EBV Diseases

  • Joseph S. Pagano


Epstein-Barr Virus, the first human tumor virus, also causes infectious mononucleosis and hairy leukoplakia. How the same virus can cause both malignant and benign conditions is best understood through the pathogenesis of EBV infection. The virus was discovered in 1962 in African Burkitt s lymphoma; however, the basic molecular lesions in all BL, EBV-negative or positive are chromosomal translocations that activate c-myc. EBV causes immunoblastic B-cell lymphomas and is associated with Hodgkin s lymphomas. Monoclonal EBV episomes are universally present in the distinctive epithelial malignancy, nasopharyngeal carcinoma, and in parotid tumors, but only a subset of gastric tumors. Other associations, NK/T-cell lymphomas, some breast cancers, and leiomyosarcoma, are inconsistent and obscure pathobiologically. Vaccines to prevent infection and regimens to treat IM remain under development. However, exploiting virus-specific features of the EBV malignancies therapeutically is showing progress while at the same time illuminating the biology of cancer cells and their genesis.


Infectious Mononucleosis Immunoblastic Lymphoma Secondary Cell Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Carbone, M., J. Gruber, M. Wong. Modern criteria to establish human cancer etiology. Semin Cancer Biol Dec; 14 (6): 397–398, 2004.CrossRefGoogle Scholar
  2. 2.
    Sixbey J.W., S.M. Lemon and J.S. Pagano. A second site for Epstein-Barr virus shedding: The uterine cervix. Lancet 1122–1124, 1986.Google Scholar
  3. 3.
    Pagano, J.S. Is Epstein-Barr virus transmitted sexually? Editorial, J Inf Dis 195: 469–470, 2007.Google Scholar
  4. 4.
    Hutt-Fletcher, L.M. Epstein Barr Virus Entry. Minireview, JV 81 (15): 7825 –7832, 2007.Google Scholar
  5. 5.
    Lemon, S.M., L.M. Hutt, J.E. Shaw, J.-L.H. Li, J.S. Pagano. Replication of Epstein-Barr virus in epithelial cells during infectious mononucleosis. Nature 268: 268–270, 1977.PubMedCrossRefGoogle Scholar
  6. 6.
    Sixbey, J.W., E.H. Vesterinen, J.G. Nedrud, N. Raab-Traub, L.A. Walton, J.S. Pagano. Epstein-Barr virus replication in human epithelial cells infected in vitro. Nature 306: 480–483, 1983.PubMedCrossRefGoogle Scholar
  7. 7.
    Sixbey, J.W., J.G. Nedrud, N. Raab-Traub, R.A. Hanes, J.S. Pagano. Epstein-Barr virus replication in oropharyngeal epithelial cells. New Engl J Med 310: 1225– 1230, 1984.PubMedCrossRefGoogle Scholar
  8. 8.
    Davenport, M., J.S. Pagano. Expression of EBNA-1 mRNA is regulated by cell-cycle during Epstein-Barr Virus Type 1 latency. J Virol 73: 3154–3161, 1999.PubMedGoogle Scholar
  9. 9.
    Thorley-Lawson, D.A. EBV the prototypical human tumor virus—just how bad is it? JAllergy Clin Immunol 116 (2): 251–261, 1999; quiz 262 Review.Google Scholar
  10. 10.
    Pagano, J.S. Infectious Mononucleosis, [Date accessed: 2005 February 3]. In: PIER [Online database]. Philadelphia, American College of Physicians, 2005.
  11. 11.
    Kasahara, Y., A. Yachie. Cell type specific infection of Epstein-Barr virus (EBV) in EBV-associated hemophagocytic lymphohistiocytosis and chronic active EBV infection. Critical Reviews in Oncology/Hematology 44: 283–294, 2002.PubMedCrossRefGoogle Scholar
  12. 12.
    Swartz, M.N. The chronic fatigue syndrome – one entity or many? 319 (26): 1726–8, 1988.Google Scholar
  13. 13.
    White PD. What causes prolonged fatigue after infectious mononucleosis—and does it tell us anything about chronic fatigue syndrome? J Inf Dis 196: 4–5, 2007.CrossRefGoogle Scholar
  14. 14.
    Purtillo, D.T., Brichacek, B., Luka, J. et al, Non-Hodgkins lymphomas in x-linked lymphoproliferative disease. In The Epstein-Barr Virus and Associated Diseases. T.Tursz, T.S. Pagano and D.V. Ablashi, eds., INSERM and John Libbey Euro-text, London, pp. 175–180, 1993.Google Scholar
  15. 15.
    T.H. Seemayer, T.C. Gross, A. Lanyi, J. Samegi. X-Linked lymphoproliferative-disease. In Epstein-Barr Virus. A. Tselis and H.B. Jensen, eds., pp. 311–334, 2006.Google Scholar
  16. 16.
    Sayos, J. The X-linked lymphoproliferative-disease product SAP regulates signals, Nature 295: 462–469, 1998.CrossRefGoogle Scholar
  17. 17.
    Burkitt D. Determining the climatic limitations of a children's cancer common in Africa. Br Med J 20; 2(5311):1019–23, 1962.CrossRefGoogle Scholar
  18. 18.
    Epstein, M.A., B.G. Achong, Y.M. Barr. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet I:702–703, 1964.CrossRefGoogle Scholar
  19. 19.
    Johansson, B., G. Klein, W. Henle, G. Henle. Epstein-Barr virus (EBV)-associated antibody patterns in malignant lymphoma and leukemia I. Hodgkin’s disease. Int J Cancer 6: 450–62, 1970.PubMedCrossRefGoogle Scholar
  20. 20.
    zur Hausen, H., H. Schulte-Holthausen, Presence of EB virus nucleic acid homology in a “virus-free” line of Burkitt lymphoma cells. Nature 227: 245, 1970.PubMedCrossRefGoogle Scholar
  21. 21.
    Henle, G., W. Henle, V. Diehl. Relation of Burkitt’s tumor-associated herpes-type virus to infectious mononucleosis. Proc Natl Acad Sci USA 59: 94–101, 1968.Google Scholar
  22. 22.
    Evans, A.S., J.C. Niederman, R.W. McCollum. Seroepidemiologic studies of infectious mononucleosis with EB virus, N Engl J Med 1121–1127, 1968.Google Scholar
  23. 23.
    Niederman, J.C., G. Miller, G.A. Pearson, J.S. Pagano. Infectious mononucleosis: Epstein-Barr virus shedding in saliva and oropharynx. N Engl J Med 294: 1255–1359, 1976.CrossRefGoogle Scholar
  24. 24.
    Nonoyama, M., J.S. Pagano. Complementary RNA specific to the DNA of the Epstein-Barr virus: Detection of EB viral genome in nonproductive cells. Nature New Biol 233: 103–106, 1971.PubMedGoogle Scholar
  25. 25.
    Nonoyama, M., C.-H. Huang, J.S. Pagano, G. Klein, S. Singh. DNA of Epstein-Barr virus detected in tissue of Burkitt's lymphoma and nasopharyngeal carcinoma. Proc Natl Acad Sci USA 70: 3265–3268, 1973.Google Scholar
  26. 26.
    Pagano, J.S. The Epstein-Barr virus and malignancy: Molecular evidence. In Cold Spring Harbor Symposium on Quantitative Biology: Tumor Viruses, XXIX, 797–805. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1975.Google Scholar
  27. 27.
    Ferry, J.A. Burkitt’s Lymphoma: Clinicopathologic Features and Differential Diagnosis. Oncologist 11: 375–383, 2006.PubMedCrossRefGoogle Scholar
  28. 28.
    Burkitt, D.P., D.H. Wright. Burkitt’s Lymphoma, E & S Livingstone, Edinburgh, pp. 1–251, 1970.Google Scholar
  29. 29.
    Gravell, M., P.H. Levine, R.F. McIntyre, V.J. Land, and J.S. Pagano. Epstein-Barr virus in an American patient with Burkitt's lymphoma: Detection of viral genome in tumor tissue and establishment of a tumor-derived cell line. J Natl Cancer Inst 56: 7001–7004, 1976.Google Scholar
  30. 30.
    Dalla-Favera, R., Bregni, M., Erikson, J. et al. Human C-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. PNAS 79: 7824–7827, 1982.PubMedCrossRefGoogle Scholar
  31. 31.
    De The’ G. Epidemiology of Epstein-Barr virus and associated diseases. In The Herpesviruses. B. Roizman (ed.). Plenum Press, New York: pp. 25–87, 1982.Google Scholar
  32. 32.
    Moormann, A.M., K. Chelimo, P.O. Sumba, D.J. Tisch, R. Rochford, J.W. Kazura. Exposure to Holoendemic Malaria Results in Suppression of Epstein-Barr Virus-Specific T Cell Immunosurveillance in Kenyan Children. JID 195: 799–808, 2007.PubMedCrossRefGoogle Scholar
  33. 33.
    Klumb, C.E., R. Hassan, D.E. De Oliveira, L.M. De Resende, M.K. Carrico, J. De Almeida Dobbin, M.S. Pombo-De-Oliveira, C.E. Bacchi, R.C. Maia. Geographic variation in Epstein-Barr virus-associated Burkitt’s lymphoma in children from Brazil. Int JCancer 108 (1): 66–70, 2004.PubMedCrossRefGoogle Scholar
  34. 34.
    Dave, S.S., K. Fu, G.W.W. Wright, L.T. Lam, P. Kluin, E.-J. Boerma, T.C. Greiner, D.D. Weisenurger, A. Rosenwald, G. Ott, H.-K. Muller-Hermelink, R.D. Gascoyne, J.Delabie, L.M. Rimsza, R.M. Braziel, T.M. Grogan, E. Campo, E.S. Jaffe, B.J. Dave, W. Sanger, M. Bast, J.M. Vose, J.O. Armitage, J.M. Connors, E.B. Smeland, S. Kvaloy, H. Holte , R. Fisher, T.P. Miller, E. Montserrat, W.H. Wilson, M. Bahl, H. Zhao, L. Yang, J. Powerll, R. Simon, W.C. Chan, L.M. Staudt. Lymphoma/leukemia molecular profiling project. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354: 2431–42, 2006.PubMedCrossRefGoogle Scholar
  35. 35.
    Snow A.L., O.M. Martinez. Epstein-Barr virus: Evasive Maneuvers in the development of PTLD. Am J Transplant 7: 271–277, 2007.PubMedCrossRefGoogle Scholar
  36. 36.
    Hanto, D.W., G. Frizzera, K.J. Gail-Peczalska, et al. Epstein-Barr virus-induced B-cell lymphoma after renal transplantation: acyclovir therapy and transition from polyclonal to monoclonal B-cell proliferation. N Engl J Med 306: 913–918, 1982.PubMedCrossRefGoogle Scholar
  37. 37.
    Hong, G.K., et al. Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse. J Virol 79 (22):13993–4003, 2005.Google Scholar
  38. 38.
    Klein, C., N. Raab-Traub. Human neonatal lymphocytes immortalized after microinjection of Epstein-Barr virus DNA. J. Virol 61: 1522–1558, 1987.Google Scholar
  39. 39.
    Shackelford, J., C. Maier, J.S. Pagano. Epstein-Barr virus activates β-catenin in type III latently infected B-lymphocyte lines: association with deubiquitinating enzymes. Proc Nat Acad Sci USA 26: 15572–15576, 2003.Google Scholar
  40. 40.
    Shackelford, J., J.S. Pagano. Targeting of host-cell ubiquitin pathways by viruses. In Essays in Biochemistry, The Ubiquitin-Proteasome System. J. Mayer, R. Layfield (eds.). Portland Press Ltd. London, UK, 41: 139–156, 2005.Google Scholar
  41. 41.
    Zhang, L., J. Zhang, Q. Lambert, C.J. Der, J.S. Pagano. Interferon Regulatory Factor 7 is associated with EBV-transformed CNS lymphoma and has Oncogenic Properties. J Virol 78: 23:12987–12995, 2004.PubMedCrossRefGoogle Scholar
  42. 42.
    Honda, K., H. Yannai, H. Negishi, M. Asagiri, M. Sato, T. Mizutani, N. Shimada, Y.Ohba, A. Takaoka, N. Yoshida, T. Taniguchi. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434: 772–777, 2005.PubMedCrossRefGoogle Scholar
  43. 43.
    Raab-Traub, N., J.S. Pagano. The Epstein-Barr virus and its antigens. Hum Immunogenetics 43: 477–98, 1989.Google Scholar
  44. 44.
    Andersson, J. Epstein-Barr virus and Hodgkin’s lymphoma. Herpes 13: 12–16, 2006. Review.PubMedGoogle Scholar
  45. 45.
    Felberbaum, R.S. The molecular mechanisms of classic Hodgkin’s lymphoma. Yale J Biol Med 78: 203–210, 2005.PubMedGoogle Scholar
  46. 46.
    Yung, L., D. Linch. Hodgkin’s lymphoma. The Lancet 361: 943–951, 2003.CrossRefGoogle Scholar
  47. 47.
    Aster, J.C. The Reed-Sternberg cell and the pathogenesis of Hodgkin’s disease. 15:1, 2006.
  48. 48.
    Bräuninger, A., R. Schmitz, D. Bechtel, C. Renné, M.-L. Hansmann, R. Küppers. Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Mini Review in Int J Cancer 118: 1853–1861, 2006.Google Scholar
  49. 49.
    Harris, N.L. Pathology of Hodgkin lymphoma. 15.1, 2006.
  50. 50.
    Ansell, S.M., J.O. Armitage. Management of Hodgkin Lymphoma. Mayo Clin Proc 81 (3): 419–426, 2006.Google Scholar
  51. 51.
    Meyer, R.M., R.F. Ambinder, S. Stroobants. Hodgkin’s lymphoma: Evolving concepts with Implications for Practice. Am Soc Hematol Educ Program 184–202, 2004.Google Scholar
  52. 52.
    Gutensohn, N., P. Cole. Childhood social environment and Hodgkin’s disease. N Engl J Med 304: 135–40, 1981.PubMedCrossRefGoogle Scholar
  53. 53.
    Johansson, B., G. Klein, W. Henle, G. Henle, Epstein-Barr virus (EBV)-associated antibody patterns in malignant lymphoma and leukemia. I. Hodgkin’s disease. Int J Cancer 6: 450–62, 1970.PubMedCrossRefGoogle Scholar
  54. 54.
    Ambinder, R. Infection and lymphoma. N Engl J Med 349(14):1309–1311, 2003.Google Scholar
  55. 55.
    Diepstra, A., M. Niens, E. Vellenga, G.W. van Imhoff, I.M. Nolte, G. Schapveld, A. van den Berg, R.D. Kibbelaar, G.J. te Meerman, S. Poppema. Association with HLA class I in Epstein-Barr-virus-positive and with HLA class III in Epstein-Barr-virus-negative Hodgkin’s lymphoma. Lancet 365: 2216–24, 2005.PubMedCrossRefGoogle Scholar
  56. 56.
    Ambinder, RF. Epidemiology of Hodgkin’s disease and the role of Epstein-Barr virus. 15:1, 2006.
  57. 57.
    Chang, E., T. Zheng, E. Lennette, E. Weir, M. Borowitz, R. Mann, D. Spiegelman, N. Mueller. Heterogeneity of risk factors and antibody profiles in Epstein-Barr virus genome-positive and –negative Hodgkin lymphoma. 189:2271–81, 2004.Google Scholar
  58. 58.
    Chaganti, S, A.I. Bell, N.E. Paster, A.E. Milner, M. Drayson, J. Gordon, A.B. Rickinson. Epstein-Barr virus infection I vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood 106 (13): 4249–4254, 2005.PubMedCrossRefGoogle Scholar
  59. 59.
    Mancao, C., M. Altmann, B. Jungnickel, W. Hammerschmidt. Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood 106 (13): 4339–4344, 2005.PubMedCrossRefGoogle Scholar
  60. 60.
    Hjalgrim, J., K.E. Smedby, K. Rostgaard, D. Molin, St. Hamilton-Dutoit, E.T. Chang, E. Ralfkiaer, C. Sundstrom, H.-O. Adami, B. Blimelius, M. Melbye. Infectious mononucleosis, Childhood social environment, and risk of Hodgkin lymphoma. Cancer Res 67 (5): 2382–2388, 2007.PubMedCrossRefGoogle Scholar
  61. 61.
    Hjalgrim, H., J. Askling, K. Rostgaard, S. Hamilton-Dutoit, M. Frisch, J.-S. Zhang, M. Madsen, N. Rosdahl, H.B. Konradsen, H.H. Storm, M. Melbye. Characteristics of Hodgkin’s Lymphoma after Infectious Mononucleosis. N Engl J Med 349 (14): 1324–1332, 2003.PubMedCrossRefGoogle Scholar
  62. 62.
    Alexander, F.E., D.J. Lawrence, J. Freeland, A.S. Krajewski, B. Angus, G.M. Taylor, R.F. Jarrett. An Epidemiologic study of index and family infectious mononucleosis and adult Hodgkin’s Disease (HD): Evidence for a specific association with EBV+ve HD in young adults. Int J Cancer 107:298–302, 2003.PubMedCrossRefGoogle Scholar
  63. 63.
    Jarrett, R.F., G.L. Start, J. White, B. Angus, F.E. Alexander, A.S. Krajewski, J. Freeland, G.M. Taylor, P.R.A. Taylor. For the Scotland and Newcastle epidemiology of Hodgkin disease study group. Impact of tumor Epstein-Barr virus status on presenting features and outcome in age-defined subgroups of patients with classic Hodgkin lymphoma: a population-based study. Blood 106(7):2444–2451, 2005.PubMedCrossRefGoogle Scholar
  64. 64.
    Verbsky, J.W., W.J. Grossman. Hemophagocytic lymphohistiocytosis: Diagnosis, pathophysiology, treatment, and future perspectives. Ann Int Med 38:20–31, 2006.CrossRefGoogle Scholar
  65. 65.
    Kim, J.E., Y.A. Kim, Y.K. Jeon, S.S. Park, D.S. Heo, C.W. Kim. Comparative analysis of NK/T-cell lymphoma and peripheral T-cell lymphoma in Korea: Clinicopathologic correlations and analysis of EBV strain type and 30-bp deletion variant LMP1. Path Internat 53:735–743, 2003.Google Scholar
  66. 66.
    Sandvej, K., L. Krenacs, S.J. Hamilton-Dutoit, et al. Epstein-Barr virus latent and replicative gene expression in oral hairy leucoplakia Histopathology 20:387–395, 1992.PubMedCrossRefGoogle Scholar
  67. 67.
    Greenspan, J.S., D. Greenspan, E.T. Lennette, et al. Replication of Epstein-Barr virus within the epithelial cells of oral “hairy” leucoplakia, N Engl J Med 313:1564–1571, 1985.PubMedCrossRefGoogle Scholar
  68. 68.
    Webster-Cyriaque, J., N. Raab-Traub. Transcription of Epstein-Barr virus latent cycle genes in oral hairy leukoplakia. Virology 248:53–65, 1998.PubMedCrossRefGoogle Scholar
  69. 69.
    Webster-Cyriaque, J., J. Middeldorp, N. Raab-Traub. Hairy leukoplakia: an unusual combination of transforming and permissive Epstein-Barr virus infections. J Virol 74(16):7610–7618, 2000.Google Scholar
  70. 70.
    Shanmugaratnam, K., L.H. Sobin. In International Histological Classification of Tumours: no 19. K. Shanmugaratnam, L.H. Sobin (eds.). WHO, Geneva, pp. 32–33, 1991.Google Scholar
  71. 71.
    Raab-Traub, N., K. Flynn, G. Pearson, A. Huang, P. Levine, A. Lanier, and J.S. Pagano. The differentiated form of nasopharyngeal carcinoma contains Epstein-Barr virus DNA. Int J Cancer 39:25–30, 1987.PubMedCrossRefGoogle Scholar
  72. 72.
    Horikawa, T., J. Yang, S. Kondo, T. Yoshizaki, I. Joab, M. Furukawa, J.S. Pagano. Twist and epithelial-mesenchymal transition are induced by the oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma. Cancer Res 67(5):1970–1978, 2007.PubMedCrossRefGoogle Scholar
  73. 73.
    Yoshizaki, T., N. Wakisaka, J.S. Pagano. Chapter 12: Epstein-Barr Virus, Invasion and Metastasis. Chapter 12, In Epstein-Barr Virus, E. Robertson (ed.). Caister Academic, Norfolk, England, pp. 171–196, 2005.Google Scholar
  74. 74.
    Wakisaka, N., T. Yoshizaki, S. Murono, M. Furukawa, N. Raab-Traub, J.S. Pagano. Ribonucleotide reductase inhibitors enhance Cidofovir-induced apoptosis in EBV-positive nasopharyngeal carcinoma xenografts. Internat. J Cancer, 116, 2005.Google Scholar
  75. 75.
    Lin, J.-C., W.-Y. Wang, K.Y. Chen, Y.-H. Wei, W.-M. Liang, J.-S. Jan, R.-S. Jiang. Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med 350(24): 2461–2470, 2004.PubMedCrossRefGoogle Scholar
  76. 76.
    Fachiroh, J., T. Schouten, B. Hariwiyanto, D. Paramita, A. Harijadi, S. Haryana, M. Ng, J. Middeldorp. Molecular diversity of Epstein-Barr virus IfG and IgA antibody responses in nasopharyngeal carcinoma: A comparison of Indonesian, Chinese, and European subjects. JID 190:53–61, 2004.PubMedCrossRefGoogle Scholar
  77. 77.
    Pagano, J.S., M. Blaser, M.-A. Buendia, B. Damania, K. Khalili, N. Raab-Traub, B. Roizman. Infectious agents and cancer: criteria for a causal relation. Seminars in Cancer Biol 14:453–471, 2004.CrossRefGoogle Scholar
  78. 78.
    Cho, W.C-S. Nasopharyngeal carcinoma: Molecular biomarker discovery and progress. Mol Cancer 6(1):4598–4606, 2007.Google Scholar
  79. 79.
    Tiwawech, D., P. Srivatanakul, A. Karaiak, T. Ishida. Cytochrome P450 2A6 polymorphism in nasopharyngeal carcinoma. Cancer Lett 241:135–141, 2005.PubMedCrossRefGoogle Scholar
  80. 80.
    Pathmanathon, R. et al. Clonal proliferations of cells infected with EBV preinvasive lesions. N Engl J Med 333: 693–98, 1995.CrossRefGoogle Scholar
  81. 81.
    Goldsmith, D.B., T.M. West, R. Morton. HLA association with NPC: a meta-analysis. Clin Otolaryngol 27:61–67, 2002.PubMedCrossRefGoogle Scholar
  82. 82.
    Lo, K.-W., D.P. Huang. Genetic and epigenetic changes in NPC. Sem Cancer Biol 12:451–462, 2002.CrossRefGoogle Scholar
  83. 83.
    Sixbey, J.W., Q.Y. Yao. Immunoglobulin A-induced shift of Epstein-Barr virus tissue tropism. Science 255(5051):1578–80, 1992.PubMedCrossRefGoogle Scholar
  84. 84.
    Scott, R.S., C.A. Moody, J.W. Sixbey. Epstein-Barr virus and oral malignancies. Chapter 6 from Epstein-Barr Virus, E.S. Robertson, pp. 55–70, Caiste Press, Norfolk, England, 2005.Google Scholar
  85. 85.
    Blaser, M.J., J. Ahorton. Helicobacter pyloric persistence: biology and disease. J Clin Invest 113:321–33, 2004.PubMedGoogle Scholar
  86. 86.
    Hermine, O., et al. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med 347(2):89–94, 2002.PubMedCrossRefGoogle Scholar
  87. 87.
    Pagano, J.S. Viruses and lymphomas, N Engl J Med 347:78–79, 2002.PubMedCrossRefGoogle Scholar
  88. 88.
    Iwakiri, D., K. Talceda. EBV and gastric cancers. In EBV, E. Robertson (ed.). pp. 157–170, 2005.Google Scholar
  89. 89.
    zur Hausen, A., B.P. van Rees, J. van Beek, M.E. Craanen, E. Bloemena, G.J.A. Offerhaus, C.J.L.M. Meijer, A.J.C. van den Brule. Epstein-Barr virus in gastric carcinomas and gastric stump carcinomas: a late event in gastric carcinogenesis. J Clin Pathol 57:487–491, 2007.CrossRefGoogle Scholar
  90. 90.
    vanBeek, J., A. zur Hausen, E.K. Kranenbarg, C.J.H. van de Velde, J.M. Middledorp, A.J.C. van den Brule, C.J.L.M. Meijer, E. Bloemena EBV-positive gastric adenocarcinomas: A distinct clinicopathologic entity with a low frequency of lymph node involvement. J Clin Oncol 22(4):664–270, 2004.CrossRefGoogle Scholar
  91. 91.
    vanBeek, J., A. zur Hausen, E.K. Kranenbarg, C.J.H. van de Velde, J.M. Middledorp, A.J.C. van den Brule, C.J.L.M. Meijer, E. Bloemena. EBV-positive gastric adenocarcinomas: A distinct clinicopathologic entity with a low frequency of lymph node involvement. J Clin Oncol 22(4):664–270, 2004.CrossRefGoogle Scholar
  92. 92.
    Lee, H.S., M.S. Chang, H.-K. Yang, B.L. Lee, W.H. Kim. Epstein-Barr virus-positive gastric carcinoma has a distinct protein expression profile in comparison with Epstein-Barr Virus-negative carcinoma. Clin Cancer Res 10:1698–1705, 2004.PubMedCrossRefGoogle Scholar
  93. 93.
    Arlach, H., I. Joab, EBV and breast cancer: Questions and implications. In Epstein-Barr Virus. E.S. Robertson (ed.). Caister Press, pp. 139–155, 2005.Google Scholar
  94. 94.
    Junker, A.K., E.E. Thomas, A. Radcliffe, R.B. Forsyth, A.G. Davidson, L. Rymo. Epstein-Barr virus shedding in breast milk. Am J Med Sci 302:220–223, 1991.PubMedCrossRefGoogle Scholar
  95. 95.
    Lin, J.-H., C.-H. Tsai, J.-S. Chu, J.-Y. Chen, K. Takada, J.-Y. Shew. Dysregulation of HER2/HER3 signaling axis in Epstein-Barr virus-infected breast carcinoma cells. J Virol 81:5705–5713, 2007.PubMedCrossRefGoogle Scholar
  96. 96.
    Bonnet, M. et al, Detection of EBV in invasive breast cancers. J Natl Cancer Int 91(16): 1372–1381, 1999.CrossRefGoogle Scholar
  97. 97.
    Fina, F. et al. Frequency and genome load of EBV in 509 breast cancers. Br J Cancer 84(6): 783–790, 2001.PubMedCrossRefGoogle Scholar
  98. 98.
    Huang, J. et al. Lytic viral replication as a contributor to detection of EBV in breast cancer. J Virol 77(24):13267–74, 2003.PubMedCrossRefGoogle Scholar
  99. 99.
    Xue, S.A., et al, EBV gene expression in human breast cancer: protagonist or passenger ? B J Cancer 89(1):113–119, 2003.CrossRefGoogle Scholar
  100. 100.
    Von Netter, et al, Multiple microsample analysis of intratainer estrogen receptor distribution in breast cancers. Eur J Cancer Clin Oncol 23(9):1337–1342, 1987.CrossRefGoogle Scholar
  101. 101.
    Arbach, H., V. Viglasky, et al. Epstein-Barr Virus (EBV) genome and expression in breast cancer tissue: Effect of EBV infection of breast cancer cells on resistance to paclitaxel (Taxol). J Virol 80:845–853, 2006.PubMedCrossRefGoogle Scholar
  102. 102.
    Jenson, H.B. Leiomyosarcoma. In Epstein-Barr Virus. A. Tselis, H.B. Jenson (eds.). Taylor and Francis, New York, pp. 297–310, 2006.CrossRefGoogle Scholar
  103. 103.
    Moss, D.J., S.R. Burrows, R. Khanna, Developing vaccines against EBV-associated diseases. In Epstein-Barr Virus, E.S. Robertson (ed.). Caister Press, Norfolk, pp. 651–668, 2005.Google Scholar
  104. 104.
    Pagano, J.S. Epstein-Barr virus: Therapy of active and latent infection. In Antiviral Chemotherapy. D.J. Jeffries, E. Dee Clercq (eds.). John Wiley & Sons, New York, pp. 155–195, 1995.Google Scholar
  105. 105.
    Gershburg, E., J.S. Pagano. Epstein-Barr virus infections: Prospects for treatment J. Antimicrob Chemo, 56, 2:277–281, 2005.CrossRefGoogle Scholar
  106. 106.
    Sokall, E.M., et al. Recompinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr J Infect Dis 196(12):1749–53, 2007.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Lineberger Comprehensive Cancer CenterUniversity of the North CarolinaChapel HillUSA

Personalised recommendations