92, 1549–1555.PubMedGoogle Scholar
  78. Rose, G., Green, M., Webber, S., Ellis, D., Reyes, J. and Rowe, D. (2001) Pediatric solid-organ transplant recipients carry chronic loads of Epstein-Barr virus exclusively in the immunoglobulin d-negative b-cell compartment. Journal of Clinical Microbiology 39, 1407–1415.PubMedCrossRefGoogle Scholar
  79. Roskrow, M. A., Suzuki, N., Gan, Y. j., Sixbey, J. W., Ng, C. Y. C., Kimbrough, S., Hudson, M., Brenner, M. K., Heslop, H. E. and Rooney, C. M. (1998) Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed hodgkin's disease. Blood 91, 2925–2934.PubMedGoogle Scholar
  80. Rossig, C., Bollard, C. M., Nuchtern, J. G., Rooney, C. M. and Brenner, M. K. (2002) Epstein-Barr virus-specific human T lymphocytes expressing antitumor chimeric T-cell receptors: potential for improved immunotherapy. Blood 99, 2009–2016.PubMedCrossRefGoogle Scholar
  81. Rossig, C. and Brenner, M. K. (2003) Chimeric T-Cell receptors for the targeting of cancer cells. Acta haematologica 110, 154–159.PubMedCrossRefGoogle Scholar
  82. Savoldo, B., Cubbage, M. L., Durett, A. G., Goss, J., Huls, M. H., Liu, Z., Teresita, L., Gee, A. P., Ling, P. D., Brenner, M. K., Heslop, H. E. and Rooney, C. M. (2002) Generation of EBV-Specific CD4+ Cytotoxic T Cells from Virus Naive Individuals. The Journal of Immunology 168, 909–918.PubMedGoogle Scholar
  83. Savoldo, B., Goss, J. A., Hammer, M. M., Zhang, L., Lopez, T., Gee, A. P., Lin, Y. F., Quiros-Tejeira, R. E., Reinke, P., Schubert, S., Gottschalk, S., Finegold, M. J., Brenner, M. K., Rooney, C. M. and Heslop, H. E. (2006) Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood 108, 2942–2949.PubMedCrossRefGoogle Scholar
  84. Savoldo, B., Goss, J., Liu, Z., Huls, M. H., Doster, S., Gee, A. P., Brenner, M. K., Heslop, H. E. and Rooney, C. M. (2001) Generation of autologous epstein barr virus (EBV)-specific cytotoxic T cells (CTL) for adoptive immunotherapy in solid organ transplant recipients. Transplantation 72, 1078–1086.PubMedCrossRefGoogle Scholar
  85. Savoldo, B., Rooney, C. M., Dilloo, D., Abken, H., Hornbach, A., Foster, A., Zhang, L., Heslop, H. E., Brenner, M. K. and Dotti, G. (2007) Epstein Barr virus-specific cytotoxic T lymphocytes expressing the anti-CD30{zeta} artificial chimeric T-cell receptor for immunotherapy of Hodgkin's disease. Blood 110, 2620–2630.Google Scholar
  86. Sherritt, M. A., Bharadwaj, M., Burrows, J. M., Morrison, L. E., Elliott, S. L., Davis, J. E., Kear, L. M., Slaughter, R. E., Bell, S. C., Galbraith, A. J., Khanna, R. and Moss, D. J. (2003) Reconstitution of the latent T-lymphocyte response to Epstein-Barr virus is coincident with long-term recovery from posttransplant lymphoma after adoptive immunotherapy. Transplantation 75, 1556–1560.PubMedCrossRefGoogle Scholar
  87. Slivnick, D. J., Ellis, T. M., Nawrocki, J. F. and Fisher, R. I. (1990) The impact of Hodgkin's disease on the immune system. Seminars in Oncology 17, 673–682.PubMedGoogle Scholar
  88. Sokal, E. M., Antunes, H., Beguin, C., Bodeus, M., Wallemacq, P., de Goyet, J. d. V., Reding, R., Janssen, M., Buts, J. P. and Otte, J. B. (1997) Early signs and risk factors for the increased incidence of Epstein-Barr virus-related posttransplant lymphoproliferative diseases in pediatric liver transplant recipients treated with tacrolimus. Transplantation 64, 1438–1442.PubMedCrossRefGoogle Scholar
  89. Stancovski, I., Schindler, D. G., Waks, T., Yarden, Y., Sela, M. and Eshhar, Z. (1993) Targeting of T lymphocytes to Neu/HER2-expressing cells using chimeric single chain Fv receptors. The Journal of Immunology 151, 6577–6582.PubMedGoogle Scholar
  90. Stevens, S. J. C., Verschuuren, E. A. M., Pronk, I., van der Bij, W., Harmsen, M. C., The, T. H., Meijer, C. J. L. M., van den Brule, A. J. C. and Middeldorp, J. M. (2001) Frequent monitoring of Epstein-Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients. Blood 97, 1165–1171.PubMedCrossRefGoogle Scholar
  91. Straathof, K. C., Spencer, D. M., Sutton, R. E. and Rooney, C. M. (2003) Suicide genes as safety switches in T lymphocytes. Cytotherapy 5, 227–230.PubMedCrossRefGoogle Scholar
  92. Straathof, K. C. M., Bollard, C. M., Popat, U., Huls, M. H., Lopez, T., Morriss, M. C., Gresik, M. V., Gee, A. P., Russell, H. V., Brenner, M. K., Rooney, C. M. and Heslop, H. E. (2005b) Treatment of nasopharyngeal carcinoma with Epstein-Barr virus-specific T lymphocytes. Blood 105, 1898–1904.Google Scholar
  93. Straathof, K. C., Leen, A. M., Buza, E. L., Taylor, G., Huls, M. H., Heslop, H. E., Rooney, C. M. and Bollard, C. M. (2005a) Characterization of Latent Membrane Protein 2 Specificity in CTL Lines from Patients with EBV-Positive Nasopharyngeal Carcinoma and Lymphoma. The Journal of Immunology 175, 4137–4147.Google Scholar
  94. Su, Z., Peluso, M. V., Raffegerst, S. H., Schendel, D. J. and Roskrow, M. A. (2001) The generation of LMP2a-specific cytotoxic T lymphocytes for the treatment of patients with Epstein-Barr virus-positive Hodgkin disease. European Journal of Immunology 31, 947–958.PubMedCrossRefGoogle Scholar
  95. Sun, Q., Burton, R., Reddy, V. and Lucas, K. G. (2002) Safety of allogeneic Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for patients with refractory EBV-related lymphoma. British Journal of Haematology 118, 799–808.PubMedCrossRefGoogle Scholar
  96. Sun, Q., Pollok, K. E., Burton, R. L., Dai, L. J., Britt, W., Emanuel, D. J. and Lucas, K. G. (1999) Simultaneous Ex Vivo Expansion of Cytomegalovirus and Epstein-Barr Virus-Specific Cytotoxic T Lymphocytes Using B-Lymphoblastoid Cell Lines Expressing Cytomegalovirus pp65. Blood 94, 3242–3250.PubMedGoogle Scholar
  97. Thorley-Lawson, D. A. and Gross, A. (2004) Persistence of the Epstein-Barr Virus and the Origins of Associated Lymphomas. The New England Journal of Medicine 350, 1328–1337.PubMedCrossRefGoogle Scholar
  98. Tiberghien, P., Ferrand, C., Lioure, B., Milpied, N., Angonin, R., Deconinck, E., Certoux, J. M., Robinet, E., Saas, P., Petracca, B., Juttner, C., Reynolds, C. W., Longo, D. L., Herve, P. and Cahn, J. Y. (2001) Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft. Blood 97, 63–72.PubMedCrossRefGoogle Scholar
  99. Uyttenhove, C., Pilotte, L., Theate, I., Stroobant, V., Colau, D., Parmentier, N., Boon, T. and Van den Eynde, B. J. (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Medicine 9, 1269–1274.PubMedCrossRefGoogle Scholar
  100. Voo, K. S., Fu, T., Wang, H. Y., Tellam, J., Heslop, H. E., Brenner, M. K., Rooney, C. M. and Wang, R. F. (2004) Evidence for the Presentation of Major Histocompatibility Complex Class I-restricted Epstein-Barr Virus Nuclear Antigen 1 Peptides to CD8+ T Lymphocytes. The Journal of Experimental Medicine 199, 459–470.PubMedCrossRefGoogle Scholar
  101. Wagner, H. J., Bollard, C. M., Vigouroux, S. p., Huls, M. H., Anderson, R., Prentice, H. G., Brenner, M. K., Heslop, H. E. and Rooney, C. M. (2004a) A strategy for treatment of Epstein-Barr virus-positive Hodgkin's disease by targeting interleukin 12 to the tumor environment using tumor antigen-specific T cells. Cancer Gene Therapy 11, 81–91.Google Scholar
  102. Wagner, H. J., Cheng, Y. C., Huls, M. H., Gee, A. P., Kuehnle, I., Krance, R. A., Brenner, M. K., Rooney, C. M. and Heslop, H. E. (2004b) Prompt versus preemptive intervention for EBV lymphoproliferative disease. Blood 103, 3979–3981.Google Scholar
  103. Walker, R. E., Bechtel, C. M., Natarajan, V., Baseler, M., Hege, K. M., Metcalf, J. A., Stevens, R., Hazen, A., Blaese, R. M., Chen, C. C., Leitman, S. F., Palensky, J., Wittes, J., Davey, R. T., Jr., Falloon, J., Polis, M. A., Kovacs, J. A., Broad, D. F., Levine, B. L., Roberts, M. R., Masur, H. and Lane, H. C. (2000) Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood 96, 467–474.PubMedGoogle Scholar
  104. Wieser, R., Attisano, L., Wrana, J. and Massague, J. (1993) Signaling activity of transforming growth factor beta type II receptors lacking specific domains in the cytoplasmic region. Molecular and Cellular Biology 13, 7239–7247.PubMedGoogle Scholar
  105. Wohlfert, E. A. and Clark, R. B.`Vive la Resistance!' - the PI3K-Akt pathway can determine target sensitivity to regulatory T cell suppression. Trends in Immunology In Press, Corrected Proof,Google Scholar
  106. Yang, J., Lemas, V. M., Flinn, I. W., Krone, C. and Ambinder, R. F. (2000) Application of the ELISPOT assay to the characterization of CD8+ responses to Epstein-Barr virus antigens. Blood 95, 241–248.PubMedGoogle Scholar
  107. Yotnda, P., Savoldo, B., Charlet-Berguerand, N., Rooney, C. and Brenner, M. (2004) Targeted delivery of adenoviral vectors by cytotoxic T cells. Blood 104, 2272–2280.PubMedCrossRefGoogle Scholar
  108. Zhang, Q., Yang, X., Pins, M., Javonovic, B., Kuzel, T., Kim, S. J., Parijs, L. V., Greenberg, N. M., Liu, V., Guo, Y. and Lee, C. (2005) Adoptive Transfer of Tumor-Reactive Transforming Growth Factor-{beta}-Insensitive CD8+ T Cells: Eradication of Autologous Mouse Prostate Cancer. Cancer Research 65, 1761–1769.PubMedCrossRefGoogle Scholar
  109. Zou, W. (2006) Regulatory T cells, tumour immunity and immunotherapy. Nature Reviews Immunology 6, 295–307.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Departments of Pediatrics; Immunology; and Virology; Baylor College of MedicienceThe Methodist Hospital and Texas Children’s HospitalHoustonUSA

Personalised recommendations