The Epstein–Barr Virus Genome

  • Jeffery T. Sample
  • Elessa M. Marendy
  • David J. Hughes
  • Clare E. Sample


In 1984, the B95-8 isolate of Epstein–Barr virus (EBV), a commonly used laboratory strain whose DNA genome had been partially or completely cloned by several groups, was the first herpesvirus to have its genome completely sequenced (Baer et al. 1984). The information gained from this first genomic sequence (accession number V01555) provided a wealth of new information on the coding potential of this DNA tumor virus, and consequently was the basis for the rapid advancement of the EBV field that soon followed. The complete sequence data were particularly critical, for example, to the characterization of the complex latency-associated genes of EBV, whose highly spliced mRNAs span upward of 85 kilobase pairs (kbp) of the genome. Sequence information missing from the B95-8 genome – the result of a 12-kbp deletion – was subsequently provided by analysis of the corresponding genomic region of the Raji EBV isolate (Parker et al. 1990). An updated and fully annotated wild-type EBV...


EBNA Expression BHRF1 miRNAs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Much of the material presented in Fig. 11.2 and Table 11.1 was adopted from information available at that is maintained by Dr. Paul Farrell. We apologize to our many colleagues whose work could not be fully cited due to space constraints. We gratefully acknowledge our research support from U.S. Public Health Service grants CA056639 and CA073544 (to J.T.S.), CA056645 and CA117827 (to C.E.S.), and the Penn State Hershey Cancer Institute.


  1. Altmann, M. and Hammerschmidt, W. (2005) Epstein-Barr virus provides a new paradigm: a requirement for the immediate inhibition of apoptosis. PLoS Biol. 3, 2148–2157.CrossRefGoogle Scholar
  2. Arrand, J.R. and Rymo, L. (1982) Characterization of the major Epstein-Barr virus-specific RNA in Burkitt lymphoma-derived cells. J. Virol. 41, 376–389.PubMedGoogle Scholar
  3. Arrand, J.R., Young, L.S. and Tugwood, J.D. (1989) Two families of sequences in the small RNA-encoding region of Epstein- Barr virus (EBV) correlate with EBV types A and B. J. Virol. 63, 983–986.PubMedGoogle Scholar
  4. Austin, P.J., Flemington, E., Yandava, C.N., Strominger, J.L. and Speck, S.H. (1988) Complex transcription of the Epstein-Barr virus BamHI fragment H rightward open reading frame 1 (BHRF1) in latently and lytically infected B lymphocytes. Proc. Natl. Acad. Sci. USA 85, 3678–3682.PubMedCrossRefGoogle Scholar
  5. Baer, R., Bankier, A.T., Biggin, M.D., Deininger, P.L., Farrell, P.J., Gibson, T.J., Hatfull, G., Hudson, G.S., Satchwell, S.C., Seguin, C., Tuffnell, P.S. and Barrell, B.G. (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207–211.PubMedCrossRefGoogle Scholar
  6. Cai, X., Schafer, A., Lu, S., Bilello, J.P., Desrosiers, R.C., Edwards, R., Raab-Traub, N. and Cullen, B.R. (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2, 236–247.Google Scholar
  7. Chaudhuri, B., Xu, H., Todorov, I., Dutta, A. and Yates, J.L. (2001) Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein-Barr virus. Proc. Natl. Acad. Sci. USA 98, 10085–10089.CrossRefGoogle Scholar
  8. Chen, H., Smith, P., Ambinder, R.F. and Hayward, S.D. (1999) Expression of Epstein-Barr virus BamHI-A rightward transcripts in latently infected B cells from peripheral blood. Blood 93, 3026–3032.PubMedGoogle Scholar
  9. Chen, H.L., Lung, M.M., Sham, J.S., Choy, D.T., Griffin, B.E. and Ng, M.H. (1992) Transcription of BamHI-A region of the EBV genome in NPC tissues and B cells. Virology 191, 193–201.PubMedCrossRefGoogle Scholar
  10. Cohen, J.I., Wang, F., Mannick, J. and Kieff, E. (1989) Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc. Natl. Acad. Sci. USA 86, 9558–9562.PubMedCrossRefGoogle Scholar
  11. Dalbies-Tran, ,R., Stigger-Rosser, E., Dotson, T. and Sample, C.E. (2001) Amino acids of Epstein-Barr virus nuclear antigen 3A essential for repression of Jκ-mediated transcription and their evolutionary conservation. J. Virol. 75, 90–99.PubMedCrossRefGoogle Scholar
  12. Dambaugh, T., Hennessy, K., Chamnankit, L. and Kieff, E. (1984) U2 region of Epstein-Barr virus DNA may encode Epstein-Barr nuclear antigen 2. Proc. Natl. Acad. Sci. USA 81, 7632–7636.PubMedCrossRefGoogle Scholar
  13. de Jesus, O., Smith, P.R., Spender, L.C., Elgueta Karstegl, C., Niller, H.H., Huang, D. and Farrell, P.J. (2003) Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. J. Gen. Virol. 84, 1443–1450.PubMedCrossRefGoogle Scholar
  14. Deng, Z., Lezina, L., Chen, C.J., Shtivelband, S., So, W. and Lieberman, P.M. (2002) Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol. Cell 9, 493–503.PubMedCrossRefGoogle Scholar
  15. Dhar, S.K., Yoshida, K., Machida, Y., Khaira, P., Chaudhuri, B., Wohlschlegel, J.A., Leffak, M., Yates, J. and Dutta, A. (2001) Replication from oriP of Epstein-Barr virus requires human ORC and is inhibited by geminin. Cell 106, 287–296.PubMedCrossRefGoogle Scholar
  16. Dolan, A., Addison, C., Gatherer, D., Davison, A.J. and McGeoch, D.J. (2006) The genome of Epstein-Barr virus type 2 strain AG876. Virology 350, 164–170.PubMedCrossRefGoogle Scholar
  17. Fennewald, S., Van Santen, V. and Kieff, E. (1984) Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. J. Virol. 51, 411–419.PubMedGoogle Scholar
  18. Glickman, J.N., Howe, J.G. and Steitz, J.A. (1988) Structural analyses of EBER1 and EBER2 ribonucleoprotein particles present in Epstein-Barr virus-infected cells. J. Virol. 62, 902–911.PubMedGoogle Scholar
  19. Hammerschmidt, W. and Sugden, B. (1989) Genetic analysis of immortalizing functions of Epstein-Barr virus in human B lymphocytes. Nature 340, 393–397.PubMedCrossRefGoogle Scholar
  20. Howe, J.G. and Shu, M.D. (1989) Epstein-Barr virus small RNA (EBER) genes: unique transcription units that combine RNA polymerase II and III promoter elements. Cell 57, 825–834.PubMedCrossRefGoogle Scholar
  21. Jiang, H., Cho, Y. and Wang, F. (2000) Structural, functional, and genetic comparisons of Epstein-Barr virus nuclear antigen 3A, 3B, and 3C homologues encoded by the rhesus lymphocryptovirus. J. Virol. 74, 5921–5932.PubMedCrossRefGoogle Scholar
  22. Kapoor, P., Lavoie, B.D. and Frappier, L. (2005) EBP2 plays a key role in Epstein-Barr virus mitotic segregation and is regulated by aurora family kinases. Mol. Cell. Biol. 25, 4934–4945.PubMedCrossRefGoogle Scholar
  23. Kelly, G., Bell, A. and Rickinson, A. (2002) Epstein-Barr virus-associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat. Med. 8, 1098–1104.PubMedCrossRefGoogle Scholar
  24. Kelly, G.L., Milner, A.E., Tierney, R.J., Croom-Carter, D.S.G., Altmann, M., Hammerschmidt, W., Bell, A.I. and Rickinson, A.B. (2005) Epstein-Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA-3A, -3B, and -3C expression in Burkitt's lymphoma cells and with increased resistance to apoptosis. J. Virol. 79, 10709–10717.Google Scholar
  25. Komano, J., Maruo, S., Kurozumi, K., Oda, T. and Takada, K. (1999) Oncogenic role of Epstein-Barr virus-encoded RNA in Burkitt's lymphoma cell line Akata. J. Virol. 73, 9827–9831.PubMedGoogle Scholar
  26. Laux, G., Economou, A. and Farrell, P.J. (1989) The terminal protein gene 2 of Epstein-Barr virus is transcribed from a bidirectional latent promoter region. J. Gen. Virol. 70, 3079–3084.PubMedCrossRefGoogle Scholar
  27. Laux, G., Perricaudet, M. and Farrell, P.J. (1988) A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO J. 7, 769–774.PubMedGoogle Scholar
  28. Nonkwelo, C., Skinner, J., Bell, A., Rickinson, A. and Sample, J. (1996) Transcription start sites downstream of the Epstein-Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein. J. Virol. 70, 623–627.PubMedGoogle Scholar
  29. Parker, B.D., Bankier, A., Satchwell, S., Barrell, B. and Farrell, P.J. (1990) Sequence and transcription of Raji Epstein-Barr virus DNA spanning the B95-8 deletion region. Virology 179, 339–346.PubMedCrossRefGoogle Scholar
  30. Pearson, G.R., Luka, J., Petti, L., Sample, J., Birkenbach, M., Braun, D. and Kieff, E. (1987) Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex. Virology 160, 151–161.PubMedCrossRefGoogle Scholar
  31. Pfeffer, S., Zavolan, M., Grasser, F.A., Chien, M., Russo, J.J., Ju, J., John, B., Enright, A.J., Marks, D., Sander, C. and Tuschl, T. (2004) Identification of virus-encoded microRNAs. Science 304, 734–736.PubMedCrossRefGoogle Scholar
  32. Raab-Traub, N., Dambaugh, T. and Kieff, E. (1980) DNA of Epstein-Barr virus VIII: B95-8, the previous prototype, is an unusual deletion derivative. Cell 22, 257–267.PubMedCrossRefGoogle Scholar
  33. Rickinson, A.B., Young, L.S. and Rowe, M. (1987) Influence of the Epstein-Barr virus nuclear antigen EBNA2 on the growth phenotype of virus-transformed B cells. J. Virol. 61, 1310–1317.PubMedGoogle Scholar
  34. Rivailler, P., Cho, Y.G. and Wang, F. (2005) Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a New World primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J. Virol. 76, 12055–12068.Google Scholar
  35. Rivailler, P., Jiang, H., Cho, Y.G., Quink, C. and Wang, F. (2002) Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein-Barr virus animal model. J. Virol. 76, 421–426.PubMedCrossRefGoogle Scholar
  36. Rogers, R.P., Woisetschlaeger, M. and Speck, S.H. (1990) Alternative splicing dictates translational start in Epstein-Barr virus transcripts. EMBO J. 9, 2273–2277.PubMedGoogle Scholar
  37. Rooney, C.M., Brimmell, M., Buschle, M., Allan, G., Farrell, P.J. and Kolman, J.L. (1992) Host cell and EBNA-2 regulation of Epstein-Barr virus latent-cycle promoter activity in B lymphocytes. J. Virol. 66, 496–504.PubMedGoogle Scholar
  38. Rowe, M., Young, L.S., Cadwallader, K., Petti, L., Kieff, E. and Rickinson, A.B. (1989) Distinction between Epstein-Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. J. Virol. 63, 1031–1039.PubMedGoogle Scholar
  39. Ruf, I.K., Rhyne, P.W., Yang, C., Cleveland, J.L. and Sample, J.T. (2000) Epstein-Barr virus small RNAs potentiate tumorigenicity of Burkitt lymphoma cells independently of an effect on apoptosis. J. Virol. 74, 10223–10228.CrossRefGoogle Scholar
  40. Sadler, R.H. and Raab-Traub, N. (1995) Structural analyses of the Epstein-Barr virus BamHI A transcripts. J. Virol. 69, 1132–1141.PubMedGoogle Scholar
  41. Sample, J., Hummel, M., Braun, D., Birkenbach, M. and Kieff, E. (1986) Nucleotide sequences of mRNAs encoding Epstein-Barr virus nuclear proteins: a probable transcriptional initiation site. Proc. Natl. Acad. Sci. USA 83, 5096–5100.PubMedCrossRefGoogle Scholar
  42. Sample, J., Liebowitz, D. and Kieff, E. (1989) Two related Epstein-Barr virus membrane proteins are encoded by separate genes. J. Virol. 63, 933–937.PubMedGoogle Scholar
  43. Sample, J., Young, L., Martin, B., Chatman, T., Kieff, E. and Rickinson, A. (1990) Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J. Virol. 64, 4084–4092.PubMedGoogle Scholar
  44. Schaefer, B.C., Strominger, J.L. and Speck, S.H. (1995) Redefining the Epstein-Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines. Proc. Natl. Acad. Sci. USA 92, 10565–10569.Google Scholar
  45. Schepers, A., Ritzi, M., Bousset, K., Kremmer, E., Yates, J.L., Harwood, J., Diffley, J.F. and Hammerschmidt, W. (2001) Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J. 20, 4588–4602.PubMedCrossRefGoogle Scholar
  46. Sears, J., Ujihara, M., Wong, S., Ott, C., Middeldorp, J. and Aiyar, A. (2004) The amino terminus of Epstein-Barr Virus (EBV) nuclear antigen 1 contains AT hooks that facilitate the replication and partitioning of latent EBV genomes by tethering them to cellular chromosomes. J. Virol. 78, 11487–11505.Google Scholar
  47. Shire, K., Ceccarelli, D.F., Avolio-Hunter, T.M. and Frappier, L. (1999) EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance. J. Virol. 73, 2587–2595.PubMedGoogle Scholar
  48. Skare, J., Farley, J., Strominger, J.L., Fresen, K.O., Cho, M.S. and zur Hausen, H. (1985) Transformation by Epstein-Barr virus requires DNA sequences in the region of BamHI fragments Y and H. J. Virol. 55, 286–297.PubMedGoogle Scholar
  49. Smith, P.R., de Jesus, O., Turner, D., Hollyoake, M., Karstegl, C.E., Griffin, B.E., Karran, L., Wang, Y., Hayward, S.D. and Farrell, P.J. (2000) Structure and coding content of CST (BART) family RNAs of Epstein-Barr virus. J. Virol. 74, 3082–3092.PubMedCrossRefGoogle Scholar
  50. Speck, S.H., Pfitzner, A. and Strominger, J.L. (1986) An Epstein-Barr virus transcript from a latently infected, growth- transformed B-cell line encodes a highly repetitive polypeptide. Proc. Natl. Acad. Sci. USA 83, 9298–9302.PubMedCrossRefGoogle Scholar
  51. Tierney, R., Nagra, J., Hutchings, I., Shannon-Lowe, C., Altmann, M., Hammerschmidt, W., Rickinson, A. and Bell, A. (2007) Epstein-Barr virus exploits BSAP/Pax5 to achieve the B-cell specificity of its growth-transforming program. J. Virol. 81, 10092–10100.CrossRefGoogle Scholar
  52. Tsurumi, T., Fujita, M. and Kudoh, A. (2005) Latent and lytic Epstein-Barr virus replication strategies. Rev. Med. Virol. 15, 3–15.PubMedCrossRefGoogle Scholar
  53. Woisetschlaeger, M., Jin, X.W., Yandava, C.N., Furmanski, L.A., Strominger, J.L. and Speck, S.H. (1991) Role for the Epstein-Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proc. Natl. Acad. Sci. USA 88, 3942–3946.PubMedCrossRefGoogle Scholar
  54. Woisetschlaeger, M., Yandava, C.N., Furmanski, L.A., Strominger, J.L. and Speck, S.H. (1990) Promoter switching in Epstein-Barr virus during the initial stages of infection of B lymphocytes. Proc. Natl. Acad. Sci. USA 87, 1725–1729.PubMedCrossRefGoogle Scholar
  55. Wu, Y., Maruo, S., Yajima, M., Kanda, T. and Takada, K. (2007) Epstein-Barr virus (EBV)-encoded RNA 2 (EBER2) but not EBER1 plays a critical role in EBV-induced B-cell growth transformation. J. Virol. 81, 11236–11245.Google Scholar
  56. Yajima, M., Kanda, T. and Takada, K. (2005) Critical role of Epstein-Barr virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J. Virol. 79, 4298–4307.PubMedCrossRefGoogle Scholar
  57. Yao, Q.Y., Croom-Carter, D.S., Tierney, R.J., Habeshaw, G., Wilde, J.T., Hill, F.G., Conlon, C. and Rickinson, A.B. (1998) Epidemiology of infection with Epstein-Barr virus types 1 and 2: lessons from the study of a T-cell-immunocompromised hemophilic cohort. J. Virol. 72, 4352–4363.PubMedGoogle Scholar
  58. Yoo, L.I., Mooney, M., Puglielli, M.T. and Speck, S.H. (1997) B-cell lines immortalized with an Epstein-Barr virus mutant lacking the Cp EBNA2 enhancer are biased toward utilization of the oriP- proximal EBNA gene promoter Wp1. J. Virol. 71, 9134–9142.PubMedGoogle Scholar
  59. Young, L.S., Yao, Q.Y., Rooney, C.M., Sculley, T.B., Moss, D.J., Rupani, H., Laux, G., Bornkamm, G.W. and Rickinson, A.B. (1987) New type B isolates of Epstein-Barr virus from Burkitt's lymphoma and from normal individuals in endemic areas. J. Gen. Virol 68, 2853–2862.PubMedCrossRefGoogle Scholar
  60. Zeng, M.S., Li, D.J., Liu, Q.L., Song, L.B., Li, M.Z., Zhang, R.H., Yu, X.J., Wang, H.M., Ernberg, I. and Zeng, Y.X. (2005) Genomic sequence analysis of Epstein-Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J. Virol. 79, 15323–15330.Google Scholar
  61. Zhao, B., Dalbies-Tran, R., Jiang, H., Ruf, I.K., Sample, J.T., Wang, F. and Sample, C.E. (2003) Transcriptional regulatory properties of Epstein-Barr virus nuclear antigen 3C are conserved in simian lymphocryptoviruses. J. Virol. 77, 5639–5648.PubMedCrossRefGoogle Scholar
  62. Zimber, U., Adldinger, H.K., Lenoir, G.M., Vuillaume, M., Knebel-Doeberitz, M.V., Laux, G., Desgranges, C., Wittmann, P., Freese, U.K., Schneider, U. and Bornkamm, G. (1986) Geographical prevalence of two types of Epstein-Barr virus. Virology 154, 56–66.PubMedCrossRefGoogle Scholar
  63. Zimmermann, J. and Hammerschmidt, W. (1995) Structure and role of the terminal repeats of Epstein-Barr virus in processing and packaging of virion DNA. J. Virol. 69, 3147–3155.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Jeffery T. Sample
    • 1
  • Elessa M. Marendy
  • David J. Hughes
  • Clare E. Sample
    • 1
  1. 1.Department of Microbiology and ImmunologyThe Pennsylvania State University College of MedicineHersheyUSA

Personalised recommendations