Advertisement

Epstein–Barr Virus Entry

  • Richard Longnecker
  • Lindsey Hutt-Fletcher
  • Theodore Jardetzky
Chapter

Epstein–Barr Virus – Introduction

Epstein–Barr virus (EBV), also designated human herpesvirus 4 (HHV4), is one of eight human herpesviruses that establish latent infections in human hosts (reviewed in Pellett and Roizman 2007). Herpesviruses are organized into three subfamilies (α, β, γ) depending on biological characteristics and evolutionary relatedness. All share many similar properties including the ability to enter host cells via a multistep process that culminates with the fusion of the virion envelope with a host membrane releasing the capsid into the cytoplasm to initiate virus infection. There are two γ-herpesvirus that infect humans – EBV and the recently identified HHV8. Research on EBV has considerably expanded since its discovery and link with Burkitt’s lymphoma (Burkitt 1962; Epstein et al. 1964). Along with HHV8, EBV is the only herpesvirus with an etiological role in human malignancies. It is almost universally found in endemic Burkitt’s lymphoma and undifferentiated...

Keywords

Membrane Fusion Vesicular Stomatitis Virus Gp42 Binding Epithelial Cell Infection Gp42 Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Research in the Jardetzky and Longnecker Laboratories was supported by Public Health Service grants CA93444 and CA117794. Work in the Hutt-Fletcher laboratory was supported by AI20662 and DE16669. The authors would like to thank current and former members of their laboratories for their contributions to the work described, as well as our many colleagues throughout the world who have contributed to understanding the entry of EBV as well as herpesviruses in general.

References

  1. Baer, R., Bankier , A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Seguin, C., Tuffnell, P. S. and Barrell, B. G. (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature. 310, 207–211.PubMedGoogle Scholar
  2. Baghian, A., Huang, L., Newman, S., Jayachandra, S. and Kousoulas, K. G. (1993) Truncation of the carboxy-terminal 28 amino acids of glycoprotein B specified by herpes simplex virus type 1 mutant amb1511-7 causes extensive cell fusion. Journal of Virology. 67, 2396–2401.PubMedGoogle Scholar
  3. Bayliss, G. J. and Wolf, H. (1980) Epstein-Barr virus induced cell fusion. Nature. 287, 164–165.PubMedGoogle Scholar
  4. Beisel, C., Tanner, J., Matsuo, T., Thorley-Lawson, D., Kezdy, F. and Kieff, E. (1985) Two major outer envelope glycoproteins of Epstein-Barr virus are encoded by the same gene. Journal of Virology. 54, 665–674.PubMedGoogle Scholar
  5. Birkenbach, M., Tong, X., Bradbury, L. E., Tedder, T. F. and Kieff, E. (1992) Characterization of an Epstein-Barr virus receptor on human epithelial cells. Journal of Experimental Medicine. 176, 1405–1414.PubMedGoogle Scholar
  6. Borza, C. and Hutt-Fletcher, L. M. (1998) Epstein-Barr virus recombinant lacking expression of glycoprotein gp150 infects B cells normally but is enhanced for infection of the epithelial line SVKCR2. Journal of Virology. 72, 7577–7582.PubMedGoogle Scholar
  7. Borza, C. M. and Hutt-Fletcher, L. M. (2002) Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nature Medicine. 8, 594–599.PubMedGoogle Scholar
  8. Borza, C. M., Morgan, A. J., Turk, S. M. and Hutt-Fletcher, L. M. (2004) Use of gHgL for attachment of Epstein-Barr virus to epithelial cells compromises infection. Journal of Virology. 78, 5007–5014.PubMedGoogle Scholar
  9. Bouillie, S., Barel, M., Drane, P., Cassinat, B., Balbo, M., Holers, V. M. and Frade, R. (1995) Epstein-Barr virus/C3d receptor (CR2, CD21) activated by its extracellular ligands regulates pp105 phosphorylation through two distinct pathways. European Journal of Immunology 25, 2661–2667.PubMedGoogle Scholar
  10. Brack, A. R., Dijkstra, J. M., Granzow, H., Klupp, B. G. and Mettenleiter, T. C. (1999) Inhibition of virion maturation by simultaneous deletion of glycoproteins E, I, and M of pseudorabies virus. Journal of Virology. 73, 5364–5372.PubMedGoogle Scholar
  11. Burkitt, D. (1962) A children's cancer dependent on climatic factors. Nature. 194, 232–234.PubMedGoogle Scholar
  12. Bzik, D. J., Fox, B. A., DeLuca, N. A. and Person, S. (1984) Nucleotide sequence of a region of the herpes simplex virus type 1 gB glycoprotein gene: mutations affecting rate of virus entry and cell fusion. Virology. 137, 185–190.PubMedGoogle Scholar
  13. Cai, W. H., Gu, B. and Person, S. (1988) Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion [published erratum appears in J Virol 1988 Nov;62 (11):4438]. Journal of Virology. 62, 2596–2604.PubMedGoogle Scholar
  14. Cai, W. Z., Person, S., Warner, S. C., Zhou, J. H. and DeLuca, N. A. (1987) Linker-insertion nonsense and restriction-site deletion mutations of the gB glycoprotein gene of herpes simplex virus type 1. Journal of Virology. 61, 714–721.PubMedGoogle Scholar
  15. Carel, J.-C., Myones, B. L., Frazier, B. and Holers, V. M. (1990) Structural requirements for C3d,g/Epstein-Barr virus receptor (CR2/CD21) ligand binding, internalization, and viral infection. Journal of Biological Chemistry. 265, 12293–12299.PubMedGoogle Scholar
  16. Carfi, A., Willis, S. H., Whitbeck, J. C., Krummenacher, C., Cohen, G. H., Eisenberg, R. J. and Wiley, D. C. (2001) Herpes simplex virus glycoprotein D bound to the human receptor HveA. Molecular Cell. 8, 169–179.PubMedGoogle Scholar
  17. Chang, Y. E., Tung, C.-H., Huang, Y.-T., Lu, J., Chen, J.-Y. and Tsai, C.-H. (1999) Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. Journal of Virology. 73, 8857–8866.PubMedGoogle Scholar
  18. Connolly, S. A., Landsburg, D. J., Carfi, A., Wiley, D. C., Cohen, G. H. and Eisenberg, R. J. (2003) Structure-based mutagenesis of herpes simplex virus glycoprotein D defines three critical regions at the gD-HveA/HVEM binding interface. Journal of Virology. 77, 8127–8140.PubMedGoogle Scholar
  19. Connolly, S. A., Landsburg, D. J., Carfi, A., Wiley, D. C., Eisenberg, R. J. and Cohen, G. H. (2002) Structure-based analysis of the herpes simplex virus glycoprotein D binding site present on herpesvirus entry mediator HveA (HVEM). Journal of  Virology. 76, 10894–10904.PubMedGoogle Scholar
  20. Cresswell, P. (1994) Assembly, transport, and function of MHC class II molecules. Annual Reviews of Immunology. 12, 259–293.PubMedGoogle Scholar
  21. D'Addario, M., Libermann, T. A., Xu, J., Ahmad, A. and Menezes, J. (2001) Epstein-Barr virus and its glycoprotein-350 upregulate IL-6 in human B cells via CDs21, involving activation of NF-κB and different signaling pathways. Journal of Molecular Biology. 308, 501–514.PubMedGoogle Scholar
  22. Duus, K. M., Hatfield, C. and Grose, C. (1995) Cell surface expression and fusion by the varicella-zoster virus gH:gL glycoprotein complex: analysis by laser scanning confocal microscopy. Virology. 210, 429–440.PubMedGoogle Scholar
  23. Emini, E. A., Luka, J., Armstrong, M. E., Keller, P. M., Ellis, R. W. and Pearson, G. R. (1987) Identification of an Epstein-Barr virus glycoprotein which is antigenically homologous to the varicella-zoster glycoprotein II and the herpes simplex virus glycoprotein B. Virology. 157, 552–555.PubMedGoogle Scholar
  24. Epstein, M. A., Achong, B. G. and Barr, Y. M. (1964) Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet. 1, 702–703.PubMedGoogle Scholar
  25. Fingeroth, J. D., Diamond, M. E., Sage, D. R., Hayman, J. and Yates, J. L. (1999) CD-21 dependent infection of an epithelial cell line, 293, by Epstein-Barr virus. Journal of Virology. 73, 2115–2125.PubMedGoogle Scholar
  26. Fingeroth, J. D., Weis, J. J., Tedder , T. F., Strominger, J. L., Biro, P. A. and Fearon, D. T. (1984) Epstein-Barr virus receptor of human B lymphocytes is the C3d complement CR2. Proceedings of the National Academy of Sciences USA. 81, 4510–4516.Google Scholar
  27. Foster, T. P., Melancon, J. M. and Kousoulas, K. G. (2001) An alpha-helical domain within the carboxyl terminus of herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is associated with cell fusion and resistance to heparin inhibition of cell fusion. Virology. 287, 18–29.PubMedGoogle Scholar
  28. Frade, R., Barel, M., Ehlin-Henricksson, B. and Klein, G. (1985) gp140 the C3d receptor of human B lymphocytes is also the Epstein-Barr virus receptor. Proceedings of the National Academy of Sciences USA. 82, 1490–1493.Google Scholar
  29. Gage, P. J., Levine, M. and Glorioso, J. C. (1993) Syncytium-inducing mutations localize to two discrete regions within the cytoplasmic domain of herpes simplex virus type 1 glycoprotein B. Journal of Virology. 67, 2191–2201.PubMedGoogle Scholar
  30. Gan, Y., Chodosh, J., Morgan, A. and Sixbey, J. W. (1997) Epithelial cell polarization is a determinant in the infectious outcome of immunoglobulin A-mediated entry by Epstein-Barr virus. Journal of Virology. 71, 519–526.PubMedGoogle Scholar
  31. Gong, M. and Kieff, E. (1990) Intracellular trafficking of two major Epstein-Barr virus glycoproteins, gp350/220 and gp110. J Virol. 64, 1507–1516.PubMedGoogle Scholar
  32. Gong, M., Ooka, T., Matsuo, T. and Kieff, E. (1987) Epstein-Barr virus glycoprotein homologous to herpes simplex virus gB. J Virol. 61, 499–508.PubMedGoogle Scholar
  33. Haan, K. M., Lee, S. K. and Longnecker, R. (2001) Different functional domains in the cytoplasmic tail of glycoprotein gB are involved in Epstein-Barr virus induced membrane fusion. Virology. 290, 106–114.PubMedGoogle Scholar
  34. Haan, K. M. and Longnecker, R. (2000) Coreceptor restriction within the HLA-DQ locus for Epstein-Barr virus infection. Proceedings of the National Academy of Sciences USA. 97, 9252–9257.Google Scholar
  35. Haddad, R. S. and Hutt-Fletcher, L. M. (1989) Depletion of glycoprotein gp85 from virosomes made with Epstein-Barr virus proteins abolishes their ability to fuse with virus receptor-bearing cells. Journal of Virology. 63, 4998–5005.PubMedGoogle Scholar
  36. Heineman, T., Gong, M., Sample, J. and Kieff, E. (1988) Identification of the Epstein-Barr virus gp85 gene. Journal of Virology. 62, 1101–1107.PubMedGoogle Scholar
  37. Heldwein, E. E., Lou, H., Bender, F. C., Cohen, G. H., Eisenberg, R. J. and Harrison, S. C. (2006) Crystal structure of glycoprotein B from herpes simplex virus 1. Science. 313, 217–220.PubMedGoogle Scholar
  38. Henle, G. and Henle, W. (1975) Serum IgA antibodies of Epstein-Barr virus (EBV)-related antigens. A new feature of nasopharyngeal carcinoma. Bibliotheca Haematologica. 322–325.Google Scholar
  39. Herold, B. C., WuDunn, D., Soltys, N. and Spear, P. G. (1991) Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. Journal of Virology. 65, 1090–1098.PubMedGoogle Scholar
  40. Herrold, R. E., Marchini, A., Frueling, S. and Longnecker, R. (1995) Glycoprotein 110, the Epstein-Barr virus homolog of herpes simplex virus glycoprotein B, is essential for Epstein-Barr virus replication in vivo. Journal of Virology. 70, 2049–2054.Google Scholar
  41. Holers, V. M. (2005) Complement receptors and the shaping of the natural antibody repertoire. Springer Seminars in Immunopathology. 26, 405–423.PubMedGoogle Scholar
  42. Hummel, M., Thorley-Lawson, D. and Kieff, E. (1984) An Epstein-Barr virus DNA fragment encodes messages for the two major envelope glycoproteins (gp350/300 and gp220/200). Journal of Virology. 49, 413–417.PubMedGoogle Scholar
  43. Imai, S., Nishikawa, J. and Takada, K. (1998) Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. Journal of Virology. 72, 4371–4378.PubMedGoogle Scholar
  44. Janz, A., Oezel, M., Kurzeder, C., Mautner, J., Pich, D., Kost, M., Hammerschmidt, W. and Delecluse, H. J. (2000) Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. Journal of Virology. 74, 10142–10152.PubMedGoogle Scholar
  45. Jardetzky, T. S. and Lamb, R. A. (2004) Virology: a class act. Nature. 427, 307–308.PubMedGoogle Scholar
  46. Jiang, R., Scott, R. S. and Hutt-Fletcher, L. M. (2006) Epstein-Barr virus shed in saliva is high in B cell tropic gp42. Journal of Virology. 80, 7281–7283.PubMedGoogle Scholar
  47. Johannsen, E., Luftig, M., Chase, M. R., Weicksel, S., Cahir-McFarland, E., Illanes, D., Sarracino, D. and Kieff, E. (2004) Proteins of purified Epstein-Barr virus. Proceedings of the National Academy of Sciences USA. 101, 16286–16291.Google Scholar
  48. Kielian, M. and Rey, F. A. (2006) Virus membrane-fusion proteins: more than one way to make a hairpin. Nature Reviews of Microbiology. 4, 67–76.PubMedGoogle Scholar
  49. Kirschner, A. N., Lowrey, A. S., Longnecker, R. and Jardetzky, T. S. (2007) Binding site interactions between Epstein-Barr virus fusion proteins gp42 and gH/gL reveal a peptide that inhibits both epithelial and B cell membrane fusion. Journal of Virology. 81, 9216–29.Google Scholar
  50. Kirschner, A. N., Omerovic, J., Popov, B., Longnecker, R. and Jardetzky, T. S. (2006) Soluble Epstein-Barr virus glycoproteins gH, gL, and gp42 form a 1:1:1 stable complex that acts like soluble gp42 in B cell fusion but not in epithelial cell fusion. Journal of Virology. 80, 9444–54.Google Scholar
  51. Kishishita, M., Luka, J., Vroman, B., J.F., P. and Pearson, G. R. (1984) Production of monoclonal antibodies to a late intracellular Epstein-Barr virus-induced antigen. Virology. 133, 363–375.PubMedGoogle Scholar
  52. Klupp, B. and Mettenleiter, T. C. (1991) Sequence and expression of the glycoprotein gH gene of pseudorabies virus. Virology. 182, 732–741.PubMedGoogle Scholar
  53. Klupp, B. G., Nixdorf, R. and Mettenleiter, T. C. (2000) Pseudorabies virus glycoprotein M inhibits membrane fusion. Journal of Virology. 74, 6760–6768.PubMedGoogle Scholar
  54. Kopp, A., Blewett, E., Misra, V. and Mettenleiter, T. C. (1994) Proteolytic cleavage of bovine herpesvirus 1 (BHV-1) glycoprotein gB is not necessary for its function in BHV-1 or pseudorabies virus. Journal of Virology. 68, 1667–1674.PubMedGoogle Scholar
  55. Krishnan, H. H., Sharma-Walia, N., Zeng, L., Gao, S. J. and Chandran, B. (2005) Envelope glycoprotein gB of Kaposi's sarcoma-associated herpesvirus is essential for egress from infected cells. Journal of Virology. 79, 10952–10967.PubMedGoogle Scholar
  56. Krummenacher, C., Supekar, V. M., Whitbeck, J. C., Lazear, E., Connolly, S. A., Eisenberg, R. J., Cohen, G. H., Wiley, D. C. and Carfi, A. (2005) Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO Journal. 24, 4144–4153.PubMedGoogle Scholar
  57. Kurilla, M. G., Heineman, T., Davenport, L. C., Kieff, E. and Hutt-Fletcher, L. M. (1995) A novel Epstein-Barr virus glycoprotein gp150 expressed from the BDLF3 open reading frame. Virology. 209, 108–121.PubMedGoogle Scholar
  58. Lake, C. M. and Hutt-Fletcher, L. M. (2000) Epstein-Barr virus that lacks glycoprotein gN is impaired in assembly and infection. Journal of Virology. 74, 11162–11172.PubMedGoogle Scholar
  59. Lake, C. M., Molesworth, S. J. and Hutt-Fletcher, L. M. (1998) The Epstein-Barr virus (EBV) gN homolog BLRF1 encodes a 15 kilodalton glycoprotein that cannot be authentically processed unless it is co-expressed with the EBV gM homolog BBRF3. Journal of Virology. 72, 5559–5564.PubMedGoogle Scholar
  60. Lee, S. K. (1999) Four consecutive arginine residues at positions 836-839 of EBV gp110 determine intracellular localization of gp110. Virology. 264, 350–358.PubMedGoogle Scholar
  61. Lee, S. K., Compton, T. and Longnecker, R. (1997) Failure to complement infectivity of EBV and HSV-1 glycoprotein B (gB) deletion mutants with gBs from different human herpesvirus subfamilies. Virology. 237, 170–181.PubMedGoogle Scholar
  62. Lee, S. K. and Longnecker, R. (1997) The Epstein-Barr virus glycoprotein 110 carboxy-terminal tail domain is essential for lytic virus replication. J Virol. 71, 4092–4097.PubMedGoogle Scholar
  63. Li, Q. X., Spriggs, M. K., Kovats, S., Turk, S. M., Comeau, M. R., Nepom, B. and Hutt-Fletcher, L. M. (1997) Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. Journal of Virology. 71, 4657–4662.PubMedGoogle Scholar
  64. Li, Q. X., Turk, S. M. and Hutt-Fletcher, L. M. (1995) The Epstein-Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. Journal of Virology. 69, 3987–3994.PubMedGoogle Scholar
  65. Lowell, C. A., Klickstein, L. B., Carter, R. H., Mitchell, J. A., Fearon, D. T. and Ahearn, J. M. (1989) Mapping of the Epstein-Barr virus and C3dg binding sites to a common domain on complement receptor type 2. Journal of Experimental Medicine. 170, 1931–1946.PubMedGoogle Scholar
  66. Mach, M., Osinski, K., Kropff, B., Schloetzer-Schrehardt, U., Krzyzaniak, M. and Britt, W. (2007) The carboxyterminal domain of glycoprotein N of human cytomegalovirus is required for virion morphogenesis. Journal of Virology. 81, 5212–24.Google Scholar
  67. Mackett, M., Conway, M. J., Arrand, J. R., Haddad, R. S. and Hutt-Fletcher, L. M. (1990) Characterization and expression of a glycoprotein encoded by the Epstein-Barr virus BamHI 1 fragment. Journal of Virology. 64, 2545–2552.PubMedGoogle Scholar
  68. Martin, D. R., Yuryev, A., Kalli, K. R., Fearon, D. T. and Ahearn, J. M. (1991) Determination of the structural basis for selective binding of Epstein-Barr virus to human complement receptor type 2. Journal of Experimental Medicine. 174, 1299–1311.PubMedGoogle Scholar
  69. McShane, M. P. and Longnecker, R. (2004) Cell-surface expression of a mutated Epstein-Barr virus glycoprotein B allows fusion independent of other viral proteins. Proceedings of the National Academy of Sciences USA. 101, 17474–17479.Google Scholar
  70. McShane, M. P., Mullen, M. M., Haan, K. M., Jardetzky, T. S. and Longnecker, R. (2003) Mutational analysis of the HLA class II interaction with Epstein-Barr virus glycoprotein 42. J Virol. 77, 7655–7662.PubMedGoogle Scholar
  71. Miller, N. and Hutt-Fletcher, L. M. (1988) A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. Journal of Virology. 62, 2366–2372.PubMedGoogle Scholar
  72. Miller, N. and Hutt-Fletcher, L. M. (1992) Epstein-Barr virus enters B cells and epithelial cells by different routes. Journal of Virology. 66, 3409–3414.PubMedGoogle Scholar
  73. Molesworth, S. J., Lake, C. M., Borza, C. M., Turk, S. M. and Hutt-Fletcher, L. M. (2000) Epstein-Barr virus gH is essential for penetration of B cell but also plays a role in attachment of virus to epithelial cells. Journal of Virology. 74, 6324–6332.PubMedGoogle Scholar
  74. Muggeridge, M. I. (2000) Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycoproteins gB, gD, gH and gL in transfected cells. Journal of General Virology. 81, 2017–2027.PubMedGoogle Scholar
  75. Mullen, M. M., Haan, K. M., Longnecker, R. and Jardetzky, T. S. (2002) Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Molecular Cell. 9, 375–385.PubMedGoogle Scholar
  76. Natarajan, K., Dimasi, N., Wang, J., Mariuzza, R. A. and Margulies, D. H. (2002) Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Annual Reviews of Immunology 20, 853–885.PubMedGoogle Scholar
  77. Nemerow, G. R. and Cooper, N. R. (1984) Early events in the infection of human B lymphocytes by Epstein-Barr virus. Virology. 132, 186–198.PubMedGoogle Scholar
  78. Nemerow, G. R., Mold, C., Schwend, V. K., Tollefson, V. and Cooper, N. R. (1987) Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. Journal of Virology. 61, 1416–1420.PubMedGoogle Scholar
  79. Nemerow, G. R., Wolfert, R., McNaughton, M. and Cooper, N. R. (1985) Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). Journal of Virology. 55, 347–351.PubMedGoogle Scholar
  80. Neuhierl, B., Feederle, R., W., H. and Delecluse, H. J. (2002) Glycoprotein gp110 of Epstein-Barr virus determines viral tropism and efficiency of infection. Proceedings of the National Academy of Sciences USA. 99, 15036–15041.Google Scholar
  81. Nolan, L. A. and Morgan, A. J. (1995) The Epstein-Barr virus open reading frame BDLF3 codes for a 100–150 kDa glycoprotein. Journal of General Virology. 76, 1381–1392.PubMedGoogle Scholar
  82. Oba, D. E. and Hutt-Fletcher, L. M. (1988) Induction of antibodies to the Epstein-Barr virus glycoprotein gp85 with a synthetic peptide corresponding to a sequence in the BXLF2 open reading frame. Journal of Virology. 62, 1108–1114.PubMedGoogle Scholar
  83. Oda, T., Imai, S., Chiba, S. and Takada, K. (2000) Epstein-Barr virus lacking glycoprotein gp85 cannot infect B cells and epithelial cells. Virology. 276, 52–58.PubMedGoogle Scholar
  84. Omerovic, J., Lev, L. and Longnecker, R. (2005) The amino terminus of Epstein-Barr virus glycoprotein gH is important for fusion with B cells and epithelial cells. Journal of Virology. 79, 12408–12415.PubMedGoogle Scholar
  85. Pellett, P.E. and Roizman, B. (2007) The Family Herpesviridae: A Brief Introduction. In Fields Virology 5th ed. (D. M. Knipe, and P. M. Howley, Eds.), pp. 2479–2499. Lippincott Williams & Wilkins, Philadelphia, PA.Google Scholar
  86. Peng, T., Ponce de Leon, M., Novotny, M. J., Jiang, H., Lambris, J. D., Dubin, G., Spear, P. G., Cohen, G. and Eisenberg, R. J. (1998) Structural and antigenic analysis of a truncated from of the herpes simplex virus glycoprotein gH-gL complex. Journal of Virology. 72, 6092–6103.PubMedGoogle Scholar
  87. Pereira, L. (1994) Function of glycoprotein B homologues of the family herpesviridae. Infectious Agents and Disease. 3, 9–28.PubMedGoogle Scholar
  88. Pertel, P. E. (2002) Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion. Journal of Virology. 76, 4390–4400.PubMedGoogle Scholar
  89. Pertel, P. E., Fridberg, A., Parish, M. L. and Spear, P. G. (2001) Cell fusion induced by herpes simplex virus glycoproteins gB, gD and gH-gL requires a gD receptor but not necessarily heparan sulfate. Virology. 279, 313–324.PubMedGoogle Scholar
  90. Prota, A. E., Sage, D. R., Stehle, T. and Fingeroth, J. D. (2002) The crystal structure of human CD21: implications for Epstein-Barr virus and C3d binding. Proceedings of the National Academy of Sciences USA. 99, 10641–10646.Google Scholar
  91. Pyles, R. B., Sawtell, N. M. and Thompson, R. L. (1992) Herpes simplex virus type 1 dUTPase mutants are attenuated for neurovirulence, neuroinvasiveness, and reactivation from latency. J Virol. 66, 6706–6713.PubMedGoogle Scholar
  92. Rickinson, A. B. and Kieff, E. (2007) Epstein-Barr Virus. In Fields Virology 5th ed. (D. M. Knipe, and P. M. Howley, Eds.), pp. 2656–2700. Lippincott Williams & Wilkins, Philadelphia, PA.Google Scholar
  93. Ressing, M. E., van Leeuwen, D., Verreck, F. A. W., Gomez, R., Heemskerk, B., Toebes, M., Mullen, M. M., Jardetzky, T. S., Longnecker, R., Schilham, M. W., Ottenhoff, T. H. M., Neefjes, J., Schumacher, T. N., Hutt-Fletcher, L. M. and Wiertz, E. J. H. J. (2003) Interference with T cell receptor-HLA-DR interactions by Epstein-Barr virus gp42 results in reduced T helper cell recognition. Proceedings of the National Academy of Sciences USA. 100, 11583–11588.Google Scholar
  94. Ressing, M. E., van Leeuwen, D., Verreck, F. A., Keating, S., Gomez, R., Franken, K. L., Ottenhoff, T. H., Spriggs, M., Schumacher, T. N., Hutt-Fletcher, L. M., Rowe, M. and Wiertz, E. J. (2005) Epstein-Barr virus gp42 is posttranslationally modified to produce soluble gp42 that mediates HLA class II immune evasion. Journal of Virology. 79, 841–852.PubMedGoogle Scholar
  95. Rivailler, P., Cho, Y.-G. and Wang, F. (2002) Complete genomic sequence of an Epstein-Barr virus related herpesvirus naturally infecting a new world primate: a defining poin in the evolution of oncogenic lymphocryptoviruses. Journal of Virology. 76, 12055–12068.PubMedGoogle Scholar
  96. Rivailler, P., Jiang, H., Cho, Y.-G., Quink, C. and Wang, F. (2002) Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein-Barr virus animal model. Journal of Virology. 76, 421–426.PubMedGoogle Scholar
  97. Roche, S., Bressanelli, S., Rey, F. A. and Gaudin, Y. (2006) Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science. 313, 187–191.PubMedGoogle Scholar
  98. Roche, S., Rey, F. A., Gaudin, Y. and Bressanelli, S. (2007) Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science. 315, 843–848.PubMedGoogle Scholar
  99. Russo, J. J., Bohenzky, R. A., Chien, M.-C., Chien, J., Yang, M., Maddalena, D., Parry, J. P., Peruzzi, D., Edelman, I. S., Chang, Y. and Moore, P. S. (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpevirus (HHV8). Proc Natl Acad Sci. 93, 14862–14867.Google Scholar
  100. Shannon-Lowe, C. D., Neuhierl, B., Baldwin, G., Rickinson, A. B. and Delecluse, H.-J. (2006) Resting B cells as a transfer vehicle for Epstein-Barr virus infection of epithelial cells. Proceedings of the National Academy of Sciences USA. 103, 7065–7070.Google Scholar
  101. Sharma-Walia, N., Naranatt, P., Krishnan, H. H., Zeng, L. and Chandran, B. (2004) Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-src-phophatidylinositol 3-kinase-rho GTPase signal pathways and cytoskeletal rearrangements. Journal of Virology. 78, 4207–4223.PubMedGoogle Scholar
  102. Silva, A. L., Omerovic, J., Jardetzky, T. S. and Longnecker, R. (2004) Mutational analysis of Epstein-Barr virus glycoprotein gp42 reveals functional domains not involved in receptor binding but required for membrane fusion. Journal of Virology. 78, 5946–5956.PubMedGoogle Scholar
  103. Sinclair, A. J. and Farrell, P. J. (1995) Host cell requirements for efficient infection of quiescent primary B lymphocytes by Epstein-Barr virus. Journal of Virology. 69, 5461–5468.PubMedGoogle Scholar
  104. Sixbey, J. W., Davis, D. S., Young, L. S., Hutt-Fletcher, L., Tedder, T. F. and Rickinson, A. B. (1987) Human epithelial cell expression of an Epstein-Barr virus receptor. J Gen Virol. 68, 805–811.PubMedGoogle Scholar
  105. Sixbey, J. W. and Yao, Q.-Y. (1992) Immunoglobulin A-induced shift of Epstein-Barr virus tissue tropism. Science. 255, 1578–1580.PubMedGoogle Scholar
  106. Spear, P. G. and Longnecker, R. (2003) Herpesvirus entry: an update. Journal of Virology. 77, 10179–10185.Google Scholar
  107. Spriggs, M. K., Armitage, R. J., Comeau, M. R., Strockbine, L., Farrah, T., MacDuff, B., Ulrich, D., Alderson, M. R., Mullberg, J. and Cohen, J. I. (1996) The extracellular domain of the Epstein-Barr virus BZLF2 protein binds the HLA-DR beta chain and inhibits antigen presentation. Journal of Virology. 70, 5557–5563.PubMedGoogle Scholar
  108. Steven, A. C. and Spear, P. G. (2006) Biochemistry. Viral glycoproteins and an evolutionary conundrum. Science. 313, 177–178.Google Scholar
  109. Strive, T., Borst, E., Messerle, M. and Radsak, K. (2002) Proteolytic processing of human cytomegalovirus glycoprotein B is dispensable for viral growth in culture. Journal of Virology. 76, 1252–1264.PubMedGoogle Scholar
  110. Subramanian, R. P. and Geraghty, R. J. (2007) Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B. Proceedings of the National Academy of Sciences. 104, 2903–2908.Google Scholar
  111. Sugano, N., Chen, W., Roberts, M. L. and Cooper, N. R. (1997) Epstein-Barr virus binding to CD21 activates the initial viral promoter via NFκB induction. Journal of Experimental Medicine. 186, 731–737.PubMedGoogle Scholar
  112. Szakonyi, G., Klein, M. G., Hannan, J. P., Young, K. A., Ma, R. Z., Asokan, R., Holers, V. M. and Chen, X. S. (2006) Structure of the Epstein-Barr virus major envelope glycoprotein. Nature Structural and Molecular Biology. 13, 996–1001.PubMedGoogle Scholar
  113. Tanner, J., Weis, J., Fearon, D., Whang , Y. and Kieff, E. (1987) Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping and endocytosis. Cell. 50, 203–213.PubMedGoogle Scholar
  114. Tanner, J., Whang, Y., Sample, J., Sears, A. and Keiff, E. (1988) Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes. Journal of Virology. 62, 4452–4464.PubMedGoogle Scholar
  115. Tanner, J. E., Alfieri, C., Chatila, T. A. and Diaz-Mitoma, F. (1996) Induction of interleukin-6 after stimulation of human B-cell CD21 by Epstein-Barr virus glycoproteins gp350 and gp220. Journal of Virology. 70, 570–575.PubMedGoogle Scholar
  116. Tormo, J., Natarajan, K., Margulies, D. H. and Mariuzza, R. A. (1999) Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature. 402, 623–631.PubMedGoogle Scholar
  117. Tugizov, S. M., Berline, J. W. and Palefsky, J. M. (2003) Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med. 9, 307–314.Google Scholar
  118. Turk, S. M., Jiang, R., Chesnokova, L. S. and Hutt-Fletcher, L. M. (2006) Antibodies to gp350/220 enhance the ability of Epstein-Barr virus to infect epithelial cells. Journal of Virology. 80, 9623–33.Google Scholar
  119. Wang, F. (2005) Epstein-Barr virus related lymphocrytoviruses of old and new world nonhuman primates. In “Epstein-Barr Virus” (E.S. Robertson, Ed.). pp. 691–709. Caister Academic Press, Norfolk, England.Google Scholar
  120. Wang, X. and Hutt-Fletcher, L. M. (1998) Epstein-Barr virus lacking glycoprotein gp42 can bind to B cells but is not able to infect. Journal of Virology. 72, 158–163.PubMedGoogle Scholar
  121. Wang, X., Kenyon, W. J., Li, Q. X., Mullberg, J. and Hutt-Fletcher, L. M. (1998) Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. Journal of Virology. 72, 5552–5558.PubMedGoogle Scholar
  122. Wu, L., Borza, C. M. and Hutt-Fletcher, L. M. (2005) Mutations of Epstein-Barr virus gH that are differentially able to support fusion with B cells or epithelial cells. Journal of Virology. 79, 10923–10930.PubMedGoogle Scholar
  123. Wu, L. and Hutt-Fletcher, L. M. (2007) Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion. Virology. 363, 148–55Google Scholar
  124. Xiao, J., Palefsky, J. M., Herrera, R. and Tugizov, S. M. (2007) Characterization of the Epstein-Barr virus glycoprotein BMRF2. Virology. 359, 382–396.PubMedGoogle Scholar
  125. Yaswen, L. R., Stephens, E. B., Davenport, L. C. and Hutt-Fletcher, L. M. (1993) Epstein-Barr virus glycoprotein gp85 associates with the BKRF2 gene product and is incompletely processed as a recombinant protein. Virology. 195, 387–396.PubMedGoogle Scholar
  126. Young, L. S., Clark, D., Sixbey, J. W. and Rickinson, A. B. (1986) Epstein-Barr virus receptors on human pharyngeal epithelium. Lancet. 1, 240–242.PubMedGoogle Scholar
  127. Young, L. S., Dawson, C. W., Brown, K. W. and Rickinson, A. B. (1989) Identification of a human epithelial cell surface protein sharing an epitope with the C3d/Epstein-Barr virus receptor molecule of B lymphocytes. International Journal of Cancer. 43, 786–794.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Richard Longnecker
    • 1
  • Lindsey Hutt-Fletcher
    • 2
  • Theodore Jardetzky
  1. 1.Northwestern UniversityFeinberg School of MedicineChicago
  2. 2.Louisiana State University Health Sciences CenterShreveportUSA

Personalised recommendations