Skip to main content

Integrated Microelectrode Arrays

  • Chapter
CMOS Biotechnology

Part of the book series: Series on Integrated Circuits and Systems ((ICIR))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Jimbo, T. Tateno, and H. P. C. Robinson, “Simultaneous induction of path-way-specific potentiation and depression in networks of cortical neurons,” Biophysical Journal, vol. 76, pp. 670-678, 1999.

    Article  Google Scholar 

  2. S. Marom and G. Shahaf, “Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy,” Quarterly Reviews of Biophysics, vol. 35, pp. 63-87, 2002.

    Article  Google Scholar 

  3. G. Shahaf and S. Marom, “Learning in networks of cortical neurons,” Journal of Neuroscience, vol. 21, pp. 8782-8788, 2001.

    Google Scholar 

  4. M. E. Ruaro, P. Bonifazi, V. Torre, “Towards the neurocomputer: image pro- cessing and pattern recognition with neuronal cultures,” IEEE Transactions on Biomedical Engineering, 2005.

    Google Scholar 

  5. D. A. Wagenaar, Z. Nadasdy, and S. M. Potter, “Persistent dynamic attractors in activity patterns of cultured neuronal networks,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 73, p. 051907, 2006.

    Google Scholar 

  6. G. Gross, B. K. Rhoades, H. M. E. Azzazy, and W. Ming Chi, “The use of neuronal networks on multielectrode arrays as biosensors,” Biosensors & Bioelectronics, vol. 10, pp. 553-567, 1995.

    Article  Google Scholar 

  7. J. J. Pancrazio, P. P. Bey, Jr., D. S. Cuttino, J. K. Kusel, D. A. Borkholder, K. M. Shaffer, G. T. A. Kovacs, and D. A. Stenger, “Portable cell-based biosensor system for toxin detection,” Sensors and Actuators B (Chemical), vol. B53, pp. 179-185, 1998.

    Google Scholar 

  8. A. Stett, U. Egert, E. Guenther, F. Hofmann, T. Meyer, W. Nisch, and H. Haemmerle, “Biological application of microelectrode arrays in drug discov-ery and basic research,” Anal Bioanal Chem, vol. 377, pp. 486-495, 2003.

    Article  Google Scholar 

  9. T. Meyer, C. Leisgen, B. Gonser, and E. Gunther, “QT-screen: high-through-put cardiac safety pharmacology by extracellular electrophysiology on pri-mary cardiac myocytes,” Assay Drug Dev Technol, vol. 2, pp. 507-514, 2004.

    Article  Google Scholar 

  10. U. Egert, D. Heck, and A. Aertsen, “Two-dimensional monitoring of spiking networks in acute brain slices,” Exp Brain Res, vol. 142, pp. 268-274, 2002.

    Article  Google Scholar 

  11. M. Hutzler, A. Lambacher, B. Eversmann, M. Jenkner, R. Thewes, and P. Fromherz, “High-resolution multi-transistor array recording of electrical field potentials in cultured brain slices,” J Neurophysiol, 2006.

    Google Scholar 

  12. E. Neher and B. Sakmann, “Single-channel currents recorded from mem-brane of denervated frog muscle fibres,” Nature, vol. 260, pp. 799-802, 1976.

    Article  Google Scholar 

  13. K. Cole, “Dynamic electrical characteristics of the squid axon membrane,” Arch. Sci. physiol., vol. 3, pp. 253-258, 1949.

    Google Scholar 

  14. P. Fromherz, “Electrical interfacing of nerve cells and semiconductor chips,” Chemphyschem, vol. 3, pp. 276-284, 2002.

    Article  Google Scholar 

  15. G. T. A. Kovacs, “Electronic sensors with living cellular components,” Proceedings of IEEE, vol. 91, pp. 915-929, 2003.

    Article  Google Scholar 

  16. K. D. Wise, D. J. Anderson, J. F. Hetke, D. R. Kipke, and K. Najafi, “Wireless implantable microsystems: high-density electronic interfaces to the nervous system,” Proceedings of the IEEE, vol. 92, pp. 76-97, 2004.

    Article  Google Scholar 

  17. R. H. Olsson, 3rd, D. L. Buhl, A. M. Sirota, G. Buzsaki, and K. D. Wise, “Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays,” IEEE Trans Biomed Eng, vol. 52, pp. 1303-11, 2005.

    Article  Google Scholar 

  18. A. G. Kleber and Y. Rudy, “Basic mechanisms of cardiac impulse propaga- tion and associated arrhythmias,” Physiol. Rev., vol. 84, pp. 431-488, 2003.

    Article  Google Scholar 

  19. W. L. C. Rutten, “Selective electrical interfaces with the nervous system,” Annual Review of Biomedical Engineering, vol. 4, pp. 407-452, 2002.

    Article  Google Scholar 

  20. Y. Jimbo and H. P. Robinson, “Propagation of spontaneous synchronized activity in cortical slice cultures recorded by planar electrode arrays,” Bioelectrochemistry, vol. 51, pp. 107-15, 2000.

    Article  Google Scholar 

  21. J. van Pelt, P. S. Wolters, M. A. Corner, W. L. Rutten, and G. J. Ramakers, “Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks,” IEEE Trans Biomed Eng, vol. 51, pp. 2051-2062, 2004.

    Article  Google Scholar 

  22. S. I. Morefield, E. W. Keefer, K. D. Chapman, and G. W. Gross, “Drug evalu- ations using neuronal networks cultured on microelectrode arrays,” Biosens Bioelectron, vol. 15, pp. 383-396, 2000.

    Article  Google Scholar 

  23. J. J. Pancrazio, S. A. Gray, Y. S. Shubin, N. Kulagina, D. S. Cuttino, K. M. Shaffer, K. Eisemann, A. Curran, B. Zim, G. W. Gross, and T. J. O’Shaughnessy, “A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection,” Biosensors & Bioelectronics, vol. 18, pp. 1339-1347, 2003.

    Article  Google Scholar 

  24. B. D. DeBusschere and G. T. A. Kovacs, “Portable cell-based biosensor sys- tem using integrated CMOS cell-cartridges,” Biosensors-&-Bioelectronics, vol. 16, pp. 543-556, 2001.

    Article  Google Scholar 

  25. M. Taketani, Advances in network electrophysiology using multi-electrode arrays. New York: Springer, 2006.

    Google Scholar 

  26. B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell Mol Neurobiol, vol. 25, pp. 245-282, 2005.

    Article  Google Scholar 

  27. Z. A. Peterlin, J. Kozloski, B. Q. Mao, A. Tsiola, and R. Yuste, “Optical prob- ing of neuronal circuits with calcium indicators,” Proc Natl Acad Sci U S A, vol. 97, pp. 3619-3624, 2000.

    Article  Google Scholar 

  28. A. L. Obaid, L. M. Loew, J. P. Wuskell, and B. M. Salzberg, “Novel naph- thylstyryl-pyridium potentiometric dyes offer advantages for neural network analysis,” J Neurosci Methods, vol. 134, pp. 179-190, 2004.

    Article  Google Scholar 

  29. M. Voelker and P. Fromherz, “Signal transmission from individual mamma- lian nerve cell to field-effect transistor,” SMALL, vol. 1, pp. 206-210, 2005.

    Article  Google Scholar 

  30. M. Jenkner, B. Muller, and P. Fromherz, “Interfacing a silicon chip to pairs of snail neurons connected by electrical synapses,” Biological Cybernetics, vol. 84, pp. 239-249, 2001.

    Article  Google Scholar 

  31. M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud, “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,” Journal of Neuroscience Methods, vol. 114, pp. 135-148, 2002.

    Article  Google Scholar 

  32. Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, and H. P. Robinson, “A system for MEA-based multisite stimulation,” IEEE Trans Biomed Eng, vol. 50, pp. 241-248, 2003.

    Article  Google Scholar 

  33. M. P. Maher, J. Pine, J. Wright, and T. Yu Chong, “The neurochip: A new multielectrode device for stimulating and recording from cultured neurons,” Journal of Neuroscience Methods, vol. 87, pp. 45-56, 1999.

    Article  Google Scholar 

  34. S. Martinoia, P. Massobrio, M. Bove, and G. Massobrio, “Cultured neurons coupled to microelectrode arrays: circuit models, simulations and experi-mental data,” IEEE Trans Biomed Eng, vol. 51, pp. 859-864, 2004.

    Article  Google Scholar 

  35. B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl, P. Fromherz, M. Merz, M. Brenner, M. Schreiter, R. Gabl, K. Plehnert, M. Steinhauser, G. Eckstein, D. Schmitt-Landsiedel, and R. Thewes, “A 128 x 128 CMOS biosensor array for extracellular recording of neural activity,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2306-2317, 2003.

    Article  Google Scholar 

  36. H. F. Lodish, Molecular cell biology, Third ed. New York: Scientific American Books, 1995.

    Google Scholar 

  37. D. Johnston, S. Wu, Foundations of Cellular Neurophysiology. London: The MIT Press, 1995.

    Google Scholar 

  38. E. R. Kandel, J. H. Schwartz, T. M. Jessell, Principles of Neural Science, Fourth ed. London: McGraw-Hill, 2000.

    Google Scholar 

  39. A. L. Hodgkin and A. F. Huxley, “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve,” Journal of Physiology, vol. 117, pp. 500-544, 1952.

    Google Scholar 

  40. A. G. Kleber and Y. Rudy, “Basic mechanisms of cardiac impulse propaga- tion and associated arrhythmias,” Physiol Rev, vol. 84, pp. 431-488, 2004.

    Article  Google Scholar 

  41. R. Caton, “The electric currents of the brain,” Br. Med. J., vol. 2, p. 278, 1875.

    Google Scholar 

  42. K. D. Wise and J. B. Angeli, “A Microprobe with Integrated Amplifiers for Neurophysiology “ ISSCC, Proc. of pp. 100-101, 1971.

    Google Scholar 

  43. C. A. Thomas, P. A. Springer, G. E. Loeb, Y. Berwald-Netter, L. M. Okun, “A miniature microelectrode array to monitor the bioelectric activity of cultured cells,” Experimental Cell Research, vol. 74, pp. 61-66, 1972.

    Article  Google Scholar 

  44. M. Jenkner, M. Tartagni, A. Hierlemann, and R. Thewes, “Cell-Based CMOS Sensor and Actuator Arrays,” Solid State Circuits, vol. 39, pp. 2431-2437, 2004.

    Article  Google Scholar 

  45. G. W. Gross, W. Y. Wen, and J. W. Lin, “Transparent Indium Tin Oxide Electrode Patterns for Extracellular, Multisite Recording in Neuronal Cultures,” Journal of Neuroscience Methods, vol. 15, pp. 243-252, 1985.

    Article  Google Scholar 

  46. V. Bucher, M. Graf, M. Steizle, and W. Nisch, “Low-impedance thin-film polycrystalline silicon microelectrodes for extracellular stimulation and re-cording,” Biosensors-&-Bioelectronics, vol. 14, pp. 639-649, 1999.

    Article  Google Scholar 

  47. Y. Jimbo, A. Kawana, P. Parodi, and V. Torre, “The dynamics of a neuro-nal culture of dissociated cortical neurons of neonatal rats,” Biological Cybernetics, vol. 83, pp. 1-20, 2000.

    Article  Google Scholar 

  48. D. A. Wagenaar, R. Madhavan, J. Pine, and S. M. Potter, “Controlling burst- ing in cortical cultures with closed-loop multi-electrode stimulation,” J Neurosci, vol. 25, pp. 680-688, 2005.

    Article  Google Scholar 

  49. M. Chiappalone, A. Vato, M. B. Tedesco, M. Marcoli, F. Davide, and S. Martinoia, “Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications,” Biosensors & Bioelectronics, vol. 18, pp. 627-634, 2003.

    Article  Google Scholar 

  50. E. W. Keefer, A. Gramowski, D. A. Stenger, J. J. Pancrazio, and G. W. Gross, “Characterization of acute neurotoxic effects of trimethylolpropane phosphate via neuronal network biosensors,” Biosensors & Bioelectronics, vol. 16, pp. 513-525, 2001.

    Article  Google Scholar 

  51. P. Bonifazi and P. Fromherz, “Silicon chip for electronic communication be- tween nerve cells by non-invasive interfacing and analog-digital processing,” Advanced Materials, vol. 14, pp. 1190-1193, 2002.

    Article  Google Scholar 

  52. D. A. Wagenaar and S. M. Potter, “A versatile all-channel stimulator for elec- trode arrays, with real-time control,” J Neural Eng, vol. 1, pp. 39-45, 2004.

    Article  Google Scholar 

  53. G. W. Gross, B. K. Rhoades, D. L. Reust, and F. U. Schwalm, “Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes,” Journal-of-Neuroscience-Methods, vol. 50, pp. 131-143, 1993.

    Article  Google Scholar 

  54. J. R. Buitenweg, W. L. C. Rutten, and E. Marani, “Extracellular stimula-tion window explained by a geometry-based model of the Neuron-electrode contact,” IEEE-Transactions-on-Biomedical-Engineering, vol. 49, pp. 1591-1599, 2002.

    Article  Google Scholar 

  55. C. C. McIntyre and W. M. Grill, “Extracellular stimulation of central neu- rons: influence of stimulus waveform and frequency on neuronal output,” J Neurophysiol, vol. 88, pp. 1592-1604, 2002.

    Google Scholar 

  56. Y. Jimbo and A. Kawana, “Electrical-Stimulation and Recording from Cultured Neurons Using a Planar Electrode Array,” Bioelectrochemistry and Bioenergetics, vol. 29, pp. 193-204, 1992.

    Article  Google Scholar 

  57. F. Heer, S. Hafizovic, T. Ugniwenko, W. Franks, A. Blau, C. Ziegler, J. C. Perriard, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens Bioelectron, in press, 2006.

    Google Scholar 

  58. J. W. Gnadt, S. D. Echols, A. Yildirim, H. Zhang, and K. Paul, “Spectral cancellation of microstimulation artifact for simultaneous neural recording in situ,” IEEE Trans Biomed Eng, vol. 50, pp. 1129-1135, 2003.

    Article  Google Scholar 

  59. D. A. Wagenaar and S. M. Potter, “Real-time multi-channel stimulus artifact suppression by local curve fitting,” J Neurosci Methods, vol. 120, pp. 113-120, 2002.

    Article  Google Scholar 

  60. F. Heer, S. Hafizovic, W. Franks, A. Blau, C. Ziegler, and A. Hierlemann, “CMOS Microelectrode Array for Bidirectional Interaction with Neuronal Networks,” IEEE Journal of Solid-State Circuits, vol. 41, 2006.

    Google Scholar 

  61. P. Fromherz, “Extracellular recording with transistors and the distribution of ionic conductances in a cell membrane,” European Biophysics Journal with Biophysics Letters, vol. 28, pp. 254-258, 1999.

    Google Scholar 

  62. D. Braun and M. P. J. Fromherz, “Fluorescence Interferometry of Neuronal Cell Adhesion on Microstructured Silicon,” Phys. Rev. Lett., vol. 81, pp. 5241-5244, 1998.

    Article  Google Scholar 

  63. J. R. Buitenweg, W. L. Rutten, and E. Marani, “Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a micro-electrode,” IEEE Trans Biomed Eng, vol. 50, pp. 501-509, 2003.

    Article  Google Scholar 

  64. R. Weis and P. Fromherz, “Frequency dependent signal transfer in neuron transistors,” Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics), vol. 55, pp. 877-889, 1997.

    Google Scholar 

  65. S. Vassanelli and P. Fromherz, “Transistor records of rat hippocampal neu- rons,” European Journal of Neuroscience, vol. 10, p. 2838, 1998.

    Google Scholar 

  66. R. Schatzthauer and P. Fromherz, “Neuron-silicon junction with voltage- gated ionic currents,” Eur J Neurosci, vol. 10, pp. 1956-1962, 1998.

    Article  Google Scholar 

  67. W. Franks, Schenker, I., Schmutz, P., Hierlemann, A., “Impedance Characterization and Modeling of Electrodes for Biomedical Applications,” Transactions on Biomedical Engineering, 2005.

    Google Scholar 

  68. R. C. Gesteland, B. Howland, J. Y. Lettvin, and W. H. Pitts, “Comments on Microelectrodes,” Proceedings of the Institute of Radio Engineers, vol. 47, pp. 1856-1862, 1959.

    Google Scholar 

  69. J. J. Pancrazio, J. P. Whelan, D. A. Borkholder, W. Ma, and D. A. Stenger, “Development and Application of Cell-Based Biosensors,” Annals of Biomedical Engineering, vol. 27, pp. 687-711, 1999.

    Article  Google Scholar 

  70. L. Berdondini, P. D. van der Wal, O. Guenat, N. F. de Rooij, M. Koudelka- Hep, P. Seitz, R. Kaufmann, P. Metzler, N. Blanc, and S. Rohr, “High-density electrode array for imaging in vitro electrophysiological activity,” Biosens Bioelectron, vol. 21, pp. 167-174, 2005.

    Article  Google Scholar 

  71. F. Heer, W. Franks, A. Blau, S. Taschini, C. Ziegler, A. Hierlemann, and H. Baltes, “CMOS microelectrode array for the monitoring of electrogenic cells,” Biosensors & Bioelectronics, vol. 20, pp. 358-366, 2004.

    Article  Google Scholar 

  72. J. D. Weiland, D. J. Anderson, and M. S. Humayun, “In vitro electrical prop-erties for iridium oxide versus titanium nitride stimulating electrodes,” IEEE Trans Biomed Eng, vol. 49, pp. 1574-1579, 2002.

    Article  Google Scholar 

  73. A. J. Bard and L. R. Faulkner, Electrochemical methods fundamentals and applications, 2nd ed. New York: Wiley, 2001.

    Google Scholar 

  74. R. W. De Boer and A. Van Oosterom, “Electrical properties of platinum electrodes: impedance measurements and time-domain analysis,” Medical & Biological Engineering & Computing, vol. 16, pp. 1-10, 1978.

    Article  Google Scholar 

  75. B. Onaral and H. P. Schwan, “Linear and nonlinear properties of platinum electrode polarisation. III. Equivalence of frequency- and time-domain behaviour,” Medical & Biological Engineering & Computing, vol. 23, pp. 28-32, 1985.

    Article  Google Scholar 

  76. E. Barsoukov, Impedance spectroscopy theory, experiment, and applications, 2nd ed. Hoboken, N.J.: Wiley-Interscience, 2005.

    Google Scholar 

  77. M. Merz and P. Fromherz, “Silicon chip interfaced with a geometrically de- fined net of snail neurons,” Advanced Functional Materials, vol. 15, pp. 739-744, 2005.

    Article  Google Scholar 

  78. C. Sprossler, M. Denyer, S. Britland, W. Knoll, and A. Offenhausser, “Electrical recordings from rat cardiac muscle cells using field-effect transistors,” Physical Review E, vol. 60, pp. 2171-2176, 1999.

    Article  Google Scholar 

  79. A. Offenhausser and W. Knoll, “Cell-transistor hybrid systems and their potential applications,” Trends in Biotechnology, vol. 19, pp. 62-66, 2001.

    Article  Google Scholar 

  80. W. Baumann, E. Schreiber, G. Krause, and S. Stüwe, “Multiparametric neurosensor microchip,” presented at Proceedings Eurosensors XVI, Prag, 2002.

    Google Scholar 

  81. U. Egert, B. Schlosshauer, S. Fennrich, W. Nisch, M. Fejtl, T. Knott, T. Muller, and H. Hammerle, “A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays,” Brain Research Protocols, vol. 2, pp. 229-242, 1998.

    Article  Google Scholar 

  82. R. Ehret, W. Baumann, M. Brischwein, M. Lehmann, T. Henning, I. Freund, S. Drechsler, U. Friedrich, M. L. Hubert, E. Motrescu, A. Kob, H. Palzer, H. Grothe, and B. Wolf, “Multiparametric microsensor chips for screening applications,” Fresenius J Anal Chem, vol. 369, pp. 30-35, 2001.

    Article  Google Scholar 

  83. M. Lehmann, W. Baumann, M. Brischwein, R. Ehret, M. Kraus, A. Schwinde, M. Bitzenhofer, I. Freund, and B. Wolf, “Non-invasive measurement of cell membrane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical applications,” Biosensors & Bioelectronics, vol. 15, pp. 117-124, 2000.

    Article  Google Scholar 

  84. R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, and B. Wolf, “On- line control of cellular adhesion with impedance measurements using inter-digitated electrode structures,” Med Biol Eng Comput, vol. 36, pp. 365-370, 1998.

    Article  Google Scholar 

  85. K. H. Gilchrist, V. N. Barker, L. E. Fletcher, B. D. DeBusschere, P. Ghanouni, L. Giovangrandi, and G. T. A. Kovacs, “General purpose, field-portable cell-based biosensor platform,” Biosensors & Bioelectronics, vol. 16, pp. 557-564, 2001.

    Article  Google Scholar 

  86. R. H. Olsson, 3rd, M. N. Gulari, and K. D. Wise, “Silicon neural recording arrays with on-chip electronics for in vivo data acquisition,” Proc. IEEE-EMBS Int. Conf. Microtechnology Medicine and Biology, pp. 237-240, 2002.

    Google Scholar 

  87. T. Akin, K. Najafi, and R. M. Bradley, “A Wireless Implantable Multichannel Digital Neural Recording System for a Micromachined Sieve Electrode,” Solid State Circuits, vol. 33, pp. 109-118, 1998.

    Article  Google Scholar 

  88. R. R. Harrison and C. Charles, “A Low-Power Low-Noise {CMOS} Amplifier for Neural Recording Applications,” Solid State Circuits, vol. 38, pp. 958-965, 2003.

    Article  Google Scholar 

  89. Y. Papananos, T. Georgantas, and Y. Tsividis, “Design considerations and implementation of very low frequencycontinuous-time CMOS monolithic filters,” IEE Proceedings on Circuits, Devices and Systems, vol. 144, pp. 68-74, 1997.

    Article  Google Scholar 

  90. T. Delbruck and C. A. Mead, “Adaptive photoreceptor with wide dynamic range,” Proceedings of ISCAS, vol. 4, pp. 339-342, 1994.

    Google Scholar 

  91. J. J. F. Rijns,“CMOS Low-Distortion High-Frequency Variable-Gain Amplifier “ Solid State Circuits, vol. 31, pp. 1029-1034, 1996.

    Google Scholar 

  92. K. Martin, L. Ozcolak, and Y. S. Lee, “Differential Switched-Capacitor Amplifier “ Solid State Circuits, vol. 22, pp. 104-106, 1987.

    Google Scholar 

  93. J. B. Bates and Y. T. Chu, “Electrode-electrolyte interface impedance: experi- ments and model,” Annals of Biomedical Engineering, vol. 20, pp. 349-362, 1992.

    Article  Google Scholar 

  94. X. Huang, D. Nguyen, D. W. Greve, and M. M. Domach, “Simulation of Microelectrode Impedance Changes Due to Cell Growth “IEEE Sensors, vol. 4, pp. 576-583, 2004.

    Google Scholar 

  95. S. Hafizovic, F. Heer, T. Ugniwenko, A. Blau, C. Ziegler, and A. Hierlemann, “System Integration of a CMOS-based Microelectrode Array for Interaction with Neuronal Cultures,” J Neurosci Methods, vol. submitted, 2006.

    Google Scholar 

  96. M. S. Lewicki, “A review of methods for spike sorting: the detection and classification of neural action potentials,” Network-Computation in Neural Systems, vol. 9, pp. R53-R78, 1998.

    Article  MATH  Google Scholar 

  97. V. Hamburger and H. L. Hamilton, “A series of normal stages in the develop-ment of the chick embryo,” J. Morph., vol. 88, pp. 49-92, 1951.

    Article  Google Scholar 

  98. U. Frey, F. Heer, R. Pedron, F. Greve, S. Hafizovic, K. U. Kirstein, and A. Hierlemann, “11’000 Electrode-, 126 Channel-CMOS Microelectrode Array for Electrogenic Cells,” Proc IEEE MEMS, in press, 2007.

    Google Scholar 

  99. FDA, “ICH S7B Guideline: The Nonclinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals.,” RockvilleMD 20857-0001, USA: U. S. Food and Drug Administration, 2004.

    Google Scholar 

  100. T. Stieglitz and M. Gross, “Flexible BIOMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems,” Sensors and Actuators B (Chemical), vol. 83, pp. 8-14, 2002.

    Article  Google Scholar 

  101. M. A. Nicolelis, “Brain-machine interfaces to restore motor function and probe neural circuits,” Nat Rev Neurosci, vol. 4, pp. 417-422, 2003.

    Article  Google Scholar 

  102. E. Zrenner, “Will retinal implants restore vision?,” Science, vol. 295, pp. 1022-1025, 2002.

    Article  Google Scholar 

  103. G. E. Loeb, “Cochlear prosthetics,” Annu Rev Neurosci, vol. 13, pp. 357-371, 1990.

    Article  Google Scholar 

  104. J. P. Rauschecker and R. V. Shannon, “Sending sound to the brain,” Science, vol. 295, pp. 1025-1029, 2002.

    Article  Google Scholar 

  105. A. Sen, P. Dunnmon, S. A. Henderson, R. D. Gerard, and K. R. Chien, “Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen,” J Biol Chem, vol. 263, pp. 19132-19136, 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Heer, F., Hierlemann, A. (2007). Integrated Microelectrode Arrays. In: Lee, H., Westervelt, R.M., Ham, D. (eds) CMOS Biotechnology. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68913-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68913-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36836-8

  • Online ISBN: 978-0-387-68913-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics