Advertisement

Epstein–Barr Virus Transforming Proteins: Biologic Properties and Contribution to Oncogenesis

  • Nancy Raab-Traub
Chapter

Introduction

The Epstein–Barr virus (EBV) is perhaps the most successful human herpesvirus in that greater than 95% of the world’s population are infected (Kieff and Rickinson 2001). The virus establishes a persistent usually benign infection that is marked by the presence of EBV-infected B-lymphocytes in the peripheral blood and continued secretion of low levels of virus in saliva (Miller et al. 1973). EBV is the prototype of the gamma herpesviruses. The gamma herpesviruses are distinguished by their ability to remain dormant in lymphoid cells and the ability to expand the infected cell population to induce cell growth. Pathogenesis induced by these viruses usually results from uncontrolled cellular replication rather than cell death caused by viral replication. EBV is linked to the development of several malignancies, primarily of lymphoid and epithelial cell origin (Raab-Traub 1996). These cancers include African Burkitt's lymphoma, post-transplant lymphoma (PTL), AIDS-associated...

Keywords

Epidermal Growth Factor Receptor Ubiquitin Ligase Latent Membrane Protein Growth Transformation LMP2 Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, A. and Lindahl, T. (1975) Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. Proc Natl Acad Sci USA. 72, 1477–1481.PubMedGoogle Scholar
  2. Altmann, M., Pich, D., Ruiss, R., Wang, J., Sugden, B. and Hammerschmidt, W. (2006) Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV's transforming genes. Proc Natl Acad Sci USA. 103, 14188–14193.PubMedGoogle Scholar
  3. Ardila-Osorio, H., Clausse, B., Mishal, Z., Wiels, J., Tursz, T. and Busson, P. (1999) Evidence of LMP1-TRAF3 interactions in glycosphingolipid-rich complexes of lymphoblastoid and nasopharyngeal carcinoma cells. Int J Cancer. 81, 645–649.PubMedGoogle Scholar
  4. Arrand, J. R. and Rymo, L. (1982) Characterization of the major Epstein-Barr virus-specific RNA in Burkitt lymphoma-derived cells. J Virol. 41, 376–389.PubMedGoogle Scholar
  5. Bartel, D. (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116, 281–297.PubMedGoogle Scholar
  6. Basseres, D. S. and Baldwin, A. S. (2006) Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 25, 6817–6830.PubMedGoogle Scholar
  7. Bollard, C. M., Gottschalk, S., Huls, M. H., Molldrem, J., Przepiorka, D., Rooney, C. M. and Heslop, H. E. (2006) In vivo expansion of LMP 1- and 2-specific T-cells in a patient who received donor-derived EBV-specific T-cells after allogeneic stem cell transplantation. Leuk Lymphoma. 47, 837–842.PubMedGoogle Scholar
  8. Brazil, D. P., Park, J. and Hemmings, B. A. (2002) PKB binding proteins. Getting in on the Akt. Cell. 111, 293–303.Google Scholar
  9. Busson, P., McCoy, R., Sadler, R., Gilligan, K., Tursz, T. and Raab-Traub, N. (1992) Consistent transcription of the Epstein-Barr virus LMP2 gene in nasopharyngeal carcinoma. J Virol. 66, 3257–3262.PubMedGoogle Scholar
  10. Cai, X., Schafer, A., Lu, S., Bilello, J. P., Desrosiers, R. C., Edwards, R., Raab-Traub, N. and Cullen, B. R. (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2, e23.PubMedGoogle Scholar
  11. Caldwell, R. G., Brown, R. C. and Longnecker, R. (2000) Epstein-Barr virus LMP2A-induced B-cell survival in two unique classes of EmuLMP2A transgenic mice. J Virol. 74, 1101–1113.PubMedGoogle Scholar
  12. Caldwell, R. G., Wilson, J. B., Anderson, S. J. and Longnecker, R. (1998) Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 9, 405–411.PubMedGoogle Scholar
  13. Chen H, Hutt-Fletcher L., Cao L, Hayward SD. (2003) A positive autoregulatory loop of LMP1 expression and STAT activation in epithelial cells latently infected with Epstein-Barr virus. J Virol. 77, 4139–4148.PubMedGoogle Scholar
  14. Chen, H., Lee, J. M., Zong, Y., Borowitz, M., Ng, M. H., Ambinder, R. F. and Hayward, S. D. (2001) Linkage between STAT regulation and Epstein-Barr virus gene expression in tumors. J Virol. 75, 2929–2937.PubMedGoogle Scholar
  15. Cohen, J. I. and Lekstrom, K. (1999) Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J Virol. 73, 7627–7632.PubMedGoogle Scholar
  16. Curran, J. A., Laverty, F. S., Campbell, D., Macdiarmid, J. and Wilson, J. B. (2001) Epstein-Barr virus encoded latent membrane protein-1 induces epithelial cell proliferation and sensitizes transgenic mice to chemical carcinogenesis. Cancer Res. 61, 6730–6738.PubMedGoogle Scholar
  17. Dawson, C. W., Rickinson, A. B. and Young, L. S. (1990) Epstein-Barr virus latent membrane protein inhibits human epithelial cell differentiation. Nature. 344, 777–780.PubMedGoogle Scholar
  18. Dawson, C. W., Tramountanis, G., Eliopoulos, A. G. and Young, L. S. (2003) Epstein-Barr Virus Latent Membrane Protein 1 (LMP1) Activates the Phosphatidylinositol 3-Kinase/Akt Pathway to Promote Cell Survival and Induce Actin Filament Remodeling. J Biol Chem. 278, 3694–3704.PubMedGoogle Scholar
  19. Dawson, C. W. and Young, L. S. (2001) In vitro assays to study epithelial cell growth. Methods Mol Biol. 174, 165–172.PubMedGoogle Scholar
  20. Dechend, R., Hirano, F., Lehmann, K., Heissmeyer, V., Ansieau, S., Wulczyn, F. G., Scheidereit, C. and Leutz, A. (1999) The Bcl-3 oncoprotein acts as a bridging factor between NF-kappaB/Rel and nuclear co-regulators. Oncogene. 18, 3316–3323.PubMedGoogle Scholar
  21. Devergne, O., Hatzivassiliou, E., Izumi, K. M., Kaye, K. M., Kleijnen, M. F., Kieff, E. and Mosialos, G. (1996) Association of TRAF1, TRAF2, and TRAF3 with an Epstein-Barr virus LMP1 domain important for B-lymphocyte transformation: role in NF-kappaB activation. Mol Cell Biol. 16, 7098–7108.PubMedGoogle Scholar
  22. Edwards, R., Sitki-Green, D, Moore, DT, and Raab-Traub, N. (2004) Potential Selection of LMP1 Variants in Nasopharyngeal Carcinoma. J. Virology. 78, 868–881.PubMedGoogle Scholar
  23. Edwards, R. H., Seillier-Moiseiwitsch, F. and Raab-Traub, N. (1999) Signature amino acid changes in latent membrane protein 1 distinguish Epstein-Barr virus strains. Virology. 261, 79–95.PubMedGoogle Scholar
  24. Eliopoulos, A. G., Blake, S. M., Floettmann, J. E., Rowe, M. and Young, L. S. (1999a) Epstein-Barr virus-encoded latent membrane protein 1 activates the JNK pathway through its extreme C terminus via a mechanism involving TRADD and TRAF2. J Virol. 73, 1023–1035.Google Scholar
  25. Eliopoulos, A. G., Caamano, J. H., Flavell, J., Reynolds, G. M., Murray, P. G., Poyet, J. L. and Young, L. S. (2003) Epstein-Barr virus-encoded latent infection membrane protein 1 regulates the processing of p100 NF-kappaB2 to p52 via an IKKgamma/NEMO-independent signalling pathway. Oncogene. 22, 7557–7569.PubMedGoogle Scholar
  26. Eliopoulos, A. G., Gallagher, N. J., Blake, S. M., Dawson, C. W. and Young, L. S. (1999b) Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem. 274, 16085–16096.Google Scholar
  27. Eliopoulos, A. G., Waites, E. R., Blake, S. M., Davies, C., Murray, P. and Young, L. S. (2003) TRAF1 is a critical regulator of JNK signaling by the TRAF-binding domain of the Epstein-Barr virus-encoded latent infection membrane protein 1 but not CD40. J Virol. 77, 1316–1328.PubMedGoogle Scholar
  28. Eliopoulos, A. G. and Young, L. S. (1998) Activation of the cJun N-terminal kinase (JNK) pathway by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1). Oncogene. 16, 1731–1742.PubMedGoogle Scholar
  29. Everly, D. N., Jr., Kusano, S. and Raab-Traub, N. (2004) Accumulation of cytoplasmic beta-catenin and nuclear glycogen synthase kinase 3beta in Epstein-Barr virus-infected cells. J Virol. 78, 11648–11655.PubMedGoogle Scholar
  30. Everly, D. N., Jr., Mainou, B. A. and Raab-Traub, N. (2004) Induction of Id1 and Id3 by latent membrane protein 1 of Epstein-Barr virus and regulation of p27/Kip and cyclin-dependent kinase 2 in rodent fibroblast transformation. J Virol. 78, 13470–13478.PubMedGoogle Scholar
  31. Fukuda, M. and Longnecker, R. (2007) Epstein-Barr virus latent membrane protein 2A mediates transformation through constitutive activation of the Ras/PI3-K/Akt Pathway. J Virol. 81, 9299–9306.PubMedGoogle Scholar
  32. Ghogomu, S. M., van Venrooy, S., Ritthaler, M., Wedlich, D. and Gradl, D. (2006) HIC-5 is a novel repressor of lymphoid enhancer factor/T-cell factor-driven transcription. J Biol Chem. 281, 1755–1764.PubMedGoogle Scholar
  33. Ghosh, S. and Karin, M. (2002) Missing pieces in the NF-kappaB puzzle.Cell. 109 Suppl, S81–S96.PubMedGoogle Scholar
  34. Gilligan, K., Rajadurai, P., Resnick, L. and Raab-Traub, N. (1990a) Epstein-Barr virus small nuclear RNAs are not expressed in permissively infected cells in AIDS-associated leukoplakia. Proc Natl Acad Sci USA. 87, 8790–8794.Google Scholar
  35. Gilligan, K., Sato, H., Rajadurai, P., Busson, P., Young, L., Rickinson, A., Tursz, T. and Raab-Traub, N. (1990b) Novel transcription from the Epstein-Barr virus terminal EcoRI fragment, DIJhet, in a nasopharyngeal carcinoma. J Virol. 64, 4948–4956.Google Scholar
  36. Gilligan, K. J., Rajadurai, P., Lin, J. C., Busson, P., Abdel-Hamid, M., Prasad, U., Tursz, T. and Raab-Traub, N. (1991) Expression of the Epstein-Barr virus BamHI A fragment in nasopharyngeal carcinoma: evidence for a viral protein expressed in vivo. J Virol. 65, 6252–6259.PubMedGoogle Scholar
  37. Heissmeyer, V., Krappmann, D., Wulczyn, F. G. and Scheidereit, C. (1999) NF-kappaB p105 is a target of IkappaB kinases and controls signal induction of Bcl-3-p50 complexes. Embo J. 18, 4766–4778.PubMedGoogle Scholar
  38. Herbst, H., Pallesen, G., Weiss, L. M., Delsol, G., Jarrett, R. F., Steinbrecher, E., Stein, H., Hamilton-Dutoit, S. and Brousset, P. (1992) Hodgkin's disease and Epstein-Barr virus. Ann Oncol. 3 Suppl 4, 27–30.Google Scholar
  39. Howe, J. G. and Steitz, J. A. (1986) Localization of Epstein-Barr virus-encoded small RNAs by in situ hybridization. Proc Natl Acad Sci USA. 83, 9006–9010.PubMedGoogle Scholar
  40. Huen, D. S., Henderson, S. A., Croom-Carter, D. and Rowe, M. (1995) The Epstein-Barr virus latent membrane protein-1 (LMP1) mediates activation of NF-kappa B and cell surface phenotype via two effector regions in its carboxy-terminal cytoplasmic domain. Oncogene. 10, 549–560.PubMedGoogle Scholar
  41. Humme, S., Reisbach, G., Feederle, R., Delecluse, H. J., Bousset, K., Hammerschmidt, W. and Schepers, A. (2003) The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci USA. 100, 10989–10994.PubMedGoogle Scholar
  42. Ikeda, A., Merchant, M., Lev, L., Longnecker, R. and Ikeda, M. (2004) Latent membrane protein 2A, a viral B cell receptor homologue, induces CD5+ B-1 cell development. J Immunol. 172, 5329–5337.PubMedGoogle Scholar
  43. Ikeda, M., Ikeda, A. and Longnecker, R. (2001) PY motifs of Epstein-Barr virus LMP2A regulate protein stability and phosphorylation of LMP2A-associated proteins. J Virol. 75, 5711–5718.PubMedGoogle Scholar
  44. Izumi, K. M. and Kieff, E. D. (1997) The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci USA. 94, 12592–12597.PubMedGoogle Scholar
  45. Izumi, K. M., McFarland, E. C., Ting, A. T., Riley, E. A., Seed, B. and Kieff, E. D. (1999) The Epstein-Barr virus oncoprotein latent membrane protein 1 engages the tumor necrosis factor receptor-associated proteins TRADD and receptor-interacting protein (RIP) but does not induce apoptosis or require RIP for NF-kappaB activation. Mol Cell Biol. 19, 5759–5767.PubMedGoogle Scholar
  46. Jang, K. L., Shackelford, J., Seo, S. Y. and Pagano, J. S. (2005) Up-regulation of beta-catenin by a viral oncogene correlates with inhibition of the seven in absentia homolog 1 in B lymphoma cells. Proc Natl Acad Sci USA. 102, 18431–18436.PubMedGoogle Scholar
  47. Kang, M. S., Hung, S. C. and Kieff, E. (2001) Epstein-Barr virus nuclear antigen 1 activates transcription from episomal but not integrated DNA and does not alter lymphocyte growth. Proc Natl Acad Sci USA. 98, 15233–15238.PubMedGoogle Scholar
  48. Kang, M. S., Lu, H., Yasui, T., Sharpe, A., Warren, H., Cahir-McFarland, E., Bronson, R., Hung, S. C. and Kieff, E. (2005) Epstein-Barr virus nuclear antigen 1 does not induce lymphoma in transgenic FVB mice. Proc Natl Acad Sci USA. 102, 820–825.PubMedGoogle Scholar
  49. Karin, M. (2006) NF-kappaB and cancer: mechanisms and targets. Mol Carcinog. 45, 355–361.PubMedGoogle Scholar
  50. Kato, H., Sakai, T., Tamura, K., Minoguchi, S., Shirayoshi, Y., Hamada, Y., Tsujimoto, Y. and Honjo, T. (1996) Functional conservation of mouse Notch receptor family members. FEBS Lett. 395, 221–224.PubMedGoogle Scholar
  51. Kaye, K. M., Izumi, K. M. and Kieff, E. (1993) Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci USA. 90, 9150–9154.PubMedGoogle Scholar
  52. Kaye, K. M., Izumi, K. M., Li, H., Johannsen, E., Davidson, D., Longnecker, R. and Kieff, E. (1999) An Epstein-Barr virus that expresses only the first 231 LMP1 amino acids efficiently initiates primary B-lymphocyte growth transformation. J Virol. 73, 10525–10530.PubMedGoogle Scholar
  53. Knecht, H., Bachmann, E., Brousset, P., Sandvej, K., Nadal, D., Bachmann, F., Odermatt, B. F., Delsol, G. and Pallesen, G. (1993) Deletions within the LMP1 oncogene of Epstein-Barr virus are clustered in Hodgkin's disease and identical to those observed in nasopharyngeal carcinoma. Blood. 82, 2937–2942.PubMedGoogle Scholar
  54. Kulwichit, W., Edwards, R. H., Davenport, E. M., Baskar, J. F., Godfrey, V. and Raab-Traub, N. (1998) Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci USA. 95, 11963–11968.PubMedGoogle Scholar
  55. Lennette, E. T., Rymo, L., Yadav, M., Masucci, G., Merk, K., Timar, L. and Klein, G. (1993) Disease-related differences in antibody patterns against EBV-encoded nuclear antigens EBNA 1, EBNA 2 and EBNA 6. Eur J Cancer. 11, 1584–1589.Google Scholar
  56. Lerner, M. R., Andrews, N. C., Miller, G. and Steitz, J. A. (1981) Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci USA. 78, 805–809.PubMedGoogle Scholar
  57. Levitskaya, J., Coram, M., Levitsky, V., Imreh, S., Steigerwald-Mullen, P. M., Klein, G., Kurilla, M. G. and Masucci, M. G. (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 375, 685–688.PubMedGoogle Scholar
  58. Lo, A. K., Liu, Y., Wang, X. H., Huang, D. P., Yuen, P. W., Wong, Y. C. and Tsao, G. S. (2003) Alterations of biologic properties and gene expression in nasopharyngeal epithelial cells by the Epstein-Barr virus-encoded latent membrane protein 1. Lab Invest. 83, 697–709.PubMedGoogle Scholar
  59. Longan, L. and Longnecker, R. (2000) Epstein-Barr virus latent membrane protein 2A has no growth-altering effects when expressed in differentiating epithelia. J Gen Virol. 81, 2245–2252.PubMedGoogle Scholar
  60. Longnecker, R., Druker, B., Roberts, T. M. and Kieff, E. (1991) An Epstein-Barr virus protein associated with cell growth transformation interacts with a tyrosine kinase. J Virol. 65, 3681–3692.PubMedGoogle Scholar
  61. Longnecker, R. and Kieff, E. (1990) A second Epstein-Barr virus membrane protein (LMP2) is expressed in latent infection and colocalizes with LMP1. J Virol. 64, 2319–2326.PubMedGoogle Scholar
  62. Longnecker, R., Miller, C. L., Miao, X. Q., Marchini, A. and Kieff, E. (1992) The only domain which distinguishes Epstein-Barr virus latent membrane protein 2A (LMP2A) from LMP2B is dispensable for lymphocyte infection and growth transformation in vitro; LMP2A is therefore nonessential. J Virol. 66, 6461–6469.PubMedGoogle Scholar
  63. Longnecker, R., Miller, C. L., Miao, X. Q., Tomkinson, B. and Kieff, E. (1993a) The last seven transmembrane and carboxy-terminal cytoplasmic domains of Epstein-Barr virus latent membrane protein 2 (LMP2) are dispensable for lymphocyte infection and growth transformation in vitro. J Virol. 67, 2006–2013.Google Scholar
  64. Longnecker, R., Miller, C. L., Tomkinson, B., Miao, X. Q. and Kieff, E. (1993b) Deletion of DNA encoding the first five transmembrane domains of Epstein-Barr virus latent membrane proteins 2A and 2B. J Virol. 67, 5068–5074.Google Scholar
  65. Luftig, M., Prinarakis, E., Yasui, T., Tsichritzis, T., Cahir-McFarland, E., Inoue, J., Nakano, H., Mak, T. W., Yeh, W. C., Li, X., Akira, S., Suzuki, N., Suzuki, S., Mosialos, G. and Kieff, E. (2003) Epstein-Barr virus latent membrane protein 1 activation of NF-kappaB through IRAK1 and TRAF6. Proc Natl Acad Sci USA. 100, 15595–15600.PubMedGoogle Scholar
  66. Luftig, M., Yasui, T., Soni, V., Kang, M. S., Jacobson, N., Cahir-McFarland, E., Seed, B. and Kieff, E. (2004) Epstein-Barr virus latent infection membrane protein 1 TRAF-binding site induces NIK/IKK alpha-dependent noncanonical NF-kappaB activation. Proc Natl Acad Sci USA. 101, 141–146.PubMedGoogle Scholar
  67. Mainou, B. A., Everly, D. N., Jr. and Raab-Traub, N. (2005) Epstein-Barr virus latent membrane protein 1 CTAR1 mediates rodent and human fibroblast transformation through activation of PI3K. Oncogene. 24, 6917–6924.PubMedGoogle Scholar
  68. Mainou, B. A., Everly, D. N., Jr. and Raab-Traub, N. (2007) Unique Signaling Properties of CTAR1 in LMP1-Mediated Transformation. J Virol. 81, 9680–9692.PubMedGoogle Scholar
  69. Mainou, B. A. and Raab-Traub, N. (2006) LMP1 strain variants: biological and molecular properties. J Virol. 80, 6458–6468.PubMedGoogle Scholar
  70. Marchini, A., Cohen, J. I., Wang, F. and Kieff, E. (1992) A selectable marker allows investigation of a nontransforming Epstein-Barr virus mutant. J Virol. 66, 3214–3219.PubMedGoogle Scholar
  71. Marchini, A., Kieff, E. and Longnecker, R. (1993) Marker rescue of a transformation-negative Epstein-Barr virus recombinant from an infected Burkitt lymphoma cell line: a method useful for analysis of genes essential for transformation. J Virol. 67, 606–609.PubMedGoogle Scholar
  72. Miller, C. L., Lee, J. H., Kieff, E., Burkhardt, A. L., Bolen, J. B. and Longnecker, R. (1994) Epstein-Barr virus protein LMP2A regulates reactivation from latency by negatively regulating tyrosine kinases involved in sIg-mediated signal transduction. Infect Agents Dis. 3, 128–136.PubMedGoogle Scholar
  73. Miller, C. L., Longnecker, R. and Kieff, E. (1993) Epstein-Barr virus latent membrane protein 2A blocks calcium mobilization in B lymphocytes. J Virol. 67, 3087–3094.PubMedGoogle Scholar
  74. Miller, G., Niederman, J. C. and Andrews, L. L. (1973) Prolonged oropharyngeal excretion of Epstein-Barr virus after infectious mononucleosis. N Engl J Med. 288, 229–232.PubMedGoogle Scholar
  75. Miller, W. E., Cheshire, J. L. and Raab-Traub, N. (1998) Interaction of tumor necrosis factor receptor-associated factor signaling proteins with the latent membrane protein 1 PXQXT motif is essential for induction of epidermal growth factor receptor expression. Mol Cell Biol. 18, 2835–2844.PubMedGoogle Scholar
  76. Miller, W. E., Edwards, R. H., Walling, D. M. and Raab-Traub, N. (1994) Sequence variation in the Epstein-Barr virus latent membrane protein 1. J Gen Virol. 75, 2729–2740.PubMedGoogle Scholar
  77. Miller, W. E., Mosialos, G., Kieff, E. and Raab-Traub, N. (1997) Epstein-Barr virus LMP1 induction of the epidermal growth factor receptor is mediated through a TRAF signaling pathway distinct from NF-kappaB activation. J Virol. 71, 586–594.PubMedGoogle Scholar
  78. Moody, C.A., R. S. Scott, Su, T, Sixbey, JW (2003) Length of Epstein-Barr virus termini as a determinant of epithelial cell clonal emergence. J Virol. 77, 8555–8561.PubMedGoogle Scholar
  79. Morin, P. (1999) β-Catenin signaling and cancer. BioEssays. 21, 1021–1030.PubMedGoogle Scholar
  80. Morrison, J. A., Gulley, M. L., Pathmanathan, R. and Raab-Traub, N. (2004) Differential signaling pathways are activated in the Epstein-Barr virus-associated malignancies nasopharyngeal carcinoma and Hodgkin lymphoma. Cancer Res. 64, 5251–5260.PubMedGoogle Scholar
  81. Morrison, J. A., Klingelhutz, A. J. and Raab-Traub, N. (2003) Epstein-Barr virus latent membrane protein 2A activates beta-catenin signaling in epithelial cells. J Virol. 77, 12276–12284.PubMedGoogle Scholar
  82. Morrison, J. A. and Raab-Traub, N. (2005) Roles of the ITAM and PY motifs of Epstein-Barr virus latent membrane protein 2A in the inhibition of epithelial cell differentiation and activation of {beta}-catenin signaling. J Virol. 79, 2375–2382.PubMedGoogle Scholar
  83. Mosialos, G., Birkenbach, M., Yalamanchili, R., VanArsdale, T., Ware, C. and Kieff, E. (1995) The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell. 80, 389–399.PubMedGoogle Scholar
  84. Murray, R. J., Kurilla, M. G., Griffin, H. M., Brooks, J. M., Mackett, M., Arrand, J. R., Rowe, M., Burrows, S. R., Moss, D. J., Kieff, E., et al. (1990) Human cytotoxic T-cell responses against Epstein-Barr virus nuclear antigens demonstrated by using recombinant vaccinia viruses. Proc Natl Acad Sci USA. 87, 2906–2910.PubMedGoogle Scholar
  85. Nanbo, A., Yoshiyama, H. and Takada, K. (2005) Epstein-Barr virus-encoded poly(A)- RNA confers resistance to apoptosis mediated through Fas by blocking the PKR pathway in human epithelial intestine 407 cells. J Virol. 79, 12280–12285.PubMedGoogle Scholar
  86. Ooka, T. (2001) Malignant transformation and immortalization assays in animal cells transfected with the BARF1 gene. Methods Mol Biol. 174, 147–154.PubMedGoogle Scholar
  87. Osborne, B. and Miele, L. (1999) Notch and the immune system. Immunity. 11, 653–663.PubMedGoogle Scholar
  88. Paine, E., Scheinman, R. I., Baldwin, A. S., Jr. and Raab-Traub, N. (1995) Expression of LMP1 in epithelial cells leads to the activation of a select subset of NF-kappa B/Rel family proteins. J Virol. 69, 4572–4576.PubMedGoogle Scholar
  89. Pathmanathan, R., Prasad, U., Chandrika, G., Sadler, R., Flynn, K. and Raab-Traub, N. (1995) Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein-Barr virus-infected neoplasia. Am J Pathol. 146, 1355–1367.Google Scholar
  90. Pathmanathan, R., Prasad, U., Sadler, R., Flynn, K. and Raab-Traub, N. (1995) Clonal proliferations of cells infected with Epstein-Barr virus in preinvasive lesions related to nasopharyngeal carcinoma [see comments]. N Engl J Med. 333, 693–698.PubMedGoogle Scholar
  91. Pegtel, D. M., Subramanian, A., Sheen, T. S., Tsai, C. H., Golub, T. R. and Thorley-Lawson, D. A. (2005) Epstein-Barr-virus-encoded LMP2A induces primary epithelial cell migration and invasion: possible role in nasopharyngeal carcinoma metastasis. J Virol. 79, 15430–15442.PubMedGoogle Scholar
  92. Pfeffer, S., Zavolan, M., Grasser, F. A., Chien, M., Russo, J. J., Ju, J., John, B., Enright, A. J., Marks, D., Sander, C. and Tuschl, T. (2004) Identification of virus-encoded microRNAs. Science. 304, 734–736.PubMedGoogle Scholar
  93. Pope, J. H., Scott, W. and Moss, D. J. (1973) Human lymphoid cell transformation by Epstein-Barr virus. Nat New Biol. 246, 140–141.PubMedGoogle Scholar
  94. Raab-Traub (1996) Pathogenesis of Epstein-Barr virus and its associated malignancies. Seminars in Virology. 7, 315–323.Google Scholar
  95. Raab-Traub, N., Dambaugh, T. and Kieff, E. (1980) DNA of Epstein-Barr virus VIII: B95-8, the previous prototype, is an unusual deletion derivative. Cell. 22, 257–267.PubMedGoogle Scholar
  96. Raab-Traub, N., Hood, R., Yang, C. S., Henry, B. d. and Pagano, J. S. (1983) Epstein-Barr virus transcription in nasopharyngeal carcinoma. J Virol. 48, 580–590.PubMedGoogle Scholar
  97. Rickinson, A. and Kieff, E. (2001) In: Knipe/Di editor Fields Vivology Fourth edition Philadelphia, PA. Lippencott, Williams, and Wilkins Publisher.Google Scholar
  98. Roberts, M. L. and Cooper, N. R. (1998) Activation of a ras-MAPK-dependent pathway by Epstein-Barr virus latent membrane protein 1 is essential for cellular transformation. Virology. 240, 93–99.PubMedGoogle Scholar
  99. Rothwarf, D. M. and Karin, M. (1999) The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE. 1999, RE1.Google Scholar
  100. Rowe, M., Rowe, D. T., Gregory, C. D., Young, L. S., Farrell, P. J., Rupani, H. and Rickinson, A. B. (1987) Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lymphoma cells. Embo J. 6, 2743–2751.PubMedGoogle Scholar
  101. Sadler, R. H. and Raab-Traub, N. (1995) The Epstein-Barr virus 3. 5-kilobase latent membrane protein 1 mRNA initiates from a TATA-Less promoter within the first terminal repeat. J Virol. 69, 4577–4581.PubMedGoogle Scholar
  102. Sadler, R. H. and Raab-Traub, N. (1995) Structural analyses of the Epstein-Barr virus BamHI A transcripts. J Virol. 69, 1132–1141.PubMedGoogle Scholar
  103. Samanta, M., Iwakiri, D., Kanda, T., Imaizumi, T. and Takada, K. (2006) EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. Embo J. 25, 4207–4214.PubMedGoogle Scholar
  104. Sample, J., Brooks, L., Sample, C., Young, L., Rowe, M., Gregory, C., Rickinson, A. and Kieff, E. (1991) Restricted Epstein-Barr virus protein expression in Burkitt lymphoma is due to a different Epstein-Barr nuclear antigen 1 transcriptional initiation site. Proc Natl Acad Sci USA. 88, 6343–6347.PubMedGoogle Scholar
  105. Sample, J., Liebowitz, D. and Kieff, E. (1989) Two related Epstein-Barr virus membrane proteins are encoded by separate genes. J Virol. 63, 933–937.PubMedGoogle Scholar
  106. Saridakis, V., Sheng, Y., Sarkari, F., Holowaty, M. N., Shire, K., Nguyen, T., Zhang, R. G., Liao, J., Lee, W., Edwards, A. M., Arrowsmith, C. H. and Frappier, L. (2005) Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell. 18, 25–36.PubMedGoogle Scholar
  107. Scholle, F., Bendt, K. M. and Raab-Traub, N. (2000) Epstein-Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt. J Virol. 74, 10681–10689.PubMedGoogle Scholar
  108. Scholle, F., Longnecker, R. and Raab-Traub, N. (1999) Epithelial cell adhesion to extracellular matrix proteins induces tyrosine phosphorylation of the Epstein-Barr virus latent membrane protein 2: a role for C-terminal Src kinase. J Virol. 73, 4767–4775.PubMedGoogle Scholar
  109. Schultheiss, U., Puschner, S., Kremmer, E., Mak, T. W., Engelmann, H., Hammerschmidt, W. and Kieser, A. (2001) TRAF6 is a critical mediator of signal transduction by the viral oncogene latent membrane protein 1. Embo J. 20, 5678–5691.PubMedGoogle Scholar
  110. Segditsas, S. and Tomlinson, I. (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene. 25, 7531–7537.PubMedGoogle Scholar
  111. Seto, E., Yang, L., Middeldorp, J., Sheen, T. S., Chen, J. Y., Fukayama, M., Eizuru, Y., Ooka, T. and Takada, K. (2005) Epstein-Barr virus (EBV)-encoded BARF1 gene is expressed in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues in the absence of lytic gene expression. J Med Virol. 76, 82–88.PubMedGoogle Scholar
  112. Shackelford, J., Maier, C. and Pagano, J. S. (2003) Epstein-Barr virus activates beta-catenin in type III latently infected B lymphocyte lines: association with deubiquitinating enzymes. Proc Natl Acad Sci USA. 100, 15572–15576.PubMedGoogle Scholar
  113. Shair, K. H. Y., Bendt, K. M., Edwards, R. H., Bedford, E. C., Nielsen, J. N. and Raab-Traub, N. (2007) Akt and NFκB Pathways are Required for Epstein Barr Virus Latent Membrane Protein-1 Malignant Transformation. PLOS Pathogen. 3, e166.Google Scholar
  114. Sharp, T. V., Schwemmle, M., Jeffrey, I., Laing, K., Mellor, H., Proud, C. G., Hilse, K. and Clemens, M. J. (1993) Comparative analysis of the regulation of the interferon-inducible protein kinase PKR by Epstein-Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA. Nucleic Acids Res. 21, 4483–4490.PubMedGoogle Scholar
  115. Sheng, W., Decaussin, G., Ligout, A., Takada, K. and Ooka, T. (2003) Malignant transformation of Epstein-Barr virus-negative Akata cells by introduction of the BARF1 gene carried by Epstein-Barr virus. J Virol. 77, 3859–3865.PubMedGoogle Scholar
  116. Smith, P. (2001) Epstein-Barr virus complementary strand transcripts (CSTs/BARTs) and cancer. Semin Cancer Biol. 11, 469–476.PubMedGoogle Scholar
  117. Soni, V., Cahir-McFarland, E. and Kieff, E. (2007) LMP1 TRAFficking activates growth and survival pathways. Adv Exp Med Biol. 597, 173–187.PubMedGoogle Scholar
  118. Soni, V., Yasui, T., Cahir-McFarland, E. and Kieff, E. (2006) LMP1 transmembrane domain 1 and 2 (TM1-2) FWLY mediates intermolecular interactions with TM3-6 to activate NF-kappaB. J Virol. 80, 10787–10793.PubMedGoogle Scholar
  119. Strockbine, L. D., Cohen, J. I., Farrah, T., Lyman, S. D., Wagener, F., DuBose, R. F., Armitage, R. J. and Spriggs, M. K. (1998) The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J Virol. 72, 4015–4021.PubMedGoogle Scholar
  120. Tang, W., Pavlish, O. A., Spiegelman, V. S., Parkhitko, A. A. and Fuchs, S. Y. (2003) Interaction of Epstein-Barr virus latent membrane protein 1 with SCFHOS/beta-TrCP E3 ubiquitin ligase regulates extent of NF-kappaB activation. J Biol Chem. 278, 48942–48949.PubMedGoogle Scholar
  121. Thornberg, N. J. and Raab-Traub, N. (2007) Induction of EGFR expression by EBV LMP1 CTAR1 is mediated by NF-κB p50 Homodimer/ BCL-3 Complexes. J Virol. 81, 12954–12966.Google Scholar
  122. Thornburg, N. J., Kulwichit, W., Edwards, R. H., Shair, K. H., Bendt, K. M. and Raab-Traub, N. (2006) LMP1 signaling and activation of NF-kappaB in LMP1 transgenic mice. Oncogene. 25, 288–297.PubMedGoogle Scholar
  123. Thornburg, N. J., Kusano, S. and Raab-Traub, N. (2004) Identification of Epstein-Barr virus RK-BARF0-interacting proteins and characterization of expression pattern. J Virol. 78, 12848–12856.PubMedGoogle Scholar
  124. Thornburg, N. J., Pathmanathan, R. and Raab-Traub, N. (2003) Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma. Cancer Res. 63, 8293–8301.PubMedGoogle Scholar
  125. Toczyski, D. P., Matera, A. G., Ward, D. C. and Steitz, J. A. (1994) The Epstein-Barr virus (EBV) small RNA EBER1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc Natl Acad Sci USA. 91, 3463–3467.PubMedGoogle Scholar
  126. Uchida, J., Yasui, T., Takaoka-Shichijo, Y., Muraoka, M., Kulwichit, W., Raab-Traub, N. and Kikutani, H. (1999) Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science. 286, 300–303.PubMedGoogle Scholar
  127. Wan, J., Zhang, W., Wu, L., Bai, T., Zhang, M., Lo, K. W., Chui, Y. L., Cui, Y., Tao, Q., Yamamoto, M., Akira, S. and Wu, Z. (2006) BS69, a specific adaptor in the latent membrane protein 1-mediated c-Jun N-terminal kinase pathway. Mol Cell Biol. 26, 448–456.PubMedGoogle Scholar
  128. Wang, F., Gregory, C., Sample, C., Rowe, M., Liebowitz, D., Murray, R., Rickinson, A. and Kieff, E. (1990) Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol. 64, 2309–2318.PubMedGoogle Scholar
  129. Wang, F., Tsang, S. F., Kurilla, M. G., Cohen, J. I. and Kieff, E. (1990) Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J Virol. 64, 3407–3416.PubMedGoogle Scholar
  130. Wilson, J. B., Bell, J. L. and Levine, A. J. (1996) Expression of Epstein-Barr virus nuclear antigen-1 induces B cell neoplasia in transgenic mice. Embo J. 15, 3117–3126.PubMedGoogle Scholar
  131. Wilson, J. B., Weinberg, W., Johnson, R., Yuspa, S. and Levine, A. J. (1990) Expression of the BNLF-1 oncogene of Epstein-Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell. 61, 1315–1327.PubMedGoogle Scholar
  132. Wood, V. H., O'Neil, J. D., Wei, W., Stewart, S. E., Dawson, C. W. and Young, L. S. (2007) Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGFbeta signaling pathways. Oncogene. 26, 4135–4147.PubMedGoogle Scholar
  133. Wu, L., Nakano, H. and Wu, Z. (2006) The C-terminal activating region 2 of the Epstein-Barr virus-encoded latent membrane protein 1 activates NF-kappaB through TRAF6 and TAK1. J Biol Chem. 281, 2162–2169.PubMedGoogle Scholar
  134. Xie P, H. B., Bishop GA (2004) Requirement for TRAF3 in signaling by LMP1 but not CD40 in B lymphocytes. J. Exp Med. 199, 661–671.PubMedGoogle Scholar
  135. Xing, L. and Kieff, E. (2007) Epstein-Barr Virus BHRF1 Micro- and Stable RNAs during Latency III and after Induction of Replication. J Virol. 81, 9967–9975.PubMedGoogle Scholar
  136. Yajima, M., Kanda, T. and Takada, K. (2005) Critical role of Epstein-Barr Virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol. 79, 4298–4307.PubMedGoogle Scholar
  137. Yates, J., Warren, N., Reisman, D. and Sugden, B. (1984) A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci USA. 81, 3806–3810.PubMedGoogle Scholar
  138. Young, L., Alfieri, C., Hennessy, K., Evans, H., O'Hara, C., Anderson, K. C., Ritz, J., Shapiro, R. S., Rickinson, A., Kieff, E., et al. (1989) Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N Engl J Med. 321, 1080–1085.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Professor, Department of Microbiology & Immunology, Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth Carolina

Personalised recommendations