Advertisement

Epstein–Barr Virus Latent Infection Nuclear Proteins: Genome Maintenance and Regulation of Lymphocyte Cell Growth and Survival

  • Eric Johannsen
  • Michael Calderwood
  • Myung-Soo Kang
  • Bo Zhao
  • Daniel Portal
  • Elliott Kieff
Chapter

Epstein–Barr Virus (EBV) was discovered through its presence in African Burkitt lymphoma. Denis Burkitt, a British surgeon working in Kampala, Uganda in the late 1950 s, encountered children with massive jaw or abdominal lymphomas that he had not seen in the United Kingdom. He corresponded with other physicians and traveled through Sub-Saharan Africa to gather information about these lymphomas. He discovered that lymphomas were prevalent in children of migratory tribes that had settled in regions with hyper-endemic malaria. Burkitt wrote and lectured about the unusual clinical and epidemiologic features of African lymphoma and suggested that there might be an infectious etiology [1]. After attending Burkitt’s lecture in London, Anthony Epstein obtained samples of live tumor tissue and succeeded in growing lymphoma cells in continuous culture. Epstein identified a Herpes virus in electron micrographs of a very small fraction of cultured lymphoma cells [2]. The Burkitt lymphoma (BL)...

Keywords

Dyad Symmetry Episome Replication Episome Maintenance LMP1 Promoter Episome Persistence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors gratefully acknowledge the support of their research by the National Cancer Institute and National Institutes of Health of the USPHS.

References

  1. 1.
    Burkitt, D. and G.T. O'Conor, Malignant lymphoma in African children. I. A clinical syndrome. Cancer, 1961. 14: pp. 258–69.PubMedCrossRefGoogle Scholar
  2. 2.
    Epstein, M., B. Achong, and Y. Barr, Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet, 1964. 1(702–703).PubMedCrossRefGoogle Scholar
  3. 3.
    Chang, Y., et al., Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science, 1994. 266(5192): pp. 1865–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Rickinson, A.B. and E.D. Kieff, Epstein-Barr Virus, in Fields Virology, D.M. Knipe and P.M. Howley, Editors. 2007, Lippincott Williams & Wilkins, a Wolters Kluwer Business: Philadelphia. pp. 2655–700.Google Scholar
  5. 5.
    Kieff, E.D. and A.B. Rickinson, Epstein-Barr Virus and Its Replicationin Fields Virology, D.M. Knipe and P.M. Howley, Editors. 2007, Lippincott WIlliams and WIlkins, a Wolters Kluwer Business: Philadelphia. pp. 2603–54.Google Scholar
  6. 6.
    Ganem, D., Kaposi's Sarcoma Herpes Virus, in Fields Virology, D.M. Knipe and P.M. Howley, Editors. 2007, Lippincott, WIlliams, and Wilkins, a Walters Kluwer Business: Philadelphia. pp. 2847–88.Google Scholar
  7. 7.
    Falk, L.A., et al., Transformation of lymphocytes by Herpesvirus papio. Int J Cancer, 1977. 20(2): pp. 219–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Rabin, H., et al., Transforming activity and antigenicity of an Epstein-Barr-like virus from lymphoblastoid cell lines of baboons with lymphoid disease. Intervirology, 1977. 8(4): pp. 240–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Gerber, P., et al., Biologic and antigenic characteristics of Epstein-Barr virus-related Herpesviruses of chimpanzees and baboons. Int J Cancer, 1977. 20(3): pp. 448–59.PubMedCrossRefGoogle Scholar
  10. 10.
    Gerber, P. and D. Lorenz, Complement-fixing antibodies reactive with Epstein-Barr virus in sera of marmosets and prosimians. Proc Soc Exp Biol Med, 1974. 145(2): pp. 654–7.PubMedGoogle Scholar
  11. 11.
    Russo, J.J., et al., Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA, 1996. 93(25): pp. 14862–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Bocker, J.F., et al., Characterization of an EBV-like virus from African green monkey lymphoblasts. Virology, 1980. 101(1): pp. 291–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Falk, L., et al., Herpesvirus papio: state and properties of intracellular viral DNA in baboon lymphoblastoid cell lines. Int J Cancer, 1979. 24(1): pp. 75–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Heller, M., P. Gerber, and E. Kieff, Herpesvirus papio DNA is similar in organization to Epstein-Barr virus DNA. J Virol, 1981. 37(2): pp. 698–709.PubMedGoogle Scholar
  15. 15.
    Heller, M., P. Gerber, and E. Kieff, DNA of herpesvirus pan, a third member of the Epstein-Barr virus- Herpesvirus papio group. J Virol, 1982. 41(3): pp. 931–9.PubMedGoogle Scholar
  16. 16.
    Cho, Y., et al., An Epstein-Barr-related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci USA, 2001. 98(3): pp. 1224–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Rivailler, P., Y.G. Cho, and F. Wang, Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J Virol, 2002. 76(23): pp. 12055–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Rivailler, P., et al., Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein-Barr virus animal model. J Virol, 2002. 76(1): pp. 421–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Albrecht, J.C., Primary structure of the Herpesvirus ateles genome. J Virol, 2000. 74(2): pp. 1033–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Alexander, L., et al., The primary sequence of rhesus monkey rhadinovirus isolate 26–95: sequence similarities to Kaposi's sarcoma-associated herpesvirus and rhesus monkey rhadinovirus isolate 17577. J Virol, 2000. 74(7): pp. 3388–98.PubMedCrossRefGoogle Scholar
  21. 21.
    Ensser, A., R. Pflanz, and B. Fleckenstein, Primary structure of the alcelaphine herpesvirus 1 genome. J Virol, 1997. 71(9): pp. 6517–25.PubMedGoogle Scholar
  22. 22.
    Telford, E.A., et al., The DNA sequence of equine herpesvirus 2. J Mol Biol, 1995. 249(3): pp. 520–8.PubMedCrossRefGoogle Scholar
  23. 23.
    McGeoch, D.J., F.J. Rixon, and A.J. Davison, Topics in herpesvirus genomics and evolution. Virus Res, 2006. 117(1): pp. 90–104.PubMedCrossRefGoogle Scholar
  24. 24.
    Davison, A.J., Evolution of the herpesviruses. Vet Microbiol, 2002. 86(1–2): pp. 69–88.PubMedCrossRefGoogle Scholar
  25. 25.
    Yates, J.L., N. Warren, and B. Sugden, Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature, 1985. 313(6005): pp. 812–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Ballestas, M.E., P.A. Chatis, and K.M. Kaye, Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science, 1999. 284(5414): pp. 641–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Barbera, A.J., et al., The nucleosomal surface as a docking station for Kaposi's sarcoma herpesvirus LANA. Science, 2006. 311(5762): pp. 856–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Pope, J., Establishment of cell lines from peripheral leukocytes in infectious mononucleosis. Nature, 1967. 216: pp. 810–811.PubMedCrossRefGoogle Scholar
  29. 29.
    Henle, W., et al., Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science, 1967. 157(792): pp. 1064–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Ho, M., et al., Epstein-Barr virus infections and DNA hybridization studies in posttransplantation lymphoma and lymphoproliferative lesions: the role of primary infection. J Infect Dis, 1985. 152(5): pp. 876–86.PubMedCrossRefGoogle Scholar
  31. 31.
    Shope, T., D. Dechairo, and G. Miller, Malignant lymphoma in cottontop marmosets after inoculation with Epstein-Barr virus. Proc Natl Acad Sci USA, 1973. 70(9): pp. 2487–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Deinhardt, F., et al., Response of marmosets to experimental infection with Epstein-Barr virus. IARC Sci Publ, 1975. (11(Pt 2)): pp. 161–8.PubMedGoogle Scholar
  33. 33.
    Niedobitek, G., et al., Patterns of Epstein-Barr virus infection in non-neoplastic lymphoid tissue. Blood, 1992. 79(10): pp. 2520–6.PubMedGoogle Scholar
  34. 34.
    Young, L.S. and A.B. Rickinson, Epstein-Barr virus: 40 years on. Nat Rev Cancer, 2004. 4(10): pp. 757–68.PubMedCrossRefGoogle Scholar
  35. 35.
    Yin, C.C., et al., EBV-associated B- and T-cell posttransplant lymphoproliferative disorders following primary EBV infection in a kidney transplant recipient. Am J Clin Pathol, 2005. 123(2): pp. 222–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Gottschalk, S., C.M. Rooney, and H.E. Heslop, Post-transplant lymphoproliferative disorders. Annu Rev Med, 2005. 56: pp. 29–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Fallo, A., et al., Epstein-Barr virus associated with primary CNS lymphoma and disseminated BCG infection in a child with AIDS. Int J Infect Dis, 2005. 9(2): pp. 96–103.PubMedCrossRefGoogle Scholar
  38. 38.
    Falk, K., et al., Expression of Epstein-Barr virus-encoded proteins and B-cell markers in fatal infectious mononucleosis. Int J Cancer, 1990. 46(6): pp. 976–84.PubMedCrossRefGoogle Scholar
  39. 39.
    Coffey, A.J., et al., Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet, 1998. 20(2): pp. 129–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Lombardi, L., E.W. Newcomb, and R. Dalla-Favera, Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblasts. Cell, 1987. 49(2): pp. 161–70.PubMedCrossRefGoogle Scholar
  41. 41.
    Knowles, D.M., et al., Molecular genetic analysis of three AIDS-associated neoplasms of uncertain lineage demonstrates their B-cell derivation and the possible pathogenetic role of the Epstein-Barr virus. Blood, 1989. 73(3): pp. 792–9.PubMedGoogle Scholar
  42. 42.
    Neri, A., et al., Epstein-Barr virus infection precedes clonal expansion in Burkitt's and acquired immunodeficiency syndrome-associated lymphoma. Blood, 1991. 77(5): pp. 1092–5.PubMedGoogle Scholar
  43. 43.
    Gaidano, G., A. Carbone, and R. Dalla-Favera, Genetic basis of acquired immunodeficiency syndrome-related lymphomagenesis. J Natl Cancer Inst Monogr, 1998. 23: p. 95–100.PubMedGoogle Scholar
  44. 44.
    Nador, R.G., et al., Human immunodeficiency virus (HIV)-associated polymorphic lymphoproliferative disorders. Am J Surg Pathol, 2003. 27(3): pp. 293–302.PubMedCrossRefGoogle Scholar
  45. 45.
    Tinguely, M., et al., Analysis of a clonally related mantle cell and Hodgkin lymphoma indicates Epstein-Barr virus infection of a Hodgkin/Reed-Sternberg cell precursor in a germinal center. Am J Surg Pathol, 2003. 27(11): pp. 1483–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Kurth, J., et al., Epstein-Barr virus-infected B cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc Natl Acad Sci USA, 2003. 100(8): pp. 4730–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Kuppers, R., B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol, 2003. 3(10): pp. 801–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Lin, J., et al., Epstein-Barr virus nuclear antigen 3C putative repression domain mediates coactivation of the LMP1 promoter with EBNA-2. J Virol, 2002. 76(1): pp. 232–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Farrell, P.J., Epstein-Barr virus. The B95-8 strain map. Methods Mol Biol, 2001. 174: pp. 3–12.PubMedGoogle Scholar
  50. 50.
    Cohen, J.I., F. Wang, and E. Kieff, Epstein-Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. J Virol, 1991. 65(5): pp. 2545–54.PubMedGoogle Scholar
  51. 51.
    Mannick, J.B., et al., The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation. J Virol, 1991. 65(12): pp. 6826–37.PubMedGoogle Scholar
  52. 52.
    Tomkinson, B., E. Robertson, and E. Kieff, Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol, 1993. 67(4): pp. 2014–25.PubMedGoogle Scholar
  53. 53.
    Tong, X., et al., The EBNA-2 arginine-glycine domain is critical but not essential for B- lymphocyte growth transformation; the rest of region 3 lacks essential interactive domains. J Virol, 1994. 68(10): pp. 6188–97.PubMedGoogle Scholar
  54. 54.
    Yalamanchili, R., et al., Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology, 1994. 204(2): pp. 634–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Harada, S., R. Yalamanchili, and E. Kieff, Residues 231 to 280 of the Epstein-Barr virus nuclear protein 2 are not essential for primary B-lymphocyte growth transformation. J Virol, 1998. 72(12): pp. 9948–54.PubMedGoogle Scholar
  56. 56.
    Maruo, S., et al., Epstein-Barr Virus nuclear protein EBNA3A is critical for maintaining lymphoblastoid cell line growth. J Virol, 2003. 77(19): pp. 10437–47.PubMedCrossRefGoogle Scholar
  57. 57.
    Cohen, J.I., et al., Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci USA, 1989. 86(23): pp. 9558–62.PubMedCrossRefGoogle Scholar
  58. 58.
    Maruo, S., et al., Epstein-Barr virus nuclear protein 3A domains essential for growth of lymphoblasts: transcriptional regulation through RBP-Jkappa/CBF1 is critical. J Virol, 2005. 79(16): pp. 10171–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Robertson, E. and E. Kieff, Reducing the complexity of the transforming Epstein-Barr virus genome to 64 kilobase pairs. J Virol, 1995. 69(2): pp. 983–93.PubMedGoogle Scholar
  60. 60.
    Tomkinson, B. and E. Kieff, Second-site homologous recombination in Epstein-Barr virus: insertion of type 1 EBNA 3 genes in place of type 2 has no effect on in vitro infection. J Virol, 1992. 66(2): pp. 780–9.PubMedGoogle Scholar
  61. 61.
    Humme, S., et al., The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci USA, 2003. 100(19): pp. 10989–94.PubMedCrossRefGoogle Scholar
  62. 62.
    Bochkarev, A., et al., Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein, EBNA1, bound to DNA. Cell, 1996. 84(5): pp. 791–800.PubMedCrossRefGoogle Scholar
  63. 63.
    Bochkarev, A., et al., The 2.2 A structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA1. J Mol Biol, 1998. 284(5): pp. 1273–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Deng, Z., et al., Telomere repeat binding factors TRF1, TRF2, and hRAP1 modulate replication of Epstein-Barr virus OriP. J Virol, 2003. 77(22): pp. 11992–2001.PubMedCrossRefGoogle Scholar
  65. 65.
    Hung, S.C., M.S. Kang, and E. Kieff, Maintenance of Epstein-Barr virus (EBV) oriP-based episomes requires EBV-encoded nuclear antigen-1 chromosome-binding domains, which can be replaced by high-mobility group-I or histone H1. Proc Natl Acad Sci USA, 2001. 98(4): pp. 1865–70.PubMedCrossRefGoogle Scholar
  66. 66.
    Kennedy, G. and B. Sugden, EBNA-1, a bifunctional transcriptional activator. Mol Cell Biol, 2003. 23(19): pp. 6901–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Rawlins, D.R., et al., Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region. Cell, 1985. 42(3): pp. 859–68.PubMedCrossRefGoogle Scholar
  68. 68.
    Shire, K., et al., Regulation of the EBNA1 Epstein-Barr virus protein by serine phosphorylation and arginine methylation. J Virol, 2006. 80(11): pp. 5261–72.PubMedCrossRefGoogle Scholar
  69. 69.
    Yates, J., et al., A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA, 1984. 81(12): pp. 3806–10.PubMedCrossRefGoogle Scholar
  70. 70.
    Altmann, M., et al., Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV's transforming genes. Proc Natl Acad Sci USA, 2006. 103(38): pp. 14188–93.PubMedCrossRefGoogle Scholar
  71. 71.
    Harada, S. and E. Kieff, Epstein-Barr virus nuclear protein LP stimulates EBNA-2 acidic domain- mediated transcriptional activation. J Virol, 1997. 71(9): pp. 6611–8.PubMedGoogle Scholar
  72. 72.
    Nitsche, F., A. Bell, and A. Rickinson, Epstein-Barr virus leader protein enhances EBNA-2-mediated transactivation of latent membrane protein 1 expression: a role for the W1W2 repeat domain. J Virol, 1997. 71(9): pp. 6619–28.PubMedGoogle Scholar
  73. 73.
    Peng, C.W., et al., Direct interactions between Epstein-Barr virus leader protein LP and the EBNA2 acidic domain underlie coordinate transcriptional regulation. Proc Natl Acad Sci USA, 2004. 101(4): pp. 1033–8.PubMedCrossRefGoogle Scholar
  74. 74.
    McCann, E.M., et al., Genetic analysis of the Epstein-Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2 function. J Gen Virol, 2001. 82(Pt 12): pp. 3067–79.PubMedGoogle Scholar
  75. 75.
    Peng, R., J. Tan, and P.D. Ling, Conserved regions in the Epstein-Barr virus leader protein define distinct domains required for nuclear localization and transcriptional cooperation with EBNA2. J Virol, 2000. 74(21): pp. 9953–63.PubMedCrossRefGoogle Scholar
  76. 76.
    Ling, P.D., et al., Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J, 2005. 24(20): pp. 3565–75.PubMedCrossRefGoogle Scholar
  77. 77.
    Portal, D., A. Rosendorff, and E. Kieff, Epstein-Barr nuclear antigen leader protein coactivates transcription through interaction with histone deacetylase 4. Proc Natl Acad Sci USA, 2006. 103(51): pp. 19278–83.PubMedCrossRefGoogle Scholar
  78. 78.
    Grossman, S.R., et al., The Epstein-Barr virus nuclear antigen 2 transactivator is directed to response elements by the J kappa recombination signal binding protein. Proc Natl Acad Sci USA, 1994. 91(16): pp. 7568–72.PubMedCrossRefGoogle Scholar
  79. 79.
    Hammerschmidt, W. and B. Sugden, Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature, 1989. 340(6232): pp. 393–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Henkel, T., et al., Mediation of Epstein-Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science, 1994. 265(5168): pp. 92–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Wang, L., S.R. Grossman, and E. Kieff, Epstein-Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci USA, 2000. 97(1): pp. 430–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhao, B., et al., RNAs induced by Epstein-Barr virus nuclear antigen 2 in lymphoblastoid cell lines. Proc Natl Acad Sci USA, 2006. 103(6): pp. 1900–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Kaiser, C., et al., The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol, 1999. 73(5): pp. 4481–4.PubMedGoogle Scholar
  84. 84.
    Gordadze, A.V., et al., Notch1IC partially replaces EBNA2 function in B cells immortalized by Epstein-Barr virus. J Virol, 2001. 75(13): pp. 5899–912.PubMedCrossRefGoogle Scholar
  85. 85.
    Hofelmayr, H., et al., Activated Notch1 can transiently substitute for EBNA2 in the maintenance of proliferation of LMP1-expressing immortalized B cells. J Virol, 2001. 75(5): pp. 2033–40.PubMedCrossRefGoogle Scholar
  86. 86.
    Knight, J.S., N. Sharma, and E.S. Robertson, SCFSkp2 complex targeted by Epstein-Barr virus essential nuclear antigen. Mol Cell Biol, 2005. 25(5): pp. 1749–63.PubMedCrossRefGoogle Scholar
  87. 87.
    Marshall, D. and C. Sample, Epstein-Barr virus nuclear antigen 3C is a transcriptional regulator. J Virol, 1995. 69(6): pp. 3624–30.PubMedGoogle Scholar
  88. 88.
    Robertson, E.S., et al., Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa. J Virol, 1995. 69(5): pp. 3108–16.PubMedGoogle Scholar
  89. 89.
    Robertson, E.S., J. Lin, and E. Kieff, The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J Virol, 1996. 70(5): pp. 3068–74.PubMedGoogle Scholar
  90. 90.
    Waltzer, L., et al., Epstein-Barr virus EBNA3A and EBNA3C proteins both repress RBP-J kappa- EBNA2-activated transcription by inhibiting the binding of RBP-J kappa to DNA. J Virol, 1996. 70(9): pp. 5909–15.PubMedGoogle Scholar
  91. 91.
    Zhao, B., et al., Transcriptional regulatory properties of Epstein-Barr virus nuclear antigen 3C are conserved in simian lymphocryptoviruses. J Virol, 2003. 77(10): pp. 5639–48.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhao, B. and C.E. Sample, Epstein-barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site. J Virol, 2000. 74(11): pp. 5151–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Maruo, S., et al., Epstein-Barr virus nuclear protein EBNA3C is required for cell cycle progression and growth maintenance of lymphoblastoid cells. Proc Natl Acad Sci USA, 2006. 103(51): pp. 19500–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Jimenez-Ramirez, C., et al., Epstein-Barr virus EBNA-3C is targeted to and regulates expression from the bidirectional LMP-1/2B promoter. J Virol, 2006. 80(22): pp. 11200–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Allday, M.J., D.H. Crawford, and J.A. Thomas, Epstein-Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. J Gen Virol, 1993. 74(Pt 3): pp. 361–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Izumi, K.M., et al., The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-kappaB activation. Mol Cell Biol, 1999. 19(8): pp. 5759–67.PubMedGoogle Scholar
  97. 97.
    Izumi, K.M. and E.D. Kieff, The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci USA, 1997. 94(23): pp. 12592–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Kaye, K.M., K.M. Izumi, and E. Kieff, Epstein-Barr virus latent membrane protein 1 is essential for B- lymphocyte growth transformation. Proc Natl Acad Sci USA, 1993. 90(19): pp. 9150–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Mosialos, G., et al., The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell, 1995. 80(3): pp. 389–99.PubMedCrossRefGoogle Scholar
  100. 100.
    Alfieri, C., M. Birkenbach, and E. Kieff, Early events in Epstein-Barr virus infection of human B lymphocytes. Virology, 1991. 181(2): pp. 595–608.PubMedCrossRefGoogle Scholar
  101. 101.
    Cohen, J.I. and E. Kieff, An Epstein-Barr virus nuclear protein 2 domain essential for transformation is a direct transcriptional activator. J Virol, 1991. 65(11): pp. 5880–5.PubMedGoogle Scholar
  102. 102.
    Cludts, I. and P.J. Farrell, Multiple functions within the Epstein-Barr virus EBNA-3A protein. J Virol, 1998. 72(3): pp. 1862–9.PubMedGoogle Scholar
  103. 103.
    Dalbies-Tran, R., et al., Amino acids of Epstein-Barr virus nuclear antigen 3A essential for repression of Jkappa-mediated transcription and their evolutionary conservation. J Virol, 2001. 75(1): pp. 90–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Bain, M., et al., Epstein-Barr virus nuclear antigen 3C is a powerful repressor of transcription when tethered to DNA. J Virol, 1996. 70(4): pp. 2481–9.PubMedGoogle Scholar
  105. 105.
    Radkov, S.A., et al., Epstein-Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J Virol, 1997. 71(11): pp. 8552–62.PubMedGoogle Scholar
  106. 106.
    Radkov, S.A., et al., Epstein-Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J Virol, 1999. 73(7): pp. 5688–97.PubMedGoogle Scholar
  107. 107.
    Rosendorff, A., et al., EBNA3C coactivation with EBNA2 requires a SUMO homology domain. J Virol, 2004. 78(1): pp. 367–77.PubMedCrossRefGoogle Scholar
  108. 108.
    Parker, G.A., et al., Epstein-Barr virus nuclear antigen (EBNA)3C is an immortalizing oncoprotein with similar properties to adenovirus E1A and papillomavirus E7. Oncogene, 1996. 13(12): pp. 2541–9.PubMedGoogle Scholar
  109. 109.
    Parker, G.A., R. Touitou, and M.J. Allday, Epstein-Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene, 2000. 19(5): pp. 700–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Touitou, R., et al., Physical and functional interactions between the corepressor CtBP and the Epstein-Barr virus nuclear antigen EBNA3C. J Virol, 2001. 75(16): pp. 7749–55.PubMedCrossRefGoogle Scholar
  111. 111.
    Hickabottom, M., et al., Two nonconsensus sites in the Epstein-Barr virus oncoprotein EBNA3A cooperate to bind the co-repressor carboxyl-terminal-binding protein (CtBP). J Biol Chem, 2002. 277(49): pp. 47197–204.PubMedCrossRefGoogle Scholar
  112. 112.
    Touitou, R., et al., Epstein-Barr virus EBNA3 proteins bind to the C8/alpha7 subunit of the 20S proteasome and are degraded by 20S proteasomes in vitro, but are very stable in latently infected B cells. J Gen Virol, 2005. 86(Pt 5): pp. 1269–77.PubMedCrossRefGoogle Scholar
  113. 113.
    Orre, R.S., et al., Prothymosin alpha functions as a cellular oncoprotein by inducing transformation of rodent fibroblasts in vitro. J Biol Chem, 2001. 276(3): pp. 1794–9.PubMedGoogle Scholar
  114. 114.
    Subramanian, C., et al., Epstein-Barr virus nuclear antigen 3C and prothymosin alpha interact with the p300 transcriptional coactivator at the CH1 and CH3/HAT domains and cooperate in regulation of transcription and histone acetylation. J Virol, 2002. 76(10): pp. 4699–708.PubMedCrossRefGoogle Scholar
  115. 115.
    Subramanian, C. and E.S. Robertson, The metastatic suppressor Nm23-H1 interacts with EBNA3C at sequences located between the glutamine- and proline-rich domains and can cooperate in activation of transcription. J Virol, 2002. 76(17): pp. 8702–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Knight, J.S., et al., Epstein-Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3A and NCoR in human B-cell lines. J Virol, 2003. 77(7): pp. 4261–72.PubMedCrossRefGoogle Scholar
  117. 117.
    Knight, J.S. and E.S. Robertson, Epstein-Barr virus nuclear antigen 3C regulates cyclin A/p27 complexes and enhances cyclin A-dependent kinase activity. J Virol, 2004. 78(4): pp. 1981–91.PubMedCrossRefGoogle Scholar
  118. 118.
    Knight, J.S., et al., A cyclin-binding motif within the amino-terminal homology domain of EBNA3C binds cyclin A and modulates cyclin A-dependent kinase activity in Epstein-Barr virus-infected cells. J Virol, 2004. 78(23): pp. 12857–67.PubMedCrossRefGoogle Scholar
  119. 119.
    Murakami, M., et al., Epstein-Barr virus nuclear antigen 1 interacts with Nm23-H1 in lymphoblastoid cell lines and inhibits its ability to suppress cell migration. J Virol, 2005. 79(3): pp. 1559–68.PubMedCrossRefGoogle Scholar
  120. 120.
    Reisman, D. and B. Sugden, trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol Cell Biol, 1986. 6(11): pp. 3838–46.PubMedGoogle Scholar
  121. 121.
    Sears, J., et al., The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J Virol, 2004. 78(21): pp. 11487–505.PubMedCrossRefGoogle Scholar
  122. 122.
    Komano, J. and K. Takada, Role of bcl-2 in Epstein-Barr virus-induced malignant conversion of Burkitt's lymphoma cell line Akata. J Virol, 2001. 75(3): pp. 1561–4.PubMedCrossRefGoogle Scholar
  123. 123.
    Roth, G., T. Curiel, and J. Lacy, Epstein-Barr viral nuclear antigen 1 antisense oligodeoxynucleotide inhibits proliferation of Epstein-Barr virus-immortalized B cells. Blood, 1994. 84(2): pp. 582–7.PubMedGoogle Scholar
  124. 124.
    Hong, M., et al., Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt's lymphoma cells. J Cancer Res Clin Oncol, 2006. 132(1): pp. 1–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Tanner, J., et al., Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell, 1987. 50(2): pp. 203–13.PubMedCrossRefGoogle Scholar
  126. 126.
    Sinclair, A.J. and P.J. Farrell, Host cell requirements for efficient infection of quiescent primary B lymphocytes by Epstein-Barr virus. J Virol, 1995. 69(9): pp. 5461–8.PubMedGoogle Scholar
  127. 127.
    Guerreiro-Cacais, A.O., et al., Capacity of Epstein-Barr virus to infect monocytes and inhibit their development into dendritic cells is affected by the cell type supporting virus replication. J Gen Virol, 2004. 85(Pt 10): pp. 2767–78.PubMedCrossRefGoogle Scholar
  128. 128.
    Ressing, M.E., et al., Epstein-Barr virus gp42 is posttranslationally modified to produce soluble gp42 that mediates HLA class II immune evasion. J Virol, 2005. 79(2): pp. 841–52.PubMedCrossRefGoogle Scholar
  129. 129.
    Mullen, M.M., et al., Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol Cell, 2002. 9(2): pp. 375–85.PubMedCrossRefGoogle Scholar
  130. 130.
    Nashar, T.O. and J.R. Drake, Dynamics of MHC class II-activating signals in murine resting B cells. J Immunol, 2006. 176(2): pp. 827–38.PubMedGoogle Scholar
  131. 131.
    Hurley, E.A. and D.A. Thorley-Lawson, B cell activation and the establishment of Epstein-Barr virus latency. J Exp Med, 1988. 168(6): pp. 2059–75.PubMedCrossRefGoogle Scholar
  132. 132.
    Dambaugh, T., et al., U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc Natl Acad Sci USA, 1984. 81(23): pp. 7632–6.PubMedCrossRefGoogle Scholar
  133. 133.
    Wang, F., et al., A bicistronic Epstein-Barr virus mRNA encodes two nuclear proteins in latently infected, growth-transformed lymphocytes. J Virol, 1987. 61(4): pp. 945–54.PubMedGoogle Scholar
  134. 134.
    van Santen, V., et al., RNA encoded by the IR1-U2 region of Epstein-Barr virus DNA in latently infected, growth-transformed cells. J Virol, 1983. 46(2): pp. 424–33.PubMedGoogle Scholar
  135. 135.
    Abbot, S.D., et al., Epstein-Barr virus nuclear antigen 2 induces expression of the virus- encoded latent membrane protein. J Virol, 1990. 64(5): pp. 2126–34.PubMedGoogle Scholar
  136. 136.
    Tsang, S.F., et al., Delineation of the cis-acting element mediating EBNA-2 transactivation of latent infection membrane protein expression. J Virol, 1991. 65(12): pp. 6765–71.PubMedGoogle Scholar
  137. 137.
    Dou, S., et al., The recombination signal sequence-binding protein RBP-2 N functions as a transcriptional repressor. Mol Cell Biol, 1994. 14(5): pp. 3310–9.PubMedGoogle Scholar
  138. 138.
    Kovall, R.A. and W.A. Hendrickson, Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J, 2004. 23(17): pp. 3441–51.PubMedCrossRefGoogle Scholar
  139. 139.
    Wilson, J.J. and R.A. Kovall, Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell, 2006. 124(5): pp. 985–96.PubMedCrossRefGoogle Scholar
  140. 140.
    Nam, Y., et al., Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell, 2006. 124(5): pp. 973–83.PubMedCrossRefGoogle Scholar
  141. 141.
    Nam, Y., et al., Structural requirements for assembly of the CSL.intracellular Notch1.Mastermind-like 1 transcriptional activation complex. J Biol Chem, 2003. 278(23): pp. 21232–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Weng, A.P., et al., c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev, 2006. 20(15): pp. 2096–109.PubMedCrossRefGoogle Scholar
  143. 143.
    Zhou, S., et al., A role for SKIP in EBNA2 activation of CBF1-repressed promoters. J Virol, 2000. 74(4): pp. 1939–47.PubMedCrossRefGoogle Scholar
  144. 144.
    Zhou, S. and S.D. Hayward, Nuclear localization of CBF1 is regulated by interactions with the SMRT corepressor complex. Mol Cell Biol, 2001. 21(18): pp. 6222–32.PubMedCrossRefGoogle Scholar
  145. 145.
    Johannsen, E., et al., Epstein-Barr virus nuclear protein 2 transactivation of the latent membrane protein 1 promoter is mediated by J kappa and PU.1. J Virol, 1995. 69(1): pp. 253–62.PubMedGoogle Scholar
  146. 146.
    Fuentes-Panana, E.M., et al., Regulation of the Epstein-Barr virus C promoter by AUF1 and the cyclic AMP/protein kinase A signaling pathway. J Virol, 2000. 74(17): pp. 8166–75.PubMedCrossRefGoogle Scholar
  147. 147.
    Tong, X., et al., The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci USA, 1995. 92(8): pp. 3259–63.PubMedCrossRefGoogle Scholar
  148. 148.
    Tong, X., et al., The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol, 1995. 15(9): pp. 4735–44.PubMedGoogle Scholar
  149. 149.
    Tong, X., et al., The Epstein-Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol, 1995. 69(1): pp. 585–8.PubMedGoogle Scholar
  150. 150.
    Peng, R., et al., The Epstein-Barr virus EBNA-LP protein preferentially coactivates EBNA2-mediated stimulation of latent membrane proteins expressed from the viral divergent promoter. J Virol, 2005. 79(7): pp. 4492–505.PubMedCrossRefGoogle Scholar
  151. 151.
    Petti, L., C. Sample, and E. Kieff, Subnuclear localization and phosphorylation of Epstein-Barr virus latent infection nuclear proteins. Virology, 1990. 176(2): pp. 563–74.PubMedCrossRefGoogle Scholar
  152. 152.
    Peng, C.W., et al., Hsp72 up-regulates Epstein-Barr virus EBNALP coactivation with EBNA2. Blood, 2007. 109(12): pp. 5447–54.PubMedCrossRefGoogle Scholar
  153. 153.
    Sample, J. and E. Kieff, Transcription of the Epstein-Barr virus genome during latency in growth- transformed lymphocytes. J Virol, 1990. 64(4): pp. 1667–74.PubMedGoogle Scholar
  154. 154.
    Sugimoto, M., et al., Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Res, 2004. 64(10): pp. 3361–4.PubMedCrossRefGoogle Scholar
  155. 155.
    Sample, J., et al., Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol, 1990. 64(9): pp. 4084–92.PubMedGoogle Scholar
  156. 156.
    Rickinson, A.B., L.S. Young, and M. Rowe, Influence of the Epstein-Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. J Virol, 1987. 61(5): pp. 1310–7.PubMedGoogle Scholar
  157. 157.
    Ling, P.D., J.J. Ryon, and S.D. Hayward, EBNA-2 of herpesvirus papio diverges significantly from the type A and type B EBNA-2 proteins of Epstein-Barr virus but retains an efficient transactivation domain with a conserved hydrophobic motif. J Virol, 1993. 67(6): pp. 2990–3003.PubMedGoogle Scholar
  158. 158.
    Harada, S., R. Yalamanchili, and E. Kieff, Epstein-Barr virus nuclear protein 2 has at least two N-terminal domains that mediate self-association. J Virol, 2001. 75(5): pp. 2482–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Yalamanchili, R., S. Harada, and E. Kieff, The N-terminal half of EBNA2, except for seven prolines, is not essential for primary B-lymphocyte growth transformation. J Virol, 1996. 70(4): pp. 2468–73.PubMedGoogle Scholar
  160. 160.
    Wang, F., et al., Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proc Natl Acad Sci USA, 1987. 84(10): pp. 3452–6.PubMedCrossRefGoogle Scholar
  161. 161.
    Wang, F., et al., Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol, 1990. 64(5): pp. 2309–18.PubMedGoogle Scholar
  162. 162.
    Wang, F., et al., Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol, 1990. 64(7): pp. 3407–16.PubMedGoogle Scholar
  163. 163.
    Wang, F., et al., Epstein-Barr virus nuclear protein 2 transactivates a cis-acting CD23 DNA element. J Virol, 1991. 65(8): pp. 4101–6.PubMedGoogle Scholar
  164. 164.
    Gordadze, A.V., et al., EBNA2 amino acids 3 to 30 are required for induction of LMP-1 and immortalization maintenance. J Virol, 2004. 78(8): pp. 3919–29.PubMedCrossRefGoogle Scholar
  165. 165.
    Peng, C.W., B. Zhao, and E. Kieff, Four EBNA2 domains are important for EBNALP coactivation. J Virol, 2004. 78(20): pp. 11439–42.PubMedCrossRefGoogle Scholar
  166. 166.
    Gordadze, A.V., D. Poston, and P.D. Ling, The EBNA2 polyproline region is dispensable for Epstein-Barr virus-mediated immortalization maintenance. J Virol, 2002. 76(14): pp. 7349–55.PubMedCrossRefGoogle Scholar
  167. 167.
    Sjoblom, A., et al., Domains of the Epstein-Barr virus nuclear antigen 2 (EBNA2) involved in the transactivation of the latent membrane protein 1 and the EBNA Cp promoters. J Gen Virol, 1995. 76(Pt 11): pp. 2669–78.PubMedCrossRefGoogle Scholar
  168. 168.
    Grasser, F.A., et al., Biochemical characterization of Epstein-Barr virus nuclear antigen 2A. J Virol, 1991. 65(7): pp. 3779–88.PubMedGoogle Scholar
  169. 169.
    Tsui, S. and W.H. Schubach, Epstein-Barr virus nuclear protein 2A forms oligomers in vitro and in vivo through a region required for B-cell transformation. J Virol, 1994. 68(7): pp. 4287–94.PubMedGoogle Scholar
  170. 170.
    Lee, J.M., et al., EBNA2 is required for protection of latently Epstein-Barr virus-infected B cells against specific apoptotic stimuli. J Virol, 2004. 78(22): pp. 12694–7.PubMedCrossRefGoogle Scholar
  171. 171.
    Jehn, B.M., et al., Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J Immunol, 1999. 162(2): pp. 635–8.PubMedGoogle Scholar
  172. 172.
    Lee, J.M., et al., Epstein-Barr virus EBNA2 blocks Nur77- mediated apoptosis. Proc Natl Acad Sci USA, 2002. 99(18): pp. 11878–83.PubMedCrossRefGoogle Scholar
  173. 173.
    Wu, D.Y., et al., Epstein-Barr virus nuclear protein 2 (EBNA2) binds to a component of the human SNF-SWI complex, hSNF5/Ini1. J Virol, 1996. 70(9): pp. 6020–8.PubMedGoogle Scholar
  174. 174.
    Voss, M.D., et al., Functional cooperation of Epstein-Barr virus nuclear antigen 2 and the survival motor neuron protein in transactivation of the viral LMP1 promoter. J Virol, 2001. 75(23): pp. 11781–90.PubMedCrossRefGoogle Scholar
  175. 175.
    Cohen, J.I., A region of herpes simplex virus VP16 can substitute for a transforming domain of Epstein-Barr virus nuclear protein 2. Proc Natl Acad Sci USA, 1992. 89(17): pp. 8030–4.PubMedCrossRefGoogle Scholar
  176. 176.
    Tong, J.H., et al., Re: discrete alterations in the BZLF1 promoter in tumor and non-tumor-associated Epstein-Barr virus. J Natl Cancer Inst, 2003. 95(13): pp. 1008–9.PubMedCrossRefGoogle Scholar
  177. 177.
    Ling, P.D. and S.D. Hayward, Contribution of conserved amino acids in mediating the interaction between EBNA2 and CBF1/RBPJk. J Virol, 1995. 69(3): pp. 1944–50.PubMedGoogle Scholar
  178. 178.
    Farrell, C.J., et al., Inhibition of Epstein-Barr virus-induced growth proliferation by a nuclear antigen EBNA2-TAT peptide. Proc Natl Acad Sci USA, 2004. 101(13): pp. 4625–30.Google Scholar
  179. 179.
    Cooper, A., et al., EBNA3A association with RBP-Jkappa down-regulates c-myc and Epstein-Barr virus-transformed lymphoblast growth. J Virol, 2003. 77(2): pp. 999–1010.PubMedCrossRefGoogle Scholar
  180. 180.
    Hsieh, J.J. and S.D. Hayward, Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein-Barr virus EBNA2. Science, 1995. 268(5210): pp. 560–3.PubMedCrossRefGoogle Scholar
  181. 181.
    Ling, P.D., et al., EBNA-2 upregulation of Epstein-Barr virus latency promoters and the cellular CD23 promoter utilizes a common targeting intermediate, CBF1. J Virol, 1994. 68(9): pp. 5375–83.PubMedGoogle Scholar
  182. 182.
    Ling, P.D., D.R. Rawlins, and S.D. Hayward, The Epstein-Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci USA, 1993. 90(20): pp. 9237–41.PubMedCrossRefGoogle Scholar
  183. 183.
    Laux, G., et al., The Spi-1/PU.1 and Spi-B ets family transcription factors and the recombination signal binding protein RBP-J kappa interact with an Epstein-Barr virus nuclear antigen 2 responsive cis-element. EMBO J, 1994. 13(23): pp. 5624–32.PubMedGoogle Scholar
  184. 184.
    Laux, G., et al., Identification and characterization of an Epstein-Barr virus nuclear antigen 2-responsive cis element in the bidirectional promoter region of latent membrane protein and terminal protein 2 genes. J Virol, 1994. 68(11): pp. 6947–58.PubMedGoogle Scholar
  185. 185.
    Laux, G., A. Economou, and P.J. Farrell, The terminal protein gene 2 of Epstein-Barr virus is transcribed from a bidirectional latent promoter region. J Gen Virol, 1989. 70 (Pt 11): pp. 3079–84.PubMedCrossRefGoogle Scholar
  186. 186.
    Laux, G., U.K. Freese, and G.W. Bornkamm, Structure and evolution of two related transcription units of Epstein- Barr virus carrying small tandem repeats. J Virol, 1985. 56(3): pp. 987–95.PubMedGoogle Scholar
  187. 187.
    Maier, S., et al., Cellular target genes of Epstein-Barr virus nuclear antigen 2. J Virol, 2006. 80(19): pp. 9761–71.PubMedCrossRefGoogle Scholar
  188. 188.
    Pages, F., et al., Epstein-Barr virus nuclear antigen 2 induces interleukin-18 receptor expression in B cells. Blood, 2005. 105(4): pp. 1632–9.PubMedCrossRefGoogle Scholar
  189. 189.
    Zhou, S., et al., SKIP, a CBF1-associated protein, interacts with the ankyrin repeat domain of NotchIC To facilitate NotchIC function. Mol Cell Biol, 2000. 20(7): pp. 2400–10.PubMedCrossRefGoogle Scholar
  190. 190.
    Barth, S., et al., Epstein-Barr virus nuclear antigen 2 binds via its methylated arginine-glycine repeat to the survival motor neuron protein. J Virol, 2003. 77(8): pp. 5008–13.PubMedCrossRefGoogle Scholar
  191. 191.
    Spender, L.C., et al., Cell target genes of Epstein-Barr virus transcription factor EBNA-2: induction of the p55alpha regulatory subunit of PI3-kinase and its role in survival of EREB2.5 cells. J Gen Virol, 2006. 87(Pt 10): pp. 2859–67.PubMedCrossRefGoogle Scholar
  192. 192.
    Satoh, Y., et al., Roles for c-Myc in self-renewal of hematopoietic stem cells. J Biol Chem, 2004. 279(24): pp. 24986–93.PubMedCrossRefGoogle Scholar
  193. 193.
    Fuchs, K.P., et al., Mutational analysis of the J recombination signal sequence binding protein (RBP-J)/Epstein-Barr virus nuclear antigen 2 (EBNA2) and RBP-J/Notch interaction. Eur J Biochem, 2001. 268(17): pp. 4639–46.PubMedCrossRefGoogle Scholar
  194. 194.
    Sample, J., et al., Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: a probable transcriptional initiation site. Proc Natl Acad Sci USA, 1986. 83(14): pp. 5096–100.PubMedCrossRefGoogle Scholar
  195. 195.
    Peng, R., et al., Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol, 2000. 74(1): pp. 379–89.PubMedCrossRefGoogle Scholar
  196. 196.
    Kawaguchi, Y., et al., Interaction of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) with HS1-associated protein X-1: implication of cytoplasmic function of EBNA-LP. J Virol, 2000. 74(21): pp. 10104–11.PubMedCrossRefGoogle Scholar
  197. 197.
    Yokoyama, A., et al., The conserved domain CR2 of Epstein-Barr virus nuclear antigen leader protein is responsible not only for nuclear matrix association but also for nuclear localization. Virology, 2001. 279(2): pp. 401–13.PubMedCrossRefGoogle Scholar
  198. 198.
    Yokoyama, A., et al., Identification of major phosphorylation sites of Epstein-Barr virus nuclear antigen leader protein (EBNA-LP): ability of EBNA-LP to induce latent membrane protein 1 cooperatively with EBNA-2 is regulated by phosphorylation. J Virol, 2001. 75(11): pp. 5119–28.PubMedCrossRefGoogle Scholar
  199. 199.
    Tanaka, M., et al., Conserved region CR2 of Epstein-Barr virus nuclear antigen leader protein is a multifunctional domain that mediates self-association as well as nuclear localization and nuclear matrix association. J Virol, 2002. 76(3): pp. 1025–32.PubMedCrossRefGoogle Scholar
  200. 200.
    Mannick, J.B., et al., The Epstein-Barr virus nuclear antigen leader protein associates with hsp72/hsc73. J Virol, 1995. 69(12): pp. 8169–72.PubMedGoogle Scholar
  201. 201.
    Han, I., et al., EBNA-LP associates with cellular proteins including DNA-PK and HA95. J Virol, 2001. 75(5): pp. 2475–81.Google Scholar
  202. 202.
    Igarashi, M., et al., Physical interaction of Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) with human oestrogen-related receptor 1 (hERR1): hERR1 interacts with a conserved domain of EBNA-LP that is critical for EBV-induced B-cell immortalization. J Gen Virol, 2003. 84(Pt 2): pp. 319–27.PubMedCrossRefGoogle Scholar
  203. 203.
    Kitay, M.K. and D.T. Rowe, Protein-protein interactions between Epstein-Barr virus nuclear antigen- LP and cellular gene products: binding of 70-kilodalton heat shock proteins. Virology, 1996. 220(1): pp. 91–9.PubMedCrossRefGoogle Scholar
  204. 204.
    Orstavik, S., et al., Identification, cloning and characterization of a novel nuclear protein, HA95, homologous to A-kinase anchoring protein 95. Biol Cell, 2000. 92(1): pp. 27–37.PubMedCrossRefGoogle Scholar
  205. 205.
    Han, I., et al., Protein kinase A associates with HA95 and affects transcriptional coactivation by Epstein-Barr virus nuclear proteins. Mol Cell Biol, 2002. 22(7): pp. 2136–46.PubMedCrossRefGoogle Scholar
  206. 206.
    Yang, J.P., et al., Mapping the functional domains of HAP95, a protein that binds RNA helicase A and activates the constitutive transport element of type D retroviruses. J Biol Chem, 2001. 276(33): pp. 30694–700.PubMedCrossRefGoogle Scholar
  207. 207.
    Jiang, W.Q., et al., Co-localization of the retinoblastoma protein and the Epstein-Barr virus-encoded nuclear antigen EBNA-5. Exp Cell Res, 1991. 197(2): pp. 314–8.PubMedCrossRefGoogle Scholar
  208. 208.
    Kashuba, E., et al., EBV-encoded EBNA-5 associates with P14ARF in extranucleolar inclusions and prolongs the survival of P14ARF-expressing cells. Int J Cancer, 2003. 105(5): pp. 644–53.PubMedCrossRefGoogle Scholar
  209. 209.
    Kashuba, E., et al., Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein. Exp Cell Res, 2005. 303(1): pp. 47–55.PubMedGoogle Scholar
  210. 210.
    Szekely, L., et al., EBNA-5, an Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci USA, 1993. 90(12): pp. 5455–9.PubMedCrossRefGoogle Scholar
  211. 211.
    Szekely, L., et al., The Epstein-Barr virus-encoded nuclear antigen EBNA-5 accumulates in PML-containing bodies. J Virol, 1996. 70(4): pp. 2562–8.PubMedGoogle Scholar
  212. 212.
    Pokrovskaja, K., et al., Proteasome inhibitor induces nucleolar translocation of Epstein-Barr virus-encoded EBNA-5. J Gen Virol, 2001. 82(Pt 2): pp. 345–58.PubMedGoogle Scholar
  213. 213.
    Hennessy, K., S. Fennewald, and E. Kieff, A third viral nuclear protein in lymphoblasts immortalized by Epstein- Barr virus. Proc Natl Acad Sci USA, 1985. 82(17): pp. 5944–8.PubMedCrossRefGoogle Scholar
  214. 214.
    Hennessy, K., et al., Definitive identification of a member of the Epstein-Barr virus nuclear protein 3 family. Proc Natl Acad Sci USA, 1986. 83(15): pp. 5693–7.PubMedCrossRefGoogle Scholar
  215. 215.
    Petti, L. and E. Kieff, A sixth Epstein-Barr virus nuclear protein (EBNA3B) is expressed in latently infected growth-transformed lymphocytes. J Virol, 1988. 62(6): pp. 2173–8.PubMedGoogle Scholar
  216. 216.
    Kieff, E. and A.B. Rickinson, Epstein-Barr Virus and Its Replication, in Fields Virology, D.M. Knipe and P.M. Howley, Editors. 2001, Lippincott Williams and WIlkins: Philadelphia. pp. 2511–74.Google Scholar
  217. 217.
    Rivailler, P., et al., Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein-Barr virus pathogenesis in the immunosuppressed host. Blood, 2004. 104(5): pp. 1482–9.PubMedCrossRefGoogle Scholar
  218. 218.
    Zhao, B., D.R. Marshall, and C.E. Sample, A conserved domain of the Epstein-Barr virus nuclear antigens 3A and 3C binds to a discrete domain of Jkappa. J Virol, 1996. 70(7): pp. 4228–36.PubMedGoogle Scholar
  219. 219.
    Chen, A., et al., EBNA-3B- and EBNA-3C-regulated cellular genes in Epstein-Barr virus-immortalized lymphoblastoid cell lines. J Virol, 2006. 80(20): pp. 10139–50.PubMedCrossRefGoogle Scholar
  220. 220.
    Tomkinson, B. and E. Kieff, Use of second-site homologous recombination to demonstrate that Epstein-Barr virus nuclear protein 3B is not important for lymphocyte infection or growth transformation in vitro. J Virol, 1992. 66(5): pp. 2893–903.PubMedGoogle Scholar
  221. 221.
    Chen, A., et al., Epstein-Barr virus with the latent infection nuclear antigen 3B completely deleted is still competent for B-cell growth transformation in vitro. J Virol, 2005. 79(7): pp. 4506–9.PubMedCrossRefGoogle Scholar
  222. 222.
    Murray, R.J., et al., Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies. J Exp Med, 1992. 176(1): pp. 157–68.PubMedCrossRefGoogle Scholar
  223. 223.
    Khanna, R., et al., Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med, 1992. 176(1): pp. 169–76.PubMedCrossRefGoogle Scholar
  224. 224.
    Gavioli, R., et al., Recognition of the Epstein-Barr virus-encoded nuclear antigens EBNA-4 and EBNA-6 by HLA-A11-restricted cytotoxic T lymphocytes: implications for down-regulation of HLA-A11 in Burkitt lymphoma. Proc Natl Acad Sci USA, 1992. 89(13): pp. 5862–6.PubMedCrossRefGoogle Scholar
  225. 225.
    Gottschalk, S., et al., An Epstein-Barr virus deletion mutant associated with fatal lymphoproliferative disease unresponsive to therapy with virus-specific CTLs. Blood, 2001. 97(4): pp. 835–43.PubMedCrossRefGoogle Scholar
  226. 226.
    Robertson, E.S., T. Ooka, and E.D. Kieff, Epstein-Barr virus vectors for gene delivery to B lymphocytes. Proc Natl Acad Sci USA, 1996. 93(21): pp. 11334–40.PubMedCrossRefGoogle Scholar
  227. 227.
    Kempkes, B., et al., Immortalization of human B lymphocytes by a plasmid containing 71 kilobase pairs of Epstein-Barr virus DNA. J Virol, 1995. 69(1): pp. 231–8.PubMedGoogle Scholar
  228. 228.
    Bourillot, P.Y., et al., Transcriptional repression by the Epstein-Barr virus EBNA3A protein tethered to DNA does not require RBP-Jkappa. J Gen Virol, 1998. 79(Pt 2): pp. 363–70.PubMedGoogle Scholar
  229. 229.
    Cotter, M.A., 2nd and E.S. Robertson, Modulation of histone acetyltransferase activity through interaction of epstein-barr nuclear antigen 3C with prothymosin alpha. Mol Cell Biol, 2000. 20(15): pp. 5722–35.PubMedCrossRefGoogle Scholar
  230. 230.
    Oswald, F., et al., RBP-Jkappa/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Mol Cell Biol, 2005. 25(23): pp. 10379–90.PubMedCrossRefGoogle Scholar
  231. 231.
    Hsieh, J.J., et al., CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci USA, 1999. 96(1): pp. 23–8.PubMedCrossRefGoogle Scholar
  232. 232.
    Webb, P., et al., ERbeta Binds N-CoR in the presence of Estrogens via an LXXLL-like motif in the N-CoR C-terminus. Nucl Recept, 2003. 1(1): p. 4.PubMedCrossRefGoogle Scholar
  233. 233.
    Savkur, R.S. and T.P. Burris, The coactivator LXXLL nuclear receptor recognition motif. J Pept Res, 2004. 63(3): pp. 207–12.PubMedCrossRefGoogle Scholar
  234. 234.
    Kashuba, E., et al., Epstein-Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated with Hepatitis B virus X antigen. Oncogene, 2000. 19(14): pp. 1801–6.PubMedCrossRefGoogle Scholar
  235. 235.
    Kashuba, E., et al., Epstein-Barr virus encoded nuclear protein EBNA-3 binds a novel human uridine kinase/uracil phosphoribosyltransferase. BMC Cell Biol, 2002. 3(1): p. 23.PubMedCrossRefGoogle Scholar
  236. 236.
    Kashuba, E., et al., Epstein-Barr virus-encoded nuclear protein EBNA-3 interacts with the epsilon-subunit of the T-complex protein 1 chaperonin complex. J Hum Virol, 1999. 2(1): pp. 33–7.PubMedGoogle Scholar
  237. 237.
    Calderwood, M.A., et al., Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci USA, 2007. 104(18): pp. 7606–11.PubMedCrossRefGoogle Scholar
  238. 238.
    West, M., et al., Functional mapping of the DNA binding domain of bovine papillomavirus E1 protein. J Virol, 2001. 75(24): pp. 11948–60.PubMedCrossRefGoogle Scholar
  239. 239.
    Subramanian, C., M.A. Cotter, 2nd, and E.S. Robertson, Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis. Nat Med, 2001. 7(3): pp. 350–5.PubMedCrossRefGoogle Scholar
  240. 240.
    Subramanian, C., J.S. Knight, and E.S. Robertson, The Epstein Barr nuclear antigen EBNA3C regulates transcription, cell transformation and cell migration. Front Biosci, 2002. 7: pp. d704–16.PubMedCrossRefGoogle Scholar
  241. 241.
    Krauer, K.G., et al., The Epstein-Barr virus nuclear antigen-6 protein co-localizes with EBNA-3 and survival of motor neurons protein. Virology, 2004. 318(1): pp. 280–94.PubMedCrossRefGoogle Scholar
  242. 242.
    Grundhoff, A.T., et al., Characterization of DP103, a novel DEAD box protein that binds to the Epstein-Barr virus nuclear proteins EBNA2 and EBNA3C. J Biol Chem, 1999. 274(27): pp. 19136–44.PubMedCrossRefGoogle Scholar
  243. 243.
    Allday, M.J. and P.J. Farrell, Epstein-Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J Virol, 1994. 68(6): pp. 3491–8.PubMedGoogle Scholar
  244. 244.
    Zancai, P., et al., Retinoic acid stabilizes p27Kip1 in EBV-immortalized lymphoblastoid B cell lines through enhanced proteasome-dependent degradation of the p45Skp2 and Cks1 proteins. Oncogene, 2005. 24(15): pp. 2483–94.PubMedCrossRefGoogle Scholar
  245. 245.
    Sung, N.S., et al., EBNA-2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein-Barr virus. J Virol, 1991. 65(5): pp. 2164–9.PubMedGoogle Scholar
  246. 246.
    Woisetschlaeger, M., et al., Role for the Epstein-Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proc Natl Acad Sci USA, 1991. 88(9): pp. 3942–6.PubMedCrossRefGoogle Scholar
  247. 247.
    Puglielli, M.T., N. Desai, and S.H. Speck, Regulation of EBNA gene transcription in lymphoblastoid cell lines: characterization of sequences downstream of BCR2 (Cp). J Virol, 1997. 71(1): pp. 120–8.PubMedGoogle Scholar
  248. 248.
    Rooney, C.M., et al., Host cell and EBNA-2 regulation of Epstein-Barr virus latent-cycle promoter activity in B lymphocytes. J Virol, 1992. 66(1): pp. 496–504.PubMedGoogle Scholar
  249. 249.
    Johannsen, E., et al., EBNA-2 and EBNA-3C extensively and mutually exclusively associate with RBPJkappa in Epstein-Barr virus-transformed B lymphocytes. J Virol, 1996. 70(6): pp. 4179–83.PubMedGoogle Scholar
  250. 250.
    Le Roux, A., et al., The Epstein-Barr virus determined nuclear antigens EBNA-3A, -3B, and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology, 1994. 205(2): pp. 596–602.PubMedCrossRefGoogle Scholar
  251. 251.
    Sugden, B., K. Marsh, and J. Yates, A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol Cell Biol, 1985. 5(2): pp. 410–3.PubMedGoogle Scholar
  252. 252.
    Lupton, S. and A.J. Levine, Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells. Mol Cell Biol, 1985. 5(10): pp. 2533–42.PubMedGoogle Scholar
  253. 253.
    Jones, C.H., S.D. Hayward, and D.R. Rawlins, Interaction of the lymphocyte-derived Epstein-Barr virus nuclear antigen EBNA-1 with its DNA-binding sites. J Virol, 1989. 63(1): pp. 101–10.PubMedGoogle Scholar
  254. 254.
    Deng, Z., et al., Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell, 2002. 9(3): pp. 493–503.PubMedCrossRefGoogle Scholar
  255. 255.
    Deng, Z., et al., Inhibition of Epstein-Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA1. J Virol, 2005. 79(8): pp. 4640–50.PubMedCrossRefGoogle Scholar
  256. 256.
    Sugden, B. and N. Warren, Plasmid origin of replication of Epstein-Barr virus, oriP, does not limit replication in cis. Mol Biol Med, 1988. 5(2): pp. 85–94.PubMedGoogle Scholar
  257. 257.
    Kirchmaier, A.L. and B. Sugden, Rep*: a viral element that can partially replace the origin of plasmid DNA synthesis of Epstein-Barr virus. J Virol, 1998. 72(6): pp. 4657–66.PubMedGoogle Scholar
  258. 258.
    Aiyar, A., C. Tyree, and B. Sugden, The plasmid replicon of EBV consists of multiple cis-acting elements that facilitate DNA synthesis by the cell and a viral maintenance element. EMBO J, 1998. 17(21): pp. 6394–403.PubMedCrossRefGoogle Scholar
  259. 259.
    Shan, L., et al., An OriP/EBNA-1-based baculovirus vector with prolonged and enhanced transgene expression. J Gene Med, 2006. 8(12): pp. 1400–6.PubMedCrossRefGoogle Scholar
  260. 260.
    Schaefer, B.C., J.L. Strominger, and S.H. Speck, Redefining the Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines. Proc Natl Acad Sci USA, 1995. 92(23): pp. 10565–9.PubMedCrossRefGoogle Scholar
  261. 261.
    Tsai, C.N., S.T. Liu, and Y.S. Chang, Identification of a novel promoter located within the Bam HI Q region of the Epstein-Barr virus genome for the EBNA 1 gene. DNA Cell Biol, 1995. 14(9): pp. 767–76.PubMedCrossRefGoogle Scholar
  262. 262.
    Nonkwelo, C., et al., Transcription start sites downstream of the Epstein-Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein. J Virol, 1996. 70(1): pp. 623–7.PubMedGoogle Scholar
  263. 263.
    Hampar, B., et al., Replication of the resident repressed Epstein-Barr virus genome during the early S phase (S-1 period) of nonproducer Raji cells. Proc Natl Acad Sci USA, 1974. 71(3): pp. 631–3.PubMedCrossRefGoogle Scholar
  264. 264.
    Adams, A., Replication of latent Epstein-Barr virus genomes in Raji cells. J Virol, 1987. 61(5): pp. 1743–6.PubMedGoogle Scholar
  265. 265.
    Lindahl, T., et al., Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. J Mol Biol, 1976. 102(3): pp. 511–30.PubMedCrossRefGoogle Scholar
  266. 266.
    Nonoyama, M. and J.S. Pagano, Replication of viral deoxyribonucleic acid and breakdown of cellular deoxyribonucleic acid in Epstein-Barr virus infection. J Virol, 1972. 9(4): pp. 714–6.PubMedGoogle Scholar
  267. 267.
    Yates, J.L. and N. Guan, Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells. J Virol, 1991. 65(1): pp. 483–8.PubMedGoogle Scholar
  268. 268.
    Kirchmaier, A.L. and B. Sugden, Plasmid maintenance of derivatives of oriP of Epstein-Barr virus. J Virol, 1995. 69(2): pp. 1280–3.PubMedGoogle Scholar
  269. 269.
    Hudson, G.S., T.J. Gibson, and B.G. Barrell, The BamHI F region of the B95-8 Epstein-Barr virus genome. Virology, 1985. 147(1): pp. 99–109.PubMedCrossRefGoogle Scholar
  270. 270.
    Reisman, D., J. Yates, and B. Sugden, A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components. Mol Cell Biol, 1985. 5(8): pp. 1822–32.PubMedGoogle Scholar
  271. 271.
    Sugden, B. and N. Warren, A promoter of Epstein-Barr virus that can function during latent infection can be transactivated by EBNA-1, a viral protein required for viral DNA replication during latent infection. J Virol, 1989. 63(6): pp. 2644–9.PubMedGoogle Scholar
  272. 272.
    Krysan, P.J., S.B. Haase, and M.P. Calos, Isolation of human sequences that replicate autonomously in human cells. Mol Cell Biol, 1989. 9(3): pp. 1026–33.PubMedGoogle Scholar
  273. 273.
    Middleton, T. and B. Sugden, Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein-Barr virus replication protein EBNA1. J Virol, 1994. 68(6): pp. 4067–71.PubMedGoogle Scholar
  274. 274.
    Krysan, P.J. and M.P. Calos, Epstein-Barr virus-based vectors that replicate in rodent cells. Gene, 1993. 136(1–2): pp. 137–43.PubMedCrossRefGoogle Scholar
  275. 275.
    Wysokenski, D.A. and J.L. Yates, Multiple EBNA1-binding sites are required to form an EBNA1-dependent enhancer and to activate a minimal replicative origin within oriP of Epstein-Barr virus. J Virol, 1989. 63(6): pp. 2657–66.PubMedGoogle Scholar
  276. 276.
    Gahn, T.A. and B. Sugden, An EBNA-1-dependent enhancer acts from a distance of 10 kilobase pairs to increase expression of the Epstein-Barr virus LMP gene. J Virol, 1995. 69(4): pp. 2633–6.PubMedGoogle Scholar
  277. 277.
    Puglielli, M.T., M. Woisetschlaeger, and S.H. Speck, oriP is essential for EBNA gene promoter activity in Epstein-Barr virus- immortalized lymphoblastoid cell lines. J Virol, 1996. 70(9): pp. 5758–68.PubMedGoogle Scholar
  278. 278.
    Gahn, T.A. and C.L. Schildkraut, The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell, 1989. 58(3): pp. 527–35.PubMedCrossRefGoogle Scholar
  279. 279.
    Yates, J.L., S.M. Camiolo, and J.M. Bashaw, The minimal replicator of Epstein-Barr virus oriP. J Virol, 2000. 74(10): pp. 4512–22.PubMedCrossRefGoogle Scholar
  280. 280.
    Chittenden, T., S. Lupton, and A.J. Levine, Functional limits of oriP, the Epstein-Barr virus plasmid origin of replication. J Virol, 1989. 63(7): pp. 3016–25.PubMedGoogle Scholar
  281. 281.
    Bashaw, J.M. and J.L. Yates, Replication from oriP of Epstein-Barr virus requires exact spacing of two bound dimers of EBNA1 which bend DNA. J Virol, 2001. 75(22): pp. 10603–11.PubMedCrossRefGoogle Scholar
  282. 282.
    Summers, H., et al., Cooperative assembly of EBNA1 on the Epstein-Barr virus latent origin of replication. J Virol, 1996. 70(2): pp. 1228–31.PubMedGoogle Scholar
  283. 283.
    Avolio-Hunter, T.M., P.N. Lewis, and L. Frappier, Epstein-Barr nuclear antigen 1 binds and destabilizes nucleosomes at the viral origin of latent DNA replication. Nucleic Acids Res, 2001. 29(17): pp. 3520–8.PubMedCrossRefGoogle Scholar
  284. 284.
    Frappier, L. and M. O'Donnell, Epstein-Barr nuclear antigen 1 mediates a DNA loop within the latent replication origin of Epstein-Barr virus. Proc Natl Acad Sci USA, 1991. 88(23): pp. 10875–9.PubMedCrossRefGoogle Scholar
  285. 285.
    Avolio-Hunter, T.M. and L. Frappier, EBNA1 efficiently assembles on chromatin containing the Epstein-Barr virus latent origin of replication. Virology, 2003. 315(2): pp. 398–408.PubMedCrossRefGoogle Scholar
  286. 286.
    Baer, R., et al., DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, 1984. 310(5974): pp. 207–11.PubMedCrossRefGoogle Scholar
  287. 287.
    Yates, J.L. and S.M. Camiolo, Dissection of DNA replication and enhancer activation function of Epstein-Barr virus nuclear antigen 1. Cancer Cells, 1988. 6: pp. 197–205.Google Scholar
  288. 288.
    Ambinder, R.F., et al., Functional domains of Epstein-Barr virus nuclear antigen EBNA-1. J Virol, 1991. 65(3): pp. 1466–78.PubMedGoogle Scholar
  289. 289.
    Shah, W.A., et al., Binding of EBNA-1 to DNA creates a protease-resistant domain that encompasses the DNA recognition and dimerization functions. J Virol, 1992. 66(6): pp. 3355–62.PubMedGoogle Scholar
  290. 290.
    Goldsmith, K., L. Bendell, and L. Frappier, Identification of EBNA1 amino acid sequences required for the interaction of the functional elements of the Epstein-Barr virus latent origin of DNA replication. J Virol, 1993. 67(6): pp. 3418–26.PubMedGoogle Scholar
  291. 291.
    Frappier, L., K. Goldsmith, and L. Bendell, Stabilization of the EBNA1 protein on the Epstein-Barr virus latent origin of DNA replication by a DNA looping mechanism. J Biol Chem, 1994. 269(2): pp. 1057–62.PubMedGoogle Scholar
  292. 292.
    Bochkarev, A., et al., Crystal structure of the DNA-binding domain of the Epstein-Barr virus origin-binding protein EBNA 1. Cell, 1995. 83(1): pp. 39–46.PubMedCrossRefGoogle Scholar
  293. 293.
    Heller, M., et al., Repeat arrays in cellular DNA related to the Epstein-Barr virus IR3 repeat. Mol Cell Biol, 1985. 5(3): pp. 457–65.PubMedGoogle Scholar
  294. 294.
    Heller, M., et al., The IR3 repeat in Epstein-Barr virus DNA has homology to cell DNA, encodes part of a messenger RNA in EBV transformed cells but does not mediate integration of Epstein-Barr virus DNA, in Nasopharyngeal carcinoma: current concepts, U. Prasad and et. al, Editors. 1983, Kuala Lumpur: University of Malaya: Kuala Lumpur. pp. 177–202.Google Scholar
  295. 295.
    Heller, M., V. van Santen, and E. Kieff, Simple repeat sequence in Epstein-Barr virus DNA is transcribed in latent and productive infections. J Virol, 1982. 44(1): pp. 311–20.PubMedGoogle Scholar
  296. 296.
    Yin, Y., B. Manoury, and R. Fahraeus, Self-inhibition of synthesis and antigen presentation by Epstein-Barr virus-encoded EBNA1. Science, 2003. 301(5638): pp. 1371–4.PubMedCrossRefGoogle Scholar
  297. 297.
    Trivedi, P., et al., The epstein-Barr-virus-encoded membrane protein LMP but not the nuclear antigen EBNA-1 induces rejection of transfected murine mammary carcinoma cells. Int J Cancer, 1991. 48(5): pp. 794–800.PubMedCrossRefGoogle Scholar
  298. 298.
    Levitskaya, J., et al., Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature, 1995. 375(6533): pp. 685–8.PubMedCrossRefGoogle Scholar
  299. 299.
    Levitskaya, J., et al., Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA, 1997. 94(23): pp. 12616–21.PubMedCrossRefGoogle Scholar
  300. 300.
    Sharipo, A., et al., A minimal glycine-alanine repeat prevents the interaction of ubiquitinated I kappaB alpha with the proteasome: a new mechanism for selective inhibition of proteolysis. Nat Med, 1998. 4(8): pp. 939–44.PubMedCrossRefGoogle Scholar
  301. 301.
    Dantuma, N.P., et al., Inhibition of proteasomal degradation by the gly-Ala repeat of Epstein-Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc Natl Acad Sci USA, 2000. 97(15): pp. 8381–5.PubMedCrossRefGoogle Scholar
  302. 302.
    Dantuma, N.P., A. Sharipo, and M.G. Masucci, Avoiding proteasomal processing: the case of EBNA1. Curr Top Microbiol Immunol, 2002. 269: pp. 23–36.PubMedCrossRefGoogle Scholar
  303. 303.
    Fogg, M.H., et al., The CD8+ T-cell response to an Epstein-Barr virus-related gammaherpesvirus infecting rhesus macaques provides evidence for immune evasion by the EBNA-1 homologue. J Virol, 2005. 79(20): pp. 12681–91.PubMedCrossRefGoogle Scholar
  304. 304.
    Marechal, V., et al., Mapping EBNA-1 domains involved in binding to metaphase chromosomes. J Virol, 1999. 73(5): pp. 4385–92.PubMedGoogle Scholar
  305. 305.
    Sears, J., et al., Metaphase chromosome tethering is necessary for the DNA synthesis and maintenance of oriP plasmids but is insufficient for transcription activation by Epstein-Barr nuclear antigen 1. J Virol, 2003. 77(21): pp. 11767–80.PubMedCrossRefGoogle Scholar
  306. 306.
    Wu, H., P. Kapoor, and L. Frappier, Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein-Barr nuclear antigen 1. J Virol, 2002. 76(5): pp. 2480–90.PubMedCrossRefGoogle Scholar
  307. 307.
    Mackey, D. and B. Sugden, The linking regions of EBNA1 are essential for its support of replication and transcription. Mol Cell Biol, 1999. 19(5): pp. 3349–59.PubMedGoogle Scholar
  308. 308.
    Wu, H., D.F. Ceccarelli, and L. Frappier, The DNA segregation mechanism of Epstein-Barr virus nuclear antigen 1. EMBO Rep, 2000. 1(2): pp. 140–4.PubMedCrossRefGoogle Scholar
  309. 309.
    Shire, K., et al., EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance. J Virol, 1999. 73(4): pp. 2587–95.PubMedGoogle Scholar
  310. 310.
    Fischer, N., et al., Epstein-Barr virus nuclear antigen 1 forms a complex with the nuclear transporter karyopherin alpha2. J Biol Chem, 1997. 272(7): pp. 3999–4005.PubMedCrossRefGoogle Scholar
  311. 311.
    Holowaty, M.N., et al., Protein profiling with Epstein-Barr nuclear antigen-1 reveals an interaction with the herpesvirus-associated ubiquitin-specific protease HAUSP/USP7. J Biol Chem, 2003. 278(32): pp. 29987–94.PubMedCrossRefGoogle Scholar
  312. 312.
    Kim, A.L., et al., An imperfect correlation between DNA replication activity of Epstein- Barr virus nuclear antigen 1 (EBNA1) and binding to the nuclear import receptor, Rch1/importin alpha. Virology, 1997. 239(2): pp. 340–51.PubMedCrossRefGoogle Scholar
  313. 313.
    Van Scoy, S., et al., Human p32: a coactivator for Epstein-Barr virus nuclear antigen-1-mediated transcriptional activation and possible role in viral latent cycle DNA replication. Virology, 2000. 275(1): pp. 145–57.PubMedCrossRefGoogle Scholar
  314. 314.
    Wang, Y., et al., P32/TAP, a cellular protein that interacts with EBNA-1 of Epstein-Barr virus. Virology, 1997. 236(1): pp. 18–29.PubMedCrossRefGoogle Scholar
  315. 315.
    Laine, A. and L. Frappier, Identification of Epstein-Barr virus nuclear antigen 1 protein domains that direct interactions at a distance between DNA-bound proteins. J Biol Chem, 1995. 270(52): pp. 30914–8.PubMedCrossRefGoogle Scholar
  316. 316.
    Mackey, D., T. Middleton, and B. Sugden, Multiple regions within EBNA1 can link DNAs. J Virol, 1995. 69(10): pp. 6199–208.PubMedGoogle Scholar
  317. 317.
    Mackey, D. and B. Sugden, Studies on the mechanism of DNA linking by Epstein-Barr virus nuclear antigen 1. J Biol Chem, 1997. 272(47): pp. 29873–9.PubMedCrossRefGoogle Scholar
  318. 318.
    Wilkinson, A.H., et al., Increased frequency of posttransplant lymphomas in patients treated with cyclosporine, azathioprine, and prednisone. Transplantation, 1989. 47(2): pp. 293–6.PubMedCrossRefGoogle Scholar
  319. 319.
    Middleton, T. and B. Sugden, EBNA1 can link the enhancer element to the initiator element of the Epstein-Barr virus plasmid origin of DNA replication. J Virol, 1992. 66(1): pp. 489–95.PubMedGoogle Scholar
  320. 320.
    Kirchmaier, A.L. and B. Sugden, Dominant-negative inhibitors of EBNA-1 of Epstein-Barr virus. J Virol, 1997. 71(3): pp. 1766–75.PubMedGoogle Scholar
  321. 321.
    Chaudhuri, B., et al., Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc Natl Acad Sci USA, 2001. 98(18): pp. 10085–9.PubMedCrossRefGoogle Scholar
  322. 322.
    Dhar, S.K., et al., Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell, 2001. 106(3): pp. 287–96.PubMedCrossRefGoogle Scholar
  323. 323.
    Schepers, A., et al., Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J, 2001. 20(16): pp. 4588–602.PubMedCrossRefGoogle Scholar
  324. 324.
    Kang, M.S., S.C. Hung, and E. Kieff, Epstein-Barr virus nuclear antigen 1 activates transcription from episomal but not integrated DNA and does not alter lymphocyte growth. Proc Natl Acad Sci USA, 2001. 98(26): pp. 15233–8.PubMedCrossRefGoogle Scholar
  325. 325.
    Yin, Q. and E.K. Flemington, siRNAs against the Epstein Barr virus latency replication factor, EBNA1, inhibit its function and growth of EBV-dependent tumor cells. Virology, 2006. 346(2): pp. 385–93.PubMedCrossRefGoogle Scholar
  326. 326.
    Nasimuzzaman, M., et al., Eradication of epstein-barr virus episome and associated inhibition of infected tumor cell growth by adenovirus vector-mediated transduction of dominant-negative EBNA1. Mol Ther, 2005. 11(4): pp. 578–90.PubMedCrossRefGoogle Scholar
  327. 327.
    Ceccarelli, D.F. and L. Frappier, Functional analyses of the EBNA1 origin DNA binding protein of Epstein-Barr virus. J Virol, 2000. 74(11): pp. 4939–48.PubMedCrossRefGoogle Scholar
  328. 328.
    Kitamura, R., et al., Nuclear import of Epstein-Barr virus nuclear antigen 1 mediated by NPI-1 (Importin alpha5) is up- and down-regulated by phosphorylation of the nuclear localization signal for which Lys379 and Arg380 are essential. J Virol, 2006. 80(4): pp. 1979–91.PubMedCrossRefGoogle Scholar
  329. 329.
    Saridakis, V., et al., Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell, 2005. 18(1): pp. 25–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Eric Johannsen
  • Michael Calderwood
  • Myung-Soo Kang
  • Bo Zhao
  • Daniel Portal
  • Elliott Kieff
    • 1
  1. 1.Departments of Medicine and Microbiology and Molecular geneticsHarvard Medical School, Channing, Laboratory, Brigham and Women’s HospitalBostonUSA

Personalised recommendations