Advertisement

The Epstein–Barr Virus Lytic Life Cycle

  • Sankar Swaminathan
  • Shannon Kenney
Chapter

Introduction

The lytic phase of Epstein–Barr virus (EBV; Zalani et al. 1996) infection is an essential part of the virus life cycle, since only this form of viral replication results in the production of infectious viral particles, and allows the virus to be transmitted from cell to cell and host to host. Although development of EBV-associated malignancy is primarily associated with growth of latently EBV-infected cells, immunosuppressed patients often have abnormally high levels of infectious viral particles in their plasma, and enhanced intercellular transmission of virus may play a role in increasing the likelihood that immunosuppressed patients eventually develop EBV-induced lymphoproliferative disease (LPD) (Cohen 2000; Feng et al. 2004a) Anti-viral drugs (acyclovir and ganciclovir) which inhibit the lytic form of EBV replication decrease the risk of post-transplant lymphoproliferative disease in renal transplant recipients (Funch et al. 2005). In addition, early-passage B cells...

Keywords

Tegument Protein Lytic Replication Lytic Form Oral Hairy Leukoplakia Bart miRNAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamson, A. L., Darr, D., Holley-Guthrie, E., Johnson, R. A., Mauser, A., Swenson, J. and Kenney, S. (2000) Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol. 74, 1224–1233.PubMedGoogle Scholar
  2. Adamson, A. L. and Kenney, S. (2001) Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies.J Virol. 75, 2388–2399.PubMedGoogle Scholar
  3. Adamson, A. L. and Kenney, S. (1999) The Epstein-Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol. 73, 6551–6558.PubMedGoogle Scholar
  4. Adamson, A. L. and Kenney, S. C. (1998) Rescue of the Epstein-Barr virus BZLF1 mutant, Z(S186A), early gene activation defect by the BRLF1 gene product.Virology. 251, 187–197.PubMedGoogle Scholar
  5. Albrecht, J. C., Nicholas, J., Billler, D., Cameron, K. R., Beisinger, B. C. N., Wittman, S., Craxton, M. A. and Coleman, H. (1992) Primary structure of the herpesvirus saimiri genome. J. Virol. 66, 5047–5058.PubMedGoogle Scholar
  6. Altmann, M. and Hammerschmidt, W. (2005) Epstein-Barr Virus Provides a New Paradigm: A Requirement for the Immediate Inhibition of Apoptosis. PLoS Biology. 3, e404.PubMedGoogle Scholar
  7. Ambinder, R. F., Robertson, K. D. and Tao, Q. (1999) DNA methylation and the Epstein-Barr virus.Semin Cancer Biol. 9, 369–375.PubMedGoogle Scholar
  8. Asai, R., Kato, A., Kato, K., Kanamori-Koyama, M., Sugimoto, K., Sairenji, T., Nishiyama, Y. and Kawaguchi, Y. (2006) Epstein-Barr Virus Protein Kinase BGLF4 is a Virion tegument protein that dissociates from Virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1. J. Virol. 80, 5125–5134.PubMedGoogle Scholar
  9. Baran-Marszak, F., Feuillard, J., Najjar, I., Le Clorennec, C., Bechet, J. M., Dusanter-Fourt, I., Bornkamm, G. W., Raphael, M. and Fagard, R. (2004) Differential roles of STAT1alpha and STAT1beta in fludarabine-induced cell cycle arrest and apoptosis in human B cells. Blood. 104, 2475–2483.PubMedGoogle Scholar
  10. Batisse, J., Manet, E., Middeldorp, J., Sergeant, A. and Gruffat, H. (2005) Epstein-Barr virus mRNA export factor EB2 is essential for intranuclear capsid assembly and production of gp350. J Virol. 79, 14102–14111.PubMedGoogle Scholar
  11. Baumann, M., Feederle, R., Kremmer, E. and Hammerschmidt, W. (1999) Cellular transcription factors recruit viral replication proteins to activate the Epstein-Barr virus origin of lytic DNA replication, oriLyt. Embo J. 18, 6095–6105.PubMedGoogle Scholar
  12. Baumann, M., Mischak, H., Dammeier, S., Kolch, W., Gires, O., Pich, D., Zeidler, R., Delecluse, H. J. and Hammerschmidt, W. (1998) Activation of the Epstein-Barr virus transcription factor BZLF1 by 12-O-tetradecanoylphorbol-13-acetate-induced phosphorylation. J Virol. 72, 8105–8114.PubMedGoogle Scholar
  13. Bell, P., Lieberman, P. M. and Maul, G. G. (2000) Lytic but not latent replication of epstein-barr virus is associated with PML and induces sequential release of nuclear domain 10 proteins. J Virol. 74, 11800–11810.PubMedGoogle Scholar
  14. Bello, L. J., Davison, A. J., Glenn, M. A., Whitehouse, A., Rethmeier, N., Schulz, T. F. and Barklie Clements, J. (1999) The human herpesvirus-8 ORF 57 gene and its properties. J Gen Virol. 80, 3207–3215.PubMedGoogle Scholar
  15. Bellows, D. S., Howell, M., Pearson, C., Hazlewood, S. A. and Hardwick, J. M. (2002) Epstein-Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins. J Virol. 76, 2469–2479.PubMedGoogle Scholar
  16. Bhende, P. M., Dickerson, S. J., Sun, X., Feng, W.-h. and Kenney, S. C. (2007) X-box-binding protein 1 (XBP-1) activates lytic Epstein-Barr virus gene expression in combination with Protein Kinase D (PKD). J. Virol. JVI. 00154–00107.Google Scholar
  17. Bhende, P. M., Seaman, W. T., Delecluse, H. J. and Kenney, S. C. (2005) BZLF1 activation of the methylated form of the BRLF1 immediate-early promoter is regulated by BZLF1 residue 186. J Virol. 79, 7338–7348.PubMedGoogle Scholar
  18. Bhende, P. M., Seaman, W. T., Delecluse, H. J. and Kenney, S. C. (2004) The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet. 36, 1099–1104.PubMedGoogle Scholar
  19. Biggin, M., Bodescot, M., Perricaudet, M. and Farrell, P. (1987) Epstein-Barr virus gene expression in P3HR1-superinfected Raji cells. J. Virol. 61, 3120–3132.PubMedGoogle Scholar
  20. Binne, U. K., Amon, W. and Farrell, P. J. (2002) Promoter sequences required for reactivation of Epstein-Barr virus from latency. J Virol. 76, 10282–10289.PubMedGoogle Scholar
  21. Borras, A. M., Strominger, J. L. and Speck, S. H. (1996) Characterization of the ZI domains in the Epstein-Barr virus BZLF1 gene promoter: role in phorbol ester induction. J Virol. 70, 3894–3901.PubMedGoogle Scholar
  22. Boyle, S. M., Ruvolo, V., Gupta, A. K. and Swaminathan, S. (1999) Association with the cellular export receptor CRM 1 mediates function and intracellular localization of Epstein-Barr virus SM protein, a regulator of gene expression. J Virol. 73, 6872–6881.PubMedGoogle Scholar
  23. Bryant, H. and Farrell, P. J. (2002) Signal Transduction and Transcription Factor Modification during Reactivation of Epstein-Barr Virus from Latency. J Virol. 76, 10290–10298.PubMedGoogle Scholar
  24. Buisson, M., Hans, F., Kusters, I., Duran, N. and Sergeant, A. (1999) The C-terminal region but not the Arg-X-Pro repeat of Epstein-Barr virus protein EB2 is required for its effect on RNA splicing and transport. J Virol. 73, 4090–4100.PubMedGoogle Scholar
  25. Buisson, M., Manet, E., Trescol-Biemont, M. C., Gruffat, H., Durand, B. and Sergeant, A. (1989) The Epstein-Barr Virus (EBV) early protein EB2 is a posttranscriptional activator expressed under the control of EBV transcription factors EB1 and R. J. Virol. 63 (12), 5276–5284.Google Scholar
  26. Cai, X., Schafer, A., Lu, S., Bilello, J. P., Desrosiers, R. C., Edwards, R., Raab-Traub, N. and Cullen, B. R. (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2, e23.PubMedGoogle Scholar
  27. Cayrol, C. and Flemington, E. (1996) G0/G1 growth arrest mediated by a region encompassing the basic leucine zipper (bZIP) domain of the Epstein-Barr virus transactivator Zta. J Biol Chem. 271, 31799–31802.PubMedGoogle Scholar
  28. Cayrol, C. and Flemington, E. K. (1995) Identification of cellular target genes of the Epstein-Barr virus transactivator Zta: activation of transforming growth factor beta igh3 (TGF-beta igh3) and TGF-beta 1. J Virol. 69, 4206–4212.PubMedGoogle Scholar
  29. Cayrol, C. and Flemington, E. K. (1996) The Epstein-Barr virus bZIP transcription factor Zta causes G0/G1 cell cycle arrest through induction of cyclin-dependent kinase inhibitors.Embo J. 15, 2748–2759.PubMedGoogle Scholar
  30. Chang, L. K., Chung, J. Y., Hong, Y. R., Ichimura, T., Nakao, M., Liu, S. T. (2005) Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res. 33(20), 6528–39.Google Scholar
  31. Chang, Y. N., Dong, D. L., Hayward, G. S. and Hayward, S. D. (1990) The Epstein-Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J Virol. 64, 3358–3369.PubMedGoogle Scholar
  32. Chapman, C. J., Harris, J. D., Hardwicke, M. A., Sandri-Goldin, R. M., Collins, M. K. and Latchman, D. S. (1992) Promoter-independent activation of heterologous virus gene expression by the herpes simplex virus immediate-early protein ICP27. Virology. 186, 573–578.PubMedGoogle Scholar
  33. Chatila, T., Ho, N., Liu, P., Liu, S., Mosialos, G., Kieff, E. and Speck, S. H. (1997) The Epstein-Barr virus-induced Ca2+/calmodulin-dependent kinase type IV/Gr promotes a Ca(2+)-dependent switch from latency to viral replication. J Virol. 71, 6560–6567.PubMedGoogle Scholar
  34. Chee, M. and Barrell, B. (1990) Herpesviruses: a study of parts. Trends Genet. 6, 86–91.PubMedGoogle Scholar
  35. Chen, C. J., Deng, Z., Kim, A. Y., Blobel, G. A. and Lieberman, P. M. (2001) Stimulation of CREB binding protein nucleosomal histone acetyltransferase activity by a class of transcriptional activators. Mol Cell Biol. 21, 476–487.PubMedGoogle Scholar
  36. Chen, L., Liao, G., Fujimuro, M., Semmes, O. J. and Hayward, S. D. (2001) Properties of two EBV Mta nuclear export signal sequences. Virology. 288, 119–128.PubMedGoogle Scholar
  37. Chen, M.-R., Chang, S.-J., Huang, H. and Chen, J.-Y. (2000) A Protein Kinase Activity Associated with Epstein-Barr Virus BGLF4 Phosphorylates the Viral Early Antigen EA-D In Vitro. J. Virol. 74, 3093–3104.PubMedGoogle Scholar
  38. Chen, M. R., Chang, S. J., Huang, H. and Chen, J. Y. (2000) A protein kinase activity associated with Epstein-Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. J Virol. 74, 3093–3104.PubMedGoogle Scholar
  39. Cheng, H., Dufu, K., Lee, C. S., Hsu, J. L., Dias, A. and Reed, R. (2006) Human mRNA export machinery recruited to the 5′ end of mRNA. Cell. 127, 1389–1400.PubMedGoogle Scholar
  40. Chevallier-Greco, A., Gruffat, H., Manet, E., Calender, A. and Sergeant, A. (1989) The Epstein-Barr virus (EBV) DR enhancer contains two functionally different domains: domain A is constitutive and cell specific, domain B is transactivated by the EBV early protein R. J Virol. 63, 615–623.PubMedGoogle Scholar
  41. Chi, T. and Carey, M. (1993) The ZEBRA activation domain: modular organization and mechanism of action. Mol Cell Biol. 13, 7045–7055.PubMedGoogle Scholar
  42. Chi, T., Lieberman, P., Ellwood, K. and Carey, M. (1995) A general mechanism for transcriptional synergy by eukaryotic activators. Nature. 377, 254–257.PubMedGoogle Scholar
  43. Chua, H. H., Lee, H. H., Chang, S. S., Lu, C. C., Yeh, T. H., Hsu, T. Y., Cheng, T. H., Cheng, J. T., Chen, M. R. and Tsai, C. H. (2007) Role of the TSG101 gene in Epstein-Barr virus late gene transcription. J Virol. 81, 2459–2471.PubMedGoogle Scholar
  44. Cohen, J. I. (2000) Epstein-Barr virus infection. N Engl J Med. 343, 481–492.PubMedGoogle Scholar
  45. Cohen, J. I. and Lekstrom, K. (1999) Epstein-Barr Virus BARF1 Protein Is Dispensable for B-Cell Transformation and Inhibits Alpha Interferon Secretion from Mononuclear Cells.J. Virol. 73, 7627–7632.PubMedGoogle Scholar
  46. Countryman, J., Jenson, H., Seibl, R., Wolf, H. and Miller, G. (1987) Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency. J Virol. 61, 3672–3679.PubMedGoogle Scholar
  47. Countryman, J. and Miller, G. (1985) Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA.Proceedings of the National Academy of Sciences of the United States of America. 82, 4085–4089.PubMedGoogle Scholar
  48. Countryman, J. and Miller, G. (1985) Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA.Proc Natl Acad Sci USA. 82, 4085–4089.PubMedGoogle Scholar
  49. Cox, M. A., Leahy, J. and Hardwick, J. M. (1990) An enhancer within the divergent promoter of Epstein-Barr virus responds synergistically to the R and Z transactivators. J Virol. 64, 313–321.PubMedGoogle Scholar
  50. Daibata, M., Humphreys, R. E. and Sairenji, T. (1992) Phosphorylation of the Epstein-Barr virus BZLF1 immediate-early gene product ZEBRA. Virology. 188, 916–920.PubMedGoogle Scholar
  51. Daibata, M., Speck, S. H., Mulder, C. and Sairenji, T. (1994) Regulation of the BZLF1 promoter of Epstein-Barr virus by second messengers in anti-immunoglobulin-treated B cells. Virology. 198, 446–454.PubMedGoogle Scholar
  52. Darr, C. D., Mauser, A. and Kenney, S. (2001) Epstein-Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol-3 kinase activation. J Virol. 75, 6135–6142.PubMedGoogle Scholar
  53. Deng, Z., Chen, C. J., Chamberlin, M., Lu, F., Blobel, G. A., Speicher, D., Cirillo, L. A., Zaret, K. S. and Lieberman, P. M. (2003) The CBP bromodomain and nucleosome targeting are required for Zta-directed nucleosome acetylation and transcription activation. Mol Cell Biol. 23, 2633–2644.PubMedGoogle Scholar
  54. Deng, Z., Chen, C. J., Zerby, D., Delecluse, H. J. and Lieberman, P. M. (2001) Identification of acidic and aromatic residues in the Zta activation domain essential for Epstein-Barr virus reactivation. J Virol. 75, 10334–10347.PubMedGoogle Scholar
  55. El-Guindy A, H. L., Delecluse HJ, Miller G. (2007) Phosphoacceptor site S173 in the regulatory domain of Epstein-Barr Virus ZEBRA protein is required for lytic DNA replication but not for activation of viral early genes. J Virol. 81(7), 3303–3316.PubMedGoogle Scholar
  56. El-Guindy, A. S., Heston, L., Endo, Y., Cho, M. S. and Miller, G. (2002) Disruption of Epstein-Barr virus latency in the absence of phosphorylation of ZEBRA by protein kinase C. J Virol. 76, 11199–11208.PubMedGoogle Scholar
  57. Faggioni, A., Zompetta, C., Grimaldi, S., Barile, G., Frati, L. and Lazdins, J. (1986) Calcium modulation activates Epstein-Barr virus genome in latently infected cells. Science. 232, 1554–1556.PubMedGoogle Scholar
  58. Fahmi, H., Cochet, C., Hmama, Z., Opolon, P. and Joab, I. (2000) Transforming growth factor beta 1 stimulates expression of the Epstein-Barr virus BZLF1 immediate-early gene product ZEBRA by an indirect mechanism which requires the MAPK kinase pathway. J Virol. 74, 5810–5818.PubMedGoogle Scholar
  59. Falk, K. I. and Ernberg, I. (1999) Demethylation of the Epstein-barr virus origin of lytic replication and of the immediate early gene BZLF1 is DNA replication independent. Brief report. Arch Virol. 144, 2219–2227.Google Scholar
  60. Farina, A., Feederle, R., Raffa, S., Gonnella, R., Santarelli, R., Frati, L., Angeloni, A., Torrisi, M. R., Faggioni, A. and Delecluse, H. J. (2005) BFRF1 of Epstein-Barr virus is essential for efficient primary viral envelopment and egress. J Virol. 79, 3703–3712.PubMedGoogle Scholar
  61. Farrell, P. J., Rowe, D. T., Rooney, C. M. and Kouzarides, T. (1989) Epstein-Barr virus BZLF1 transactivator specifically binds to a consensus AP-1 site and is related to c-fos.EMBO J. 8, 127–132.PubMedGoogle Scholar
  62. Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W. and Delecluse, H. J. (2000) The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. Embo J. 19, 3080–3089.PubMedGoogle Scholar
  63. Feederle, R., Neuhierl, B., Baldwin, G., Bannert, H., Hub, B., Mautner, J., Behrends, U. and Delecluse, H. J. (2006) Epstein-Barr virus BNRF1 protein allows efficient transfer from the endosomal compartment to the nucleus of primary B lymphocytes. J Virol. 80, 9435–9443.PubMedGoogle Scholar
  64. Feederle, R., Neuhierl, B., Bannert, H., Geletneky, K., Shannon-Lowe, C. and Delecluse, H. J. (2007) Epstein-Barr virus B95.8 produced in 293 cells shows marked tropism for differentiated primary epithelial cells and reveals interindividual variation in susceptibility to viral infection. 121, 588–594.Google Scholar
  65. Feng W. H., C. J., Fischer S., Li L., Sneller M., Goldbach-Mansky R., Raab-Traub N., Delecluse H. J., Kenney S .C. (2004a) Reactivation of latent Epstein-Barr virus by methotrexate: a potential contributor to methotrexate-associated lymphomas. J Natl Cancer Inst. 96(22), 1691–1702.Google Scholar
  66. Feng, W. H., Hong, G., Delecluse, H. J. and Kenney, S. C. (2004b) Lytic Induction Therapy for Epstein-Barr Virus-Positive B-Cell Lymphomas. J Virol. 78, 1893–1902.Google Scholar
  67. Feng, W. H., Israel, B., Raab-Traub, N., Busson, P. and Kenney, S. C. (2002) Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Res. 62, 1920–1926.PubMedGoogle Scholar
  68. Feng, W. H. and Kenney, S. C. (2006) Valproic Acid Enhances the Efficacy of Chemotherapy in EBV-Positive Tumors by Increasing Lytic Viral Gene Expression. 66, 8762–8769.Google Scholar
  69. Fitz, L. J., Morris, J. C., Towler, P., Long, A., Burgess, P., Greco, R., Wang, J., Gassaway, R., Nickbarg, E., Kovacic, S., Ciarletta, A., Giannotti, J., Finnerty, H., Zollner, R., Beier, D. R., Leak, L. V., Turner, K. J. and Wood, C. R. (1997) Characterization of murine Flt4 ligand/VEGF-C. Oncogene. 15, 613–618.PubMedGoogle Scholar
  70. Fixman, E. D., Hayward, G. S. and Hayward, S. D. (1995) Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J. Virol. 69, 2998–3006.PubMedGoogle Scholar
  71. Fixman, E. D., Hayward, G. S. and Hayward, S. D. (1992) trans-acting requirements for replication of Epstein-Barr virus ori-lyt. J. Virol. 66, 5030–5039.PubMedGoogle Scholar
  72. Flamand, L. and Menezes, J. (1996) Cyclic AMP-responsive element-dependent activation of Epstein-Barr virus zebra promoter by human herpesvirus 6. J Virol. 70, 1784–1791.PubMedGoogle Scholar
  73. Flemington, E. and Speck, S. H. (1990a) Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol. 64, 1227–1232.Google Scholar
  74. Flemington, E. and Speck, S. H. (1990b) Epstein-Barr virus BZLF1 trans activator induces the promoter of a cellular cognate gene, c-fos. J Virol. 64, 4549–4552.Google Scholar
  75. Flemington, E. and Speck, S. H. (1990c) Evidence for coiled-coil dimer formation by an Epstein-Barr virus transactivator that lacks a heptad repeat of leucine residues. Proc Natl Acad Sci USA. 87, 9459–9463.Google Scholar
  76. Flemington, E. and Speck, S. H. (1990) Identification of phorbol ester response elements in the promoter of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol. 64, 1217–1226.PubMedGoogle Scholar
  77. Flemington, E. K., Borras, A. M., Lytle, J. P. and Speck, S. H. (1992) Characterization of the Epstein-Barr virus BZLF1 protein transactivation domain. J Virol. 66, 922–929.PubMedGoogle Scholar
  78. Flemington, E. K., Goldfeld, A. E. and Speck, S. H. (1991) Efficient transcription of the Epstein-Barr virus immediate-early BZLF1 and BRLF1 genes requires protein synthesis. J Virol. 65, 7073–7077.PubMedGoogle Scholar
  79. Flemington, E. K., Lytle, J. P., Cayrol, C., Borras, A. M. and Speck, S. H. (1994) DNA-binding-defective mutants of the Epstein-Barr virus lytic switch activator Zta transactivate with altered specificities. Mol Cell Biol. 14, 3041–3052.PubMedGoogle Scholar
  80. Francis, A., Ragoczy, T., Gradoville, L., Heston, L., El-Guindy, A., Endo, Y. and Miller, G. (1999) Amino acid substitutions reveal distinct functions of serine 186 of the ZEBRA protein in activation of early lytic cycle genes and synergy with the Epstein-Barr virus R transactivator. J Virol. 73, 4543–4551.PubMedGoogle Scholar
  81. Francis, A. L., Gradoville, L. and Miller, G. (1997) Alteration of a single serine in the basic domain of the Epstein-Barr virus ZEBRA protein separates its functions of transcriptional activation and disruption of latency. J Virol. 71, 3054–3061.PubMedGoogle Scholar
  82. Fu, D. X., Tanhehco, Y. C., Chen, J., Foss, C. A., Fox, J. J., Lemas, V., Chong, J. M., Ambinder, R. F. and Pomper, M. G. (2007) Virus-associated tumor imaging by induction of viral gene expression. Clin Cancer Res. 13, 1453–1458.PubMedGoogle Scholar
  83. Fujii, K., Yokoyama, N., Kiyono, T., Kuzushima, K., Homma, M., Nishiyama, Y., Fujita, M. and Tsurumi, T. (2000) The Epstein-Barr Virus Pol Catalytic Subunit Physically Interacts with the BBLF4-BSLF1-BBLF2/3 Complex. J. Virol. 74, 2550–2557.PubMedGoogle Scholar
  84. Funch D. P., W. A., Schneider G., Ziyadeh N. J., Pescovitz M. D. (2005) Ganciclovir and acyclovir reduce the risk of post-transplant lymphoproliferative disorder in renal transplant recipients. Am J Transplant. 5(12), 2894–2900.PubMedGoogle Scholar
  85. Gao, Z., Krithivas, A., Finan, J. E., Semmes, O. J., Zhou, S., Wang, Y. and Hayward, S. D. (1998) The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol. 72, 8559–8567.PubMedGoogle Scholar
  86. Gershburg, E., Marschall, M., Hong, K. and Pagano, J. S. (2004) Expression and Localization of the Epstein-Barr Virus-Encoded Protein Kinase. J. Virol. 78, 12140–12146.PubMedGoogle Scholar
  87. Gershburg, E. and Pagano, J. S. (2002) Phosphorylation of the Epstein-Barr Virus (EBV) DNA Polymerase Processivity Factor EA-D by the EBV-Encoded Protein Kinase and Effects of the L-Riboside Benzimidazole 1263W94. J. Virol. 76, 998–1003.PubMedGoogle Scholar
  88. Gershburg, E., Raffa, S., Torrisi, M. R. and Pagano, J. S. (2007) Epstein-Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J. Virol. 81, 5407–5412.PubMedGoogle Scholar
  89. Gonnella, R., Farina, A., Santarelli, R., Raffa, S., Feederle, R., Bei, R., Granato, M., Modesti, A., Frati, L., Delecluse, H. J., Torrisi, M. R., Angeloni, A. and Faggioni, A. (2005) Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. J Virol. 79, 3713–3727.PubMedGoogle Scholar
  90. Gradoville, L., Kwa, D., El-Guindy, A. and Miller, G. (2002) Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle.J Virol. 76, 5612–5626.PubMedGoogle Scholar
  91. Granzow, H., Klupp, B. G., Fuchs, W., Veits, J., Osterrieder, N. and Mettenleiter, T. C. (2001) Egress of alphaherpesviruses: comparative ultrastructural study. J Virol. 75, 3675–3684.PubMedGoogle Scholar
  92. Greenspan, J. S., Greenspan, D., Lennette, E. T., Abrams, D. I., Conant, M. A., Petersen, V. and Freese, U. K. (1985) Replication of Epstein-Barr virus within the epithelial cells of oral “hairy” leukoplakia, an AIDS-associated lesion. N Engl J Med. 313, 1564–1571.PubMedGoogle Scholar
  93. Gruffat, H., Batisse, J., Pich, D., Neuhierl, B., Manet, E., Hammerschmidt, W. and Sergeant, A. (2002) Epstein-Barr virus mRNA export factor EB2 is essential for production of infectious virus. J Virol. 76, 9635–9644.PubMedGoogle Scholar
  94. Gruffat, H., Duran, N., Buisson, M., Wild, F., Buckland, R. and Sergeant, A. (1992) Characterization of an R-binding site mediating the R-induced activation of the Epstein-Barr virus BMLF1 promoter. J Virol. 66, 46–52.PubMedGoogle Scholar
  95. Gruffat, H., Manet, E., Rigolet, A. and Sergeant, A. (1990) The enhancer factor R of Epstein-Barr virus (EBV) is a sequence specific DNA binding protein. Nucleic Acids Res. 18, 6835–66843.PubMedGoogle Scholar
  96. Gruffat, H., Manet, E. and Sergeant, A. (2002) MEF2-mediated recruitment of class II HDAC at the EBV immediate early gene BZLF1 links latency and chromatin remodeling. EMBO Rep. 3, 141–146.PubMedGoogle Scholar
  97. Gruffat, H. and Sergeant, A. (1994) Characterization of the DNA-binding site repertoire for the Epstein-Barr virus transcription factor R. Nucleic Acids Res. 22, 1172–1178.PubMedGoogle Scholar
  98. Grundhoff, A., Sullivan, C. S. and Ganem, D. (2006) A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. Rna. 12, 733–750.PubMedGoogle Scholar
  99. Gupta, A. K., Ruvolo, V., Patterson, C. and Swaminathan, S. (2000) The human herpesvirus 8 homolog of Epstein-Barr virus SM protein (KS- SM) is a posttranscriptional activator of gene expression. J Virol. 74, 1038–1044.PubMedGoogle Scholar
  100. Hahn, A. M., Huye L. E., Ning, S., Webster-Cyriaque, J., Pagano, J. S. (2005) Interferon regulatory factor 7 is negatively regulated by the Epstein-Barr virus immediate-early gene, BZLF-1. J Virol. 79 10040–10052.PubMedGoogle Scholar
  101. Hammerschmidt, W. and Sugden, B. (1988) Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus. Cell. 55, 427–433.PubMedGoogle Scholar
  102. Han, Z., Marendy, E., Wang, Y. D., Yuan, J., Sample, J. T. and Swaminathan, S. (2007) Multiple roles of Epstein-Barr virus SM protein in lytic replication. J Virol. 81, 4058–4069.PubMedGoogle Scholar
  103. Hardwick, J. M., Lieberman, P. M. and Hayward, S. D. (1988) A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol. 62, 2274–2284.PubMedGoogle Scholar
  104. Hardwick, J. M., Tse, L., Applegren, N., Nicholas, J. and Veliuona, M. A. (1992) The Epstein-Barr virus R transactivator (Rta) contains a complex, potent activation domain with properties different from those of VP16. J Virol. 66, 5500–5508.PubMedGoogle Scholar
  105. Henderson, S., Huen, D., Rowe, M., Dawson, C., Johnson, G. and Rickinson, A. (1993) Epstein-Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci USA. 90, 8479–8483.PubMedGoogle Scholar
  106. Heston, L., El-Guindy, A., Countryman, J., Dela Cruz, C., Delecluse, H. J. and Miller, G. (2006) Amino acids in the basic domain of Epstein-Barr virus ZEBRA protein play distinct roles in DNA binding, activation of early lytic gene expression, and promotion of viral DNA replication. J Virol. 80(18), 9115–9133.PubMedGoogle Scholar
  107. Hiriart, E., Bardouillet, L., Manet, E., Gruffat, H., Penin, F., Montserret, R., Farjot, G. and Sergeant, A. (2003) A region of the Epstein-Barr virus (EBV) mRNA export factor EB2 containing an arginine-rich motif mediates direct binding to RNA. J Biol Chem. 278, 37790–37798.PubMedGoogle Scholar
  108. Hiriart, E., Farjot, G., Gruffat, H., Nguyen, M. V., Sergeant, A. and Manet, E. (2003) A novel nuclear export signal and a REF interaction domain both promote mRNA export by the Epstein-Barr virus EB2 protein. J Biol Chem. 278, 335–342.PubMedGoogle Scholar
  109. Hiriart, E., Gruffat, H., Buisson, M., Mikaelian, I., Keppler, S., Meresse, P., Mercher, T., Bernard, O. A., Sergeant, A. and Manet, E. (2005) Interaction of the Epstein-Barr virus mRNA export factor EB2 with human Spen proteins SHARP, OTT1, and a novel member of the family, OTT3, links Spen proteins with splicing regulation and mRNA export. J Biol Chem. 280, 36935–36945.PubMedGoogle Scholar
  110. Ho, C.H., Hsu. C.-F., Fong, P.F., Tai, S.K., Hsieh, S.L. and Chen, C.J. Related Articles, (2007) Epstein-Barr virus transcription activator Rta upregulates decoy receptor 3 expression by binding to its promoter. J Virol. 81(9), 4837–4847.PubMedGoogle Scholar
  111. Holley-Guthrie, E. A., Quinlivan, E. B., Mar, E. C. and Kenney, S. (1990) The Epstein-Barr virus (EBV) BMRF1 promoter for early antigen (EA-D) is regulated by the EBV transactivators, BRLF1 and BZLF1, in a cell-specific manner. J Virol. 64, 3753–3759.PubMedGoogle Scholar
  112. Hong, G. K., Delecluse, H.-J., Gruffat, H., Morrison, T. E., Feng, W. H., Sergeant, A. and Kenney, S. C. (2004) The BRRF1 early gene of Epstein-Barr virus encodes a transcription factor that enhances induction of lytic infection by BRLF1. J Virol. 78(10), 4983–92.Google Scholar
  113. Hong, G. K., Gulley, M. L., Feng, W. H., Delecluse, H. J., Holley-Guthrie, E. and Kenney, S. C. (2005) Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol. 79, 13993–14003.PubMedGoogle Scholar
  114. Hong, G. K., Kumar, P., Wang, L., Damania, B., Gulley, M. L., Delecluse, H. J., Polverini, P. J. and Kenney, S. C. (2005) Epstein-Barr virus lytic infection is required for efficient production of the angiogenesis factor vascular endothelial growth factor in lymphoblastoid cell lines. J Virol. 79, 13984–13992.PubMedGoogle Scholar
  115. Hsu, D., De Waal Malefyt, R., Fiorentino, D., Dang, M., Vieira, P., Devries, J., Spits, H., Mosmann, T. and Moore, K. (1990) Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science. 250, 830–832.PubMedGoogle Scholar
  116. Jenkins, P. J., Binne, U. K. and Farrell, P. J. (2000) Histone acetylation and reactivation of Epstein-Barr virus from latency. J Virol. 74, 710–720.PubMedGoogle Scholar
  117. Johannsen, E., Luftig, M., Chase, M. R., Weicksel, S., Cahir-McFarland, E., Illanes, D., Sarracino, D. and Kieff, E. (2004) Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci USA. 101, 16286–16291.PubMedGoogle Scholar
  118. Jones, R. J., Seaman, W. T., Feng, W. H., Barlow, E., Dickerson, S., Delecluse, H. J. and Kenney, S. C. (2007) Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease. Int J Cancer. 121(6), 1274–81.Google Scholar
  119. Karimi, L., Crawford, D. H., Speck, S. and Nicholson, L. J. (1995) Identification of an epithelial cell differentiation responsive region within the BZLF1 promoter of the Epstein-Barr virus. J Gen Virol. 76 (Pt 4), 759–765.PubMedGoogle Scholar
  120. Kato, K., Yokoyama, A., Tohya, Y., Akashi, H., Nishiyama, Y. and Kawaguchi, Y. (2003) Identification of protein kinases responsible for phosphorylation of Epstein-Barr virus nuclear antigen leader protein at serine-35, which regulates its coactivator function. J Gen Virol. 84, 3381–3392.PubMedGoogle Scholar
  121. Keating, S., Prince, S., Jones, M. and Rowe, M. (2002) The lytic cycle of Epstein-Barr virus is associated with decreased expression of cell surface major histocompatibility complex class I and class II molecules. J Virol. 76, 8179–8188.PubMedGoogle Scholar
  122. Kenney, S., Holley-Guthrie, E., Mar, E. C. and Smith, M. (1989) The Epstein-Barr Virus BMLF1 promoter contains an enhancer element that is responsive to the BZLF1 and BRLF1 transactivators. J. Virol. 63, 3878–3883.PubMedGoogle Scholar
  123. Key, S. C., Yoshizaki, T. and Pagano, J. S. (1998) The Epstein-Barr virus (EBV) SM protein enhances pre-mRNA processing of the EBV DNA polymerase transcript. J Virol. 72, 8485–8492.PubMedGoogle Scholar
  124. Klupp, B. G., Granzow, H., Fuchs, W., Keil, G. M., Finke, S. and Mettenleiter, T. C. (2007) Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc Natl Acad Sci USA. 104, 7241–7246.PubMedGoogle Scholar
  125. Kouzarides, T., Packham, G., Cook, A. and Farrell, P. J. (1991) The BZLF1 protein of EBV has a coiled coil dimerisation domain without a heptad leucine repeat but with homology to the C/EBP leucine zipper. Oncogene. 6, 195–204.PubMedGoogle Scholar
  126. Kraus, R. J., Mirocha, S. J., Stephany, H. M., Puchalski, J. R. and Mertz, J. E. (2001) Identification of a novel element involved in regulation of the lytic switch BZLF1 gene promoter of Epstein-Barr virus. J Virol. 75, 867–877.PubMedGoogle Scholar
  127. Kraus, R. J., Perrigoue, J. G. and Mertz, J. E. (2003) ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus. J Virol. 77, 199–207.PubMedGoogle Scholar
  128. Kudoh, A., Daikoku, T., Sugaya, Y., Isomura, H., Fujita, M., Kiyono, T., Nishiyama, Y. and Tsurumi, T. (2004) Inhibition of S-phase cyclin-dependent kinase activity blocks expression of Epstein-Barr virus immediate-early and early genes, preventing viral lytic replication. J Virol. 78, 104–115.PubMedGoogle Scholar
  129. Kudoh, A., Fujita, M., Kiyono, T., Kuzushima, K., Sugaya, Y., Izuta, S., Nishiyama, Y. and Tsurumi, T. (2003) Reactivation of lytic replication from B cells latently infected with Epstein-Barr virus occurs with high S-phase cyclin-dependent kinase activity while inhibiting cellular DNA replication. J Virol. 77, 851–861.PubMedGoogle Scholar
  130. Laichalk, L. L. and Thorley-Lawson, D. A. (2005) Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol. 79, 1296–1307.PubMedGoogle Scholar
  131. Le Roux, F., Sergeant, A. and Corbo, L. (1996) Epstein-Barr virus (EBV) EB1/Zta protein provided in trans and competent for the activation of productive cycle genes does not activate the BZLF1 gene in the EBV genome. J Gen Virol. 77 (Pt 3), 501–509.Google Scholar
  132. Lebedev, A. A., Krause, M. H., Isidro, A. L., Vagin, A. A., Orlova, E. V., Turner, J., Dodson, E. J., Tavares, P. and Antson, A. A. (2007) Structural framework for DNA translocation via the viral portal protein. Embo J. 26, 1984–1994.PubMedGoogle Scholar
  133. Lee, C. P., Chen, J. Y., Wang, J. T., Kimura, K., Takemoto, A., Lu, C. C. and Chen, M. R. (2007) Epstein-Barr Virus BGLF4 Kinase Induces Premature Chromosome Condensation through Activation of Condensin and Topoisomerase II. J Virol. 81, 5166–5180.PubMedGoogle Scholar
  134. Lee, M. A. and Yates, J. L. (1992) BHRF1 of Epstein-Barr virus, which is homologous to human proto-oncogene bcl2, is not essential for transformation of B cells or for virus replication in vitro. J Virol. 66, 1899–1906.PubMedGoogle Scholar
  135. Li, Y., Webster-Cyriaque, J., Tomlinson, C. C., Yohe, M. and Kenney, S. (2004) Fatty acid synthase expression is induced by the Epstein-Barr virus immediate-early protein BRLF1 and required for lytic viral gene expression. J Virol. 78(8), 4197–206.Google Scholar
  136. Liang, C. L., Chen, J. L., Hsu, Y. P., Ou, J. T. and Chang, Y. S. (2002) Epstein-Barr virus BZLF1 gene is activated by transforming growth factor-beta through cooperativity of Smads and c-Jun/c-Fos proteins. J Biol Chem. 277, 23345–23357.PubMedGoogle Scholar
  137. Liao, G., Huang, J., Fixman, E. D. and Hayward, S. D. (2005) The Epstein-Barr virus replication protein BBLF2/3 provides an origin-tethering function through interaction with the zinc finger DNA binding protein ZBRK1 and the KAP-1 corepressor. J Virol. 79, 245–256.PubMedGoogle Scholar
  138. Lieberman, P. M. and Berk, A. J. (1994) A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA--promoter DNA complex formation.Genes Dev. 8, 995–1006.PubMedGoogle Scholar
  139. Lieberman, P. M. and Berk, A. J. (1990) In vitro transcriptional activation, dimerization, and DNA-binding specificity of the Epstein-Barr virus Zta protein. J Virol. 64, 2560–2568.PubMedGoogle Scholar
  140. Lieberman, P. M. and Berk, A. J. (1991) The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev. 5, 2441–2454.PubMedGoogle Scholar
  141. Lieberman, P. M., Hardwick, J. M. and Hayward, S. D. (1989) Responsiveness of the Epstein-Barr virus NotI repeat promoter to the Z transactivator is mediated in a cell-type-specific manner by two independent signal regions. J Virol. 63, 3040–3050.PubMedGoogle Scholar
  142. Lieberman, P. M., Hardwick, J. M., Sample, J., Hayward, G. S. and Hayward, S. D. (1990) The zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J Virol. 64, 1143–1155.PubMedGoogle Scholar
  143. Lieberman, P. M., Ozer, J. and Gursel, D. B. (1997) Requirement for transcription factor IIA (TFIIA)-TFIID recruitment by an activator depends on promoter structure and template competition. Mol Cell Biol. 17, 6624–6632.PubMedGoogle Scholar
  144. Ling, P. D., Lednicky, J. A., Keitel, W. A., Poston, D. G., White, Z. S., Peng, R., Liu, Z., Mehta, S. K., Pierson, D. L., Rooney, C. M., Vilchez, R. A., Smith, E. O. and Butel, J. S. (2003) The dynamics of herpesvirus and polyomavirus reactivation and shedding in healthy adults: a 14-month longitudinal study. J Infect Dis. 187, 1571–1580.PubMedGoogle Scholar
  145. Liou, H. C., Boothby, M. R., Finn, P. W., Davidon, R., Nabavi, N., Zeleznik-Le, N. J., Ting, J. P. and Glimcher, L. H. (1990) A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. Science. 247, 1581–1584.PubMedGoogle Scholar
  146. Liu, P., Liu, S. and Speck, S. H. (1998) Identification of a negative cis element within the ZII domain of the Epstein-Barr virus lytic switch BZLF1 gene promoter. J Virol. 72, 8230–8239.PubMedGoogle Scholar
  147. Liu, P. and Speck, S. H. (2003) Synergistic autoactivation of the Epstein-Barr virus immediate-early BRLF1 promoter by Rta and Zta. Virology. 310, 199–206.PubMedGoogle Scholar
  148. Lu, C. C., Jeng, Y. Y., Tsai, C. H., Liu, M. Y., Yeh, S. W., Hsu, T. Y. and Chen, M. R. (2006) Genome-wide transcription program and expression of the Rta responsive gene of Epstein-Barr virus. Virology. 345, 358–372.PubMedGoogle Scholar
  149. Lu, J., Chen, S. Y., Chua, H. H., Liu, Y. S., Huang, Y. T., Chang, Y., Chen, J. Y., Sheen, T. S. and Tsai, C. H. (2000) Upregulation of tyrosine kinase TKT by the Epstein-Barr virus transactivator Zta. J Virol. 74, 7391–7399.PubMedGoogle Scholar
  150. Lu, J., Chua, H. H., Chen, S. Y., Chen, J. Y. and Tsai, C. H. (2003) Regulation of matrix metalloproteinase-1 by Epstein-Barr virus proteins. Cancer Res. 63, 256–262.PubMedGoogle Scholar
  151. MacCallum, P., Karimi, L. and Nicholson, L. J. (1999) Definition of the transcription factors which bind the differentiation responsive element of the Epstein-Barr virus BZLF1 Z promoter in human epithelial cells. J Gen Virol. 80 (Pt 6), 1501–1512.PubMedGoogle Scholar
  152. Mahot, S., Sergeant, A., Drouet, E. and Gruffat, H. (2003) A novel function for the Epstein-Barr virus transcription factor EB1/Zta: induction of transcription of the hIL-10 gene. J Gen Virol. 84, 965–974.PubMedGoogle Scholar
  153. Manet, E., Allera, C., Gruffat, H., Mikaelian, I., Rigolet, A. and Sergeant, A. (1993) The acidic activation domain of the Epstein-Barr virus transcription factor R interacts in vitro with both TBP and TFIIB and is cell-specifically potentiated by a proline-rich region. Gene Expr. 3, 49–59.PubMedGoogle Scholar
  154. Manet, E., Rigolet, A., Gruffat, H., Giot, J. F. and Sergeant, A. (1991) Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic Acids Res. 19, 2661–2667.PubMedGoogle Scholar
  155. Marchini, A., Tomkinson, B., Cohen, J. I. and Kieff, E. (1991) BHRF1, the Epstein-Barr virus gene with homology to Bc12, is dispensable for B-lymphocyte transformation and virus replication. J. Virol. 5991–6000.Google Scholar
  156. Marshall, W. L., Yim, C., Gustafson, E., Graf, T., Sage, D. R., Hanify, K., Williams, L., Fingeroth, J. and Finberg, R. W. (1999) Epstein-Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak. J Virol. 73, 5181–5185.PubMedGoogle Scholar
  157. Matthews, R. P., Guthrie, C. R., Wailes, L. M., Zhao, X., Means, A. R. and McKnight, G. S. (1994) Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression. Mol Cell Biol. 14, 6107–6116.PubMedGoogle Scholar
  158. Maul, G. G. (1998) Nuclear domain 10, the site of DNA virus transcription and replication.BioEssays. 20, 660–667.PubMedGoogle Scholar
  159. Mauser, A., Holley-Guthrie, E., Simpson, D., Kaufmann, W. and Kenney, S. (2002) The Epstein-Barr virus immediate-early protein BZLF1 induces both a G(2) and a mitotic block. J Virol. 76, 10030–10037.PubMedGoogle Scholar
  160. Mauser, A., Saito, S., Appella, E., Anderson, C. W., Seaman, W. T. and Kenney, S. (2002) The Epstein-Barr virus immediate-early protein BZLF1 regulates p53 function through multiple mechanisms. J Virol. 76, 12503–12512.PubMedGoogle Scholar
  161. Montalvo, E. A., Cottam, M., Hill, S. and Wang, Y. J. (1995) YY1 binds to and regulates cis-acting negative elements in the Epstein-Barr virus BZLF1 promoter. J Virol. 69, 4158–4165.PubMedGoogle Scholar
  162. Montalvo, E. A., Shi, Y., Shenk, T. E. and Levine, A. J. (1991) Negative regulation of the BZLF1 promoter of Epstein-Barr virus. J Virol. 65, 3647–3655.PubMedGoogle Scholar
  163. Moore, M. J. (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science. 309, 1514–1518.PubMedGoogle Scholar
  164. Morrison, T. E. and Kenney, S. C. (2004) BZLF1, an Epstein-Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function.Virology. 328, 219–232.PubMedGoogle Scholar
  165. Morrison, T. E., Mauser, A., Klingelhutz, A. and Kenney, S. C. (2004) Epstein-Barr virus immediate-early protein BZLF1 inhibits tumor necrosis factor alpha-induced signaling and apoptosis by downregulating tumor necrosis factor receptor 1. J Virol. 78, 544–549.PubMedGoogle Scholar
  166. Morrison, T. E., Mauser, A., Wong, A., Ting, J. P. and Kenney, S. C. (2001) Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate- early protein. Immunity. 15, 787–799.PubMedGoogle Scholar
  167. Nicewonger, J., Suck, G., Bloch, D. and Swaminathan, S. (2004) Epstein-Barr virus (EBV) SM protein induces and recruits cellular Sp110b to stabilize mRNAs and enhance EBV lytic gene expression. J Virol. 78, 9412–9422.PubMedGoogle Scholar
  168. Niedobitek, G., Young, L. S., Lau, R., Brooks, L., Greenspan, D., Greenspan, J. S. and Rickinson, A. B. (1991) Epstein-Barr Virus Infection in Oral Hairy Leukoplakia: Virus Replication in the Absence of a Detectable Latent Phase. J Gen Virol. 72, 3035–3046.PubMedGoogle Scholar
  169. Nonkwelo, C. B. and Long, W. K. (1993) Regulation of Epstein-Barr virus BamHI-H divergent promoter by DNA methylation. Virology. 197, 205–215.PubMedGoogle Scholar
  170. Packham, G., Economou, A., Rooney, C. M., Rowe, D. T. and Farrell, P. J. (1990) Structure and function of the Epstein-Barr virus BZLF1 protein. J Virol. 64, 2110–2116.PubMedGoogle Scholar
  171. Paulson, E. J., Fingeroth, J. D., Yates, J. L. and Speck, S. H. (2002) Methylation of the EBV genome and establishment of restricted latency in low-passage EBV-infected 293 epithelial cells. Virology. 299, 109–121.PubMedGoogle Scholar
  172. Paulson, E. J. and Speck, S. H. (1999) Differential methylation of Epstein-Barr virus latency promoters facilitates viral persistence in healthy seropositive individuals. J Virol. 73, 9959–9968.PubMedGoogle Scholar
  173. Perrine, S. P., Hermine, O., Small, T., Suarez, F., O'Reilly, R., Boulad, F., Fingeroth, J., Askin, M., Levy, A., Mentzer, S. J., Di Nicola, M., Gianni, A. M., Klein, C., Horwitz, S. and Faller, D. V. (2007) A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies. Blood. 109, 2571–2578.PubMedGoogle Scholar
  174. Petosa, C., Morand, P., Baudin, F., Moulin, M., Artero, J. B. and Muller, C. W. (2006) Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein.Mol Cell. 21, 565–572.PubMedGoogle Scholar
  175. Pfeffer, S., Zavolan, M., Grasser, F. A., Chien, M., Russo, J. J., Ju, J., John, B., Enright, A. J., Marks, D., Sander, C. and Tuschl, T. (2004) Identification of virus-encoded microRNAs.Science. 304, 734–736.PubMedGoogle Scholar
  176. Pfuller, R. and Hammerschmidt, W. (1996) Plasmid-like replicative intermediates of the Epstein-Barr virus lytic origin of DNA replication. J Virol. 70, 3423–3431.PubMedGoogle Scholar
  177. Quinlivan, E. B., Holley-Guthrie, E. A., Norris, M., Gutsch, D., Bachenheimer, S. L. and Kenney, S. C. (1993) Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1. Nucleic Acids Res. 21, 1999–2007.PubMedGoogle Scholar
  178. Ragoczy, T., Heston, L. and Miller, G. (1998) The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol. 72, 7978–7984.PubMedGoogle Scholar
  179. Ragoczy, T. and Miller, G. (2001) Autostimulation of the Epstein-Barr virus BRLF1 promoter is mediated through consensus Sp1 and Sp3 binding sites. J Virol. 75, 5240–5251.PubMedGoogle Scholar
  180. Ragoczy, T. and Miller, G. (1999) Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol. 73, 9858–9866.PubMedGoogle Scholar
  181. Reed, R. and Cheng, H. (2005) TREX, SR proteins and export of mRNA. Curr Opin Cell Biol. 17, 269–273.PubMedGoogle Scholar
  182. Reimold, A. M., Iwakoshi, N. N., Manis, J., Vallabhajosyula, P., Szomolanyi-Tsuda, E., Gravallese, E. M., Friend, D., Grusby, M. J., Alt, F. and Glimcher, L. H. (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature. 412, 300–307.PubMedGoogle Scholar
  183. Rodriguez, A., Armstrong, M., Dwyer, D. and Flemington, E. (1999) Genetic dissection of cell growth arrest functions mediated by the Epstein-Barr virus lytic gene product, Zta. J Virol. 73, 9029–9038.PubMedGoogle Scholar
  184. Rodriguez, A., Jung, E. J. and Flemington, E. K. (2001) Cell cycle analysis of Epstein-Barr virus-infected cells following treatment with lytic cycle-inducing agents. J Virol. 75, 4482–4489.PubMedGoogle Scholar
  185. Rodriguez, A., Jung, E. J., Yin, Q., Cayrol, C. and Flemington, E. K. (2001) Role of c-myc regulation in Zta-mediated induction of the cyclin-dependent kinase inhibitors p21 and p27 and cell growth arrest. Virology. 284, 159–169.PubMedGoogle Scholar
  186. Rooney, C. M., Rowe, D. T., Ragot, T. and Farrell, P. J. (1989) The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol. 63, 3109–3116.PubMedGoogle Scholar
  187. Ruvolo, V., Gupta, A. K. and Swaminathan, S. (2001) Epstein-Barr virus SM protein interacts with mRNA in vivo and mediates a gene-specific increase in cytoplasmic mRNA. J Virol. 75, 6033–6041.PubMedGoogle Scholar
  188. Ruvolo, V., Navarro, L., Sample, C. E., David, M., Sung, S. and Swaminathan, S. (2003) The Epstein-Barr virus SM protein induces STAT1 and interferon-stimulated gene expression.J Virol. 77, 3690–3701.PubMedGoogle Scholar
  189. Ruvolo, V., Wang, E., Boyle, S. and Swaminathan, S. (1998) The Epstein-Barr virus nuclear protein SM is both a post-transcriptional inhibitor and activator of gene expression.Proceedings of the National Academy of Sciences of the United States of America. 95, 8852–8857.PubMedGoogle Scholar
  190. Sarisky, R. T., Gao, Z., Lieberman, P. M., Fixman, E. D., Hayward, G. S. and Hayward, S. D. (1996) A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. J Virol. 70, 8340–8347.PubMedGoogle Scholar
  191. Schepers, A., Pich, D. and Hammerschmidt, W. (1993) A transcription factor with homology to the AP-1 family links RNA transcription and DNA replication in the lytic cycle of Epstein-Barr virus. Embo J. 12, 3921–3929.PubMedGoogle Scholar
  192. Schepers, A., Pich, D., Mankertz, J. and Hammerschmidt, W. (1993) cis-acting elements in the lytic origin of DNA replication of Epstein-Barr virus. J Virol. 67, 4237–4245.PubMedGoogle Scholar
  193. Schmaus, S., Wolf, H. and Schwarzmann, F. (2004) The reading frame BPLF1 of Epstein-Barr virus: a homologue of herpes simplex virus protein VP16. Virus Genes. 29, 267–277.PubMedGoogle Scholar
  194. Sciabica, K. S., Dai, Q. J. and Sandri-Goldin, R. M. (2003) ICP27 interacts with SRPK1 to mediate HSV splicing inhibition by altering SR protein phosphorylation. Embo J. 22, 1608–1619.PubMedGoogle Scholar
  195. Semmes, O. J., Chen, L., Sarisky, R. T., Gao, Z., Zhong, L. and Hayward, S. D. (1998) Mta has properties of an RNA export protein and increases cytoplasmic accumulation of Epstein-Barr virus replication gene mRNA. J Virol. 72, 9526–9534.PubMedGoogle Scholar
  196. Seto, E., Yang, L., Middeldorp, J., Sheen, T.-S., Chen, J.-Y., Fukayama, M., Eizuru, Y., Ooka, T. and Takada, K. (2005) Epstein-Barr virus (EBV)-encoded BARF1 gene is expressed in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues in the absence of lytic gene expression. J Medical Virol. 76, 82–88.Google Scholar
  197. Sheaffer, A. K., Newcomb, W. W., Gao, M., Yu, D., Weller, S. K., Brown, J. C. and Tenney, D. J. (2001) Herpes Simplex Virus DNA Cleavage and Packaging Proteins Associate with the Procapsid prior to Its Maturation. J. Virol. 75, 687–698.PubMedGoogle Scholar
  198. Sheng, W., Decaussin, G., Ligout, A., Takada, K. and Ooka, T. (2003) Malignant transformation of Epstein-Barr virus-negative Akata cells by introduction of the BARF1 gene carried by Epstein-Barr virus. J Virol. 77, 3859–3865.PubMedGoogle Scholar
  199. Shimizu, N., Sakuma, S., Ono, Y. and Takada, K. (1989) Identification of an enhancer-type sequence that is responsive to Z and R trans-activators of Epstein-Barr virus. Virology. 172, 655–658.PubMedGoogle Scholar
  200. Sinclair, A. J., Brimmell, M., Shanahan, F. and Farrell, P. J. (1991) Pathways of activation of the Epstein-Barr virus productive cycle. J Virol. 65, 2237–2244.PubMedGoogle Scholar
  201. Steven, N. M., Annels, N. E., Kumar, A., Leese, A. M., Kurilla, M. G. and Rickinson, A. B. (1997) Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T cell response. J Exp Med. 185, 1605–1617.PubMedGoogle Scholar
  202. Strockbine, L. D., Cohen, J. I., Farrah, T., Lyman, S. D., Wagener, F., DuBose, R. F., Armitage, R. J. and Spriggs, M. K. (1998) The Epstein-Barr Virus BARF1 Gene Encodes a Novel, Soluble Colony-Stimulating Factor-1 Receptor. J. Virol. 72, 4015–4021.PubMedGoogle Scholar
  203. Swaminathan, S. (2005) Post-transcriptional gene regulation by gamma herpesviruses. Journal of cellular biochemistry. 95, 698–711.PubMedGoogle Scholar
  204. Swaminathan, S., Hesselton, R., Sullivan, J. and Kieff, E. (1993) Epstein-Barr virus recombinants with specifically mutated BCRF1 genes. J. Virol. 67, 7406–7413.PubMedGoogle Scholar
  205. Swenson, J. J., Holley-Guthrie, E. and Kenney, S. C. (2001) Epstein-Barr virus immediate-early protein BRLF1 interacts with CBP, promoting enhanced BRLF1 transactivation. J Virol. 75, 6228–6234.PubMedGoogle Scholar
  206. Swenson, J. J., Mauser, A. E., Kaufmann, W. K. and Kenney, S. C. (1999) The Epstein-Barr virus protein BRLF1 activates S phase entry through E2F1 induction. J Virol. 73, 6540–6550.PubMedGoogle Scholar
  207. Szyf, M., Eliasson, L., Mann, V., Klein, G. and Razin, A. (1985) Cellular and viral DNA hypomethylation associated with induction of Epstein-Barr virus lytic cycle. Proc Natl Acad Sci USA. 82, 8090–8094.PubMedGoogle Scholar
  208. Takada, K. and Ono, Y. (1989) Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. J. Virol. 63, 445–449.PubMedGoogle Scholar
  209. Takada, K., Shimizu, N., Sakuma, S. and Ono, Y. (1986) Trans activation of the latent Epstein-Barr virus (EBV) genome after transfection of the EBV DNA fragment. J Virol. 57, 1016–1022.PubMedGoogle Scholar
  210. Takagi, S., Takada, K. and Sairenji, T. (1991) Formation of intranuclear replication compartments of Epstein-Barr virus with redistribution of BZLF1 and BMRF1 gene products.Virology. 185, 309–315.PubMedGoogle Scholar
  211. Tarodi, B., Subramanian, T. and Chinnadurai, G. (1994) Epstein-Barr virus BHRF1 protein protects against cell death induced by DNA-damaging agents and heterologous viral infection. Virology. 201, 404–407.PubMedGoogle Scholar
  212. Urier, G., Buisson, M., Chambard, P. and Sergeant, A. (1989) The Epstein-Barr virus early protein EB1 activates transcription from different responsive elements including AP-1 binding sites. Embo J. 8, 1447–1453.PubMedGoogle Scholar
  213. Vieira, P., de Waal-Malefyt, R., Dang, M., Johnson, K., Kastelein, R., Fiorentino, D., deVries, J., Roncarolo, M., Mosmann, T. and Moore, K. (1991) Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRF1. Proc Natl. Acad. Sci. USA. 88, 1172–1176.PubMedGoogle Scholar
  214. Wang, P., Day, L. and Lieberman, P. M. (2006) Multivalent sequence recognition by Epstein-Barr virus Zta requires cysteine 171 and an extension of the canonical B-ZIP domain. J Virol. 80, 10942–10949.PubMedGoogle Scholar
  215. Wen, W., Iwakiri, D., Yamamoto, K., Maruo, S., Kanda, T. and Takada, K. (2007) Epstein-Barr virus BZLF1 gene, a switch from latency to lytic infection, is expressed as an immediate-early gene after primary infection of B lymphocytes. J Virol. 81, 1037–1042.PubMedGoogle Scholar
  216. Westphal, E. M., Mauser, A., Swenson, J., Davis, M. G., Talarico, C. L. and Kenney, S. C. (1999) Induction of lytic Epstein-Barr virus (EBV) infection in EBV-associated malignancies using adenovirus vectors in vitro and in vivo. Cancer Res. 59, 1485–1491.PubMedGoogle Scholar
  217. Winkler, M., Rice, S. A. and Stamminger, T. (1994) UL69 of Human Cytomegalovirus, an open reading frame with homology to ICP27 of Herpes simplex virus, encodes a transactivator of gene expression. J. Virol. 68, 3943–3954.PubMedGoogle Scholar
  218. Wu, F. Y., Chen, H., Wang, S. E., ApRhys, C. M., Liao, G., Fujimuro, M., Farrell, C. J., Huang, J., Hayward, S. D. and Hayward, G. S. (2003) CCAAT/enhancer binding protein alpha interacts with ZTA and mediates ZTA-induced p21(CIP-1) accumulation and G(1) cell cycle arrest during the Epstein-Barr virus lytic cycle. J Virol. 77, 1481–1500.PubMedGoogle Scholar
  219. Yokoyama, N., Fujii, K., Hirata, M., Tamai, K., Kiyono, T., Kuzushima, K., Nishiyama, Y., Fujita, M. and Tsurumi, T. (1999) Assembly of the epstein-barr virus BBLF4, BSLF1 and BBLF2/3 proteins and their interactive properties. J Gen Virol. 80 (Pt 11), 2879–2887.PubMedGoogle Scholar
  220. Yoshizaki, T., Sato, H., Murono, S., Pagano, J. S. and Furukawa, M. (1999) Matrix metalloproteinase 9 is induced by the Epstein-Barr virus BZLF1 transactivator. Clin Exp Metastasis. 17, 431–436.PubMedGoogle Scholar
  221. Yuan, J., Cahir-McFarland, E., Zhao, B. and Kieff, E. (2006) Virus and cell RNAs expressed during Epstein-Barr virus replication. J Virol. 80, 2548–2565.PubMedGoogle Scholar
  222. Zacny, V. L., Wilson, J. and Pagano, J. S. (1998) The Epstein-Barr virus immediate-early gene product, BRLF1, interacts with the retinoblastoma protein during the viral lytic cycle. J Virol. 72, 8043–8051.PubMedGoogle Scholar
  223. Zalani, S., Coppage, A., Holley-Guthrie, E. and Kenney, S. (1997) The cellular YY1 transcription factor binds a cis-acting, negatively regulating element in the Epstein-Barr virus BRLF1 promoter. J Virol. 71, 3268–3274.PubMedGoogle Scholar
  224. Zalani, S., Holley-Guthrie, E. and Kenney, S. (1996) Epstein-Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc Natl Acad Sci USA. 93, 9194–9199.PubMedGoogle Scholar
  225. Zalani, S., Holley-Guthrie, E. and Kenney, S. (1995) The Zif268 cellular transcription factor activates expression of the Epstein-Barr virus immediate-early BRLF1 promoter. J Virol. 69, 3816–3823.PubMedGoogle Scholar
  226. Zalani, S., Holley-Guthrie, E. A., Gutsch, D. E. and Kenney, S. C. (1992) The Epstein-Barr virus immediate-early promoter BRLF1 can be activated by the cellular Sp1 transcription factor. J Virol. 66, 7282–7292.PubMedGoogle Scholar
  227. Zerby, D., Chen, C. J., Poon, E., Lee, D., Shiekhattar, R. and Lieberman, P. M. (1999) The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein-Barr virus. Mol Cell Biol. 19, 1617–1626.PubMedGoogle Scholar
  228. Zetterberg, H., Jansson, A., Rymo, L., Chen, F., Karlsson, A., Klein, G. and Brodin, B. (2002) The Epstein-Barr virus ZEBRA protein activates transcription from the early lytic F promoter by binding to a promoter-proximal AP-1-like site. J Gen Virol. 83, 2007–2014.PubMedGoogle Scholar
  229. Zhang, C. X., Decaussin, G., Daillie, J. and Ooka, T. (1988) Altered expression of two Epstein-Barr virus early genes localized in BamHI-A in nonproducer Raji cells. J Virol. 62, 1862–1869.PubMedGoogle Scholar
  230. Zhang, Q., Gutsch, D. and Kenney, S. (1994) Functional and physical interaction between p53 and BZLF1: implications for Epstein-Barr virus latency. Mol Cell Biol. 14, 1929–1938.PubMedGoogle Scholar
  231. Zhang, Q., Hong, Y., Dorsky, D., Holley-Guthrie, E., Zalani, S., Elshiekh, N. A., Kiehl, A., Le, T. and Kenney, S. (1996) Functional and physical interactions between the Epstein-Barr virus (EBV) proteins BZLF1 and BMRF1: Effects on EBV transcription and lytic replication. J Virol. 70, 5131–5142.PubMedGoogle Scholar
  232. zur Hausen, H., O'Neill, F. J., Freese, U. K. and Hecker, E. (1978) Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature. 272, 373–375.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MedicineUniversity of FloridaGainesvilleUSA
  2. 2.Departments of Medicine & Medical Microbiology and Immunology, McArdleLaboratory for Cancer Research University of WisconsinMadisonUSA

Personalised recommendations