Integrated Microelectrode Arrays

  • Flavio Heer
  • Andreas Hierlemann
Part of the Series on Integrated Circuits and Systems book series (ICIR)


Electrode Array Complementary Metal Oxide Semiconductor Corner Frequency Solid State Circuit Extracellular Recording 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Y. Jimbo, T. Tateno, and H. P. C. Robinson, “Simultaneous induction of path-way-specific potentiation and depression in networks of cortical neurons,” Biophysical Journal, vol. 76, pp. 670-678, 1999.CrossRefGoogle Scholar
  2. [2]
    S. Marom and G. Shahaf, “Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy,” Quarterly Reviews of Biophysics, vol. 35, pp. 63-87, 2002.CrossRefGoogle Scholar
  3. [3]
    G. Shahaf and S. Marom, “Learning in networks of cortical neurons,” Journal of Neuroscience, vol. 21, pp. 8782-8788, 2001.Google Scholar
  4. [4]
    M. E. Ruaro, P. Bonifazi, V. Torre, “Towards the neurocomputer: image pro- cessing and pattern recognition with neuronal cultures,” IEEE Transactions on Biomedical Engineering, 2005.Google Scholar
  5. [5]
    D. A. Wagenaar, Z. Nadasdy, and S. M. Potter, “Persistent dynamic attractors in activity patterns of cultured neuronal networks,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 73, p. 051907, 2006.Google Scholar
  6. [6]
    G. Gross, B. K. Rhoades, H. M. E. Azzazy, and W. Ming Chi, “The use of neuronal networks on multielectrode arrays as biosensors,” Biosensors & Bioelectronics, vol. 10, pp. 553-567, 1995.CrossRefGoogle Scholar
  7. [7]
    J. J. Pancrazio, P. P. Bey, Jr., D. S. Cuttino, J. K. Kusel, D. A. Borkholder, K. M. Shaffer, G. T. A. Kovacs, and D. A. Stenger, “Portable cell-based biosensor system for toxin detection,” Sensors and Actuators B (Chemical), vol. B53, pp. 179-185, 1998.Google Scholar
  8. [8]
    A. Stett, U. Egert, E. Guenther, F. Hofmann, T. Meyer, W. Nisch, and H. Haemmerle, “Biological application of microelectrode arrays in drug discov-ery and basic research,” Anal Bioanal Chem, vol. 377, pp. 486-495, 2003.CrossRefGoogle Scholar
  9. [9]
    T. Meyer, C. Leisgen, B. Gonser, and E. Gunther, “QT-screen: high-through-put cardiac safety pharmacology by extracellular electrophysiology on pri-mary cardiac myocytes,” Assay Drug Dev Technol, vol. 2, pp. 507-514, 2004.CrossRefGoogle Scholar
  10. [10]
    U. Egert, D. Heck, and A. Aertsen, “Two-dimensional monitoring of spiking networks in acute brain slices,” Exp Brain Res, vol. 142, pp. 268-274, 2002.CrossRefGoogle Scholar
  11. [11]
    M. Hutzler, A. Lambacher, B. Eversmann, M. Jenkner, R. Thewes, and P. Fromherz, “High-resolution multi-transistor array recording of electrical field potentials in cultured brain slices,” J Neurophysiol, 2006.Google Scholar
  12. [12]
    E. Neher and B. Sakmann, “Single-channel currents recorded from mem-brane of denervated frog muscle fibres,” Nature, vol. 260, pp. 799-802, 1976.CrossRefGoogle Scholar
  13. [13]
    K. Cole, “Dynamic electrical characteristics of the squid axon membrane,” Arch. Sci. physiol., vol. 3, pp. 253-258, 1949.Google Scholar
  14. [14]
    P. Fromherz, “Electrical interfacing of nerve cells and semiconductor chips,” Chemphyschem, vol. 3, pp. 276-284, 2002.CrossRefGoogle Scholar
  15. [15]
    G. T. A. Kovacs, “Electronic sensors with living cellular components,” Proceedings of IEEE, vol. 91, pp. 915-929, 2003.CrossRefGoogle Scholar
  16. [16]
    K. D. Wise, D. J. Anderson, J. F. Hetke, D. R. Kipke, and K. Najafi, “Wireless implantable microsystems: high-density electronic interfaces to the nervous system,” Proceedings of the IEEE, vol. 92, pp. 76-97, 2004.CrossRefGoogle Scholar
  17. [17]
    R. H. Olsson, 3rd, D. L. Buhl, A. M. Sirota, G. Buzsaki, and K. D. Wise, “Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays,” IEEE Trans Biomed Eng, vol. 52, pp. 1303-11, 2005.CrossRefGoogle Scholar
  18. [18]
    A. G. Kleber and Y. Rudy, “Basic mechanisms of cardiac impulse propaga- tion and associated arrhythmias,” Physiol. Rev., vol. 84, pp. 431-488, 2003.CrossRefGoogle Scholar
  19. [19]
    W. L. C. Rutten, “Selective electrical interfaces with the nervous system,” Annual Review of Biomedical Engineering, vol. 4, pp. 407-452, 2002.CrossRefGoogle Scholar
  20. [20]
    Y. Jimbo and H. P. Robinson, “Propagation of spontaneous synchronized activity in cortical slice cultures recorded by planar electrode arrays,” Bioelectrochemistry, vol. 51, pp. 107-15, 2000.CrossRefGoogle Scholar
  21. [21]
    J. van Pelt, P. S. Wolters, M. A. Corner, W. L. Rutten, and G. J. Ramakers, “Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks,” IEEE Trans Biomed Eng, vol. 51, pp. 2051-2062, 2004.CrossRefGoogle Scholar
  22. [22]
    S. I. Morefield, E. W. Keefer, K. D. Chapman, and G. W. Gross, “Drug evalu- ations using neuronal networks cultured on microelectrode arrays,” Biosens Bioelectron, vol. 15, pp. 383-396, 2000.CrossRefGoogle Scholar
  23. [23]
    J. J. Pancrazio, S. A. Gray, Y. S. Shubin, N. Kulagina, D. S. Cuttino, K. M. Shaffer, K. Eisemann, A. Curran, B. Zim, G. W. Gross, and T. J. O’Shaughnessy, “A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection,” Biosensors & Bioelectronics, vol. 18, pp. 1339-1347, 2003.CrossRefGoogle Scholar
  24. [24]
    B. D. DeBusschere and G. T. A. Kovacs, “Portable cell-based biosensor sys- tem using integrated CMOS cell-cartridges,” Biosensors-&-Bioelectronics, vol. 16, pp. 543-556, 2001.CrossRefGoogle Scholar
  25. [25]
    M. Taketani, Advances in network electrophysiology using multi-electrode arrays. New York: Springer, 2006.Google Scholar
  26. [26]
    B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell Mol Neurobiol, vol. 25, pp. 245-282, 2005.CrossRefGoogle Scholar
  27. [27]
    Z. A. Peterlin, J. Kozloski, B. Q. Mao, A. Tsiola, and R. Yuste, “Optical prob- ing of neuronal circuits with calcium indicators,” Proc Natl Acad Sci U S A, vol. 97, pp. 3619-3624, 2000.CrossRefGoogle Scholar
  28. [28]
    A. L. Obaid, L. M. Loew, J. P. Wuskell, and B. M. Salzberg, “Novel naph- thylstyryl-pyridium potentiometric dyes offer advantages for neural network analysis,” J Neurosci Methods, vol. 134, pp. 179-190, 2004.CrossRefGoogle Scholar
  29. [29]
    M. Voelker and P. Fromherz, “Signal transmission from individual mamma- lian nerve cell to field-effect transistor,” SMALL, vol. 1, pp. 206-210, 2005.CrossRefGoogle Scholar
  30. [30]
    M. Jenkner, B. Muller, and P. Fromherz, “Interfacing a silicon chip to pairs of snail neurons connected by electrical synapses,” Biological Cybernetics, vol. 84, pp. 239-249, 2001.CrossRefGoogle Scholar
  31. [31]
    M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud, “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,” Journal of Neuroscience Methods, vol. 114, pp. 135-148, 2002.CrossRefGoogle Scholar
  32. [32]
    Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, and H. P. Robinson, “A system for MEA-based multisite stimulation,” IEEE Trans Biomed Eng, vol. 50, pp. 241-248, 2003.CrossRefGoogle Scholar
  33. [33]
    M. P. Maher, J. Pine, J. Wright, and T. Yu Chong, “The neurochip: A new multielectrode device for stimulating and recording from cultured neurons,” Journal of Neuroscience Methods, vol. 87, pp. 45-56, 1999.CrossRefGoogle Scholar
  34. [34]
    S. Martinoia, P. Massobrio, M. Bove, and G. Massobrio, “Cultured neurons coupled to microelectrode arrays: circuit models, simulations and experi-mental data,” IEEE Trans Biomed Eng, vol. 51, pp. 859-864, 2004.CrossRefGoogle Scholar
  35. [35]
    B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl, P. Fromherz, M. Merz, M. Brenner, M. Schreiter, R. Gabl, K. Plehnert, M. Steinhauser, G. Eckstein, D. Schmitt-Landsiedel, and R. Thewes, “A 128 x 128 CMOS biosensor array for extracellular recording of neural activity,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2306-2317, 2003.CrossRefGoogle Scholar
  36. [36]
    H. F. Lodish, Molecular cell biology, Third ed. New York: Scientific American Books, 1995.Google Scholar
  37. [37]
    D. Johnston, S. Wu, Foundations of Cellular Neurophysiology. London: The MIT Press, 1995.Google Scholar
  38. [38]
    E. R. Kandel, J. H. Schwartz, T. M. Jessell, Principles of Neural Science, Fourth ed. London: McGraw-Hill, 2000.Google Scholar
  39. [39]
    A. L. Hodgkin and A. F. Huxley, “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve,” Journal of Physiology, vol. 117, pp. 500-544, 1952.Google Scholar
  40. [40]
    A. G. Kleber and Y. Rudy, “Basic mechanisms of cardiac impulse propaga- tion and associated arrhythmias,” Physiol Rev, vol. 84, pp. 431-488, 2004.CrossRefGoogle Scholar
  41. [41]
    R. Caton, “The electric currents of the brain,” Br. Med. J., vol. 2, p. 278, 1875.Google Scholar
  42. [42]
    K. D. Wise and J. B. Angeli, “A Microprobe with Integrated Amplifiers for Neurophysiology “ ISSCC, Proc. of pp. 100-101, 1971.Google Scholar
  43. [43]
    C. A. Thomas, P. A. Springer, G. E. Loeb, Y. Berwald-Netter, L. M. Okun, “A miniature microelectrode array to monitor the bioelectric activity of cultured cells,” Experimental Cell Research, vol. 74, pp. 61-66, 1972.CrossRefGoogle Scholar
  44. [44]
    M. Jenkner, M. Tartagni, A. Hierlemann, and R. Thewes, “Cell-Based CMOS Sensor and Actuator Arrays,” Solid State Circuits, vol. 39, pp. 2431-2437, 2004.CrossRefGoogle Scholar
  45. [45]
    G. W. Gross, W. Y. Wen, and J. W. Lin, “Transparent Indium Tin Oxide Electrode Patterns for Extracellular, Multisite Recording in Neuronal Cultures,” Journal of Neuroscience Methods, vol. 15, pp. 243-252, 1985.CrossRefGoogle Scholar
  46. [46]
    V. Bucher, M. Graf, M. Steizle, and W. Nisch, “Low-impedance thin-film polycrystalline silicon microelectrodes for extracellular stimulation and re-cording,” Biosensors-&-Bioelectronics, vol. 14, pp. 639-649, 1999.CrossRefGoogle Scholar
  47. [47]
    Y. Jimbo, A. Kawana, P. Parodi, and V. Torre, “The dynamics of a neuro-nal culture of dissociated cortical neurons of neonatal rats,” Biological Cybernetics, vol. 83, pp. 1-20, 2000.CrossRefGoogle Scholar
  48. [48]
    D. A. Wagenaar, R. Madhavan, J. Pine, and S. M. Potter, “Controlling burst- ing in cortical cultures with closed-loop multi-electrode stimulation,” J Neurosci, vol. 25, pp. 680-688, 2005.CrossRefGoogle Scholar
  49. [49]
    M. Chiappalone, A. Vato, M. B. Tedesco, M. Marcoli, F. Davide, and S. Martinoia, “Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications,” Biosensors & Bioelectronics, vol. 18, pp. 627-634, 2003.CrossRefGoogle Scholar
  50. [50]
    E. W. Keefer, A. Gramowski, D. A. Stenger, J. J. Pancrazio, and G. W. Gross, “Characterization of acute neurotoxic effects of trimethylolpropane phosphate via neuronal network biosensors,” Biosensors & Bioelectronics, vol. 16, pp. 513-525, 2001.CrossRefGoogle Scholar
  51. [51]
    P. Bonifazi and P. Fromherz, “Silicon chip for electronic communication be- tween nerve cells by non-invasive interfacing and analog-digital processing,” Advanced Materials, vol. 14, pp. 1190-1193, 2002.CrossRefGoogle Scholar
  52. [52]
    D. A. Wagenaar and S. M. Potter, “A versatile all-channel stimulator for elec- trode arrays, with real-time control,” J Neural Eng, vol. 1, pp. 39-45, 2004.CrossRefGoogle Scholar
  53. [53]
    G. W. Gross, B. K. Rhoades, D. L. Reust, and F. U. Schwalm, “Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes,” Journal-of-Neuroscience-Methods, vol. 50, pp. 131-143, 1993.CrossRefGoogle Scholar
  54. [54]
    J. R. Buitenweg, W. L. C. Rutten, and E. Marani, “Extracellular stimula-tion window explained by a geometry-based model of the Neuron-electrode contact,” IEEE-Transactions-on-Biomedical-Engineering, vol. 49, pp. 1591-1599, 2002.CrossRefGoogle Scholar
  55. [55]
    C. C. McIntyre and W. M. Grill, “Extracellular stimulation of central neu- rons: influence of stimulus waveform and frequency on neuronal output,” J Neurophysiol, vol. 88, pp. 1592-1604, 2002.Google Scholar
  56. [56]
    Y. Jimbo and A. Kawana, “Electrical-Stimulation and Recording from Cultured Neurons Using a Planar Electrode Array,” Bioelectrochemistry and Bioenergetics, vol. 29, pp. 193-204, 1992.CrossRefGoogle Scholar
  57. [57]
    F. Heer, S. Hafizovic, T. Ugniwenko, W. Franks, A. Blau, C. Ziegler, J. C. Perriard, and A. Hierlemann, “Single-chip microelectronic system to interface with living cells,” Biosens Bioelectron, in press, 2006.Google Scholar
  58. [58]
    J. W. Gnadt, S. D. Echols, A. Yildirim, H. Zhang, and K. Paul, “Spectral cancellation of microstimulation artifact for simultaneous neural recording in situ,” IEEE Trans Biomed Eng, vol. 50, pp. 1129-1135, 2003.CrossRefGoogle Scholar
  59. [59]
    D. A. Wagenaar and S. M. Potter, “Real-time multi-channel stimulus artifact suppression by local curve fitting,” J Neurosci Methods, vol. 120, pp. 113-120, 2002.CrossRefGoogle Scholar
  60. [60]
    F. Heer, S. Hafizovic, W. Franks, A. Blau, C. Ziegler, and A. Hierlemann, “CMOS Microelectrode Array for Bidirectional Interaction with Neuronal Networks,” IEEE Journal of Solid-State Circuits, vol. 41, 2006.Google Scholar
  61. [61]
    P. Fromherz, “Extracellular recording with transistors and the distribution of ionic conductances in a cell membrane,” European Biophysics Journal with Biophysics Letters, vol. 28, pp. 254-258, 1999.Google Scholar
  62. [62]
    D. Braun and M. P. J. Fromherz, “Fluorescence Interferometry of Neuronal Cell Adhesion on Microstructured Silicon,” Phys. Rev. Lett., vol. 81, pp. 5241-5244, 1998.CrossRefGoogle Scholar
  63. [63]
    J. R. Buitenweg, W. L. Rutten, and E. Marani, “Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a micro-electrode,” IEEE Trans Biomed Eng, vol. 50, pp. 501-509, 2003.CrossRefGoogle Scholar
  64. [64]
    R. Weis and P. Fromherz, “Frequency dependent signal transfer in neuron transistors,” Physical Review E (Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics), vol. 55, pp. 877-889, 1997.Google Scholar
  65. [65]
    S. Vassanelli and P. Fromherz, “Transistor records of rat hippocampal neu- rons,” European Journal of Neuroscience, vol. 10, p. 2838, 1998.Google Scholar
  66. [66]
    R. Schatzthauer and P. Fromherz, “Neuron-silicon junction with voltage- gated ionic currents,” Eur J Neurosci, vol. 10, pp. 1956-1962, 1998.CrossRefGoogle Scholar
  67. [67]
    W. Franks, Schenker, I., Schmutz, P., Hierlemann, A., “Impedance Characterization and Modeling of Electrodes for Biomedical Applications,” Transactions on Biomedical Engineering, 2005.Google Scholar
  68. [68]
    R. C. Gesteland, B. Howland, J. Y. Lettvin, and W. H. Pitts, “Comments on Microelectrodes,” Proceedings of the Institute of Radio Engineers, vol. 47, pp. 1856-1862, 1959.Google Scholar
  69. [69]
    J. J. Pancrazio, J. P. Whelan, D. A. Borkholder, W. Ma, and D. A. Stenger, “Development and Application of Cell-Based Biosensors,” Annals of Biomedical Engineering, vol. 27, pp. 687-711, 1999.CrossRefGoogle Scholar
  70. [70]
    L. Berdondini, P. D. van der Wal, O. Guenat, N. F. de Rooij, M. Koudelka- Hep, P. Seitz, R. Kaufmann, P. Metzler, N. Blanc, and S. Rohr, “High-density electrode array for imaging in vitro electrophysiological activity,” Biosens Bioelectron, vol. 21, pp. 167-174, 2005.CrossRefGoogle Scholar
  71. [71]
    F. Heer, W. Franks, A. Blau, S. Taschini, C. Ziegler, A. Hierlemann, and H. Baltes, “CMOS microelectrode array for the monitoring of electrogenic cells,” Biosensors & Bioelectronics, vol. 20, pp. 358-366, 2004.CrossRefGoogle Scholar
  72. [72]
    J. D. Weiland, D. J. Anderson, and M. S. Humayun, “In vitro electrical prop-erties for iridium oxide versus titanium nitride stimulating electrodes,” IEEE Trans Biomed Eng, vol. 49, pp. 1574-1579, 2002.CrossRefGoogle Scholar
  73. [73]
    A. J. Bard and L. R. Faulkner, Electrochemical methods fundamentals and applications, 2nd ed. New York: Wiley, 2001.Google Scholar
  74. [74]
    R. W. De Boer and A. Van Oosterom, “Electrical properties of platinum electrodes: impedance measurements and time-domain analysis,” Medical & Biological Engineering & Computing, vol. 16, pp. 1-10, 1978.CrossRefGoogle Scholar
  75. [75]
    B. Onaral and H. P. Schwan, “Linear and nonlinear properties of platinum electrode polarisation. III. Equivalence of frequency- and time-domain behaviour,” Medical & Biological Engineering & Computing, vol. 23, pp. 28-32, 1985.CrossRefGoogle Scholar
  76. [76]
    E. Barsoukov, Impedance spectroscopy theory, experiment, and applications, 2nd ed. Hoboken, N.J.: Wiley-Interscience, 2005.Google Scholar
  77. [77]
    M. Merz and P. Fromherz, “Silicon chip interfaced with a geometrically de- fined net of snail neurons,” Advanced Functional Materials, vol. 15, pp. 739-744, 2005.CrossRefGoogle Scholar
  78. [78]
    C. Sprossler, M. Denyer, S. Britland, W. Knoll, and A. Offenhausser, “Electrical recordings from rat cardiac muscle cells using field-effect transistors,” Physical Review E, vol. 60, pp. 2171-2176, 1999.CrossRefGoogle Scholar
  79. [79]
    A. Offenhausser and W. Knoll, “Cell-transistor hybrid systems and their potential applications,” Trends in Biotechnology, vol. 19, pp. 62-66, 2001.CrossRefGoogle Scholar
  80. [80]
    W. Baumann, E. Schreiber, G. Krause, and S. Stüwe, “Multiparametric neurosensor microchip,” presented at Proceedings Eurosensors XVI, Prag, 2002.Google Scholar
  81. [81]
    U. Egert, B. Schlosshauer, S. Fennrich, W. Nisch, M. Fejtl, T. Knott, T. Muller, and H. Hammerle, “A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays,” Brain Research Protocols, vol. 2, pp. 229-242, 1998.CrossRefGoogle Scholar
  82. [82]
    R. Ehret, W. Baumann, M. Brischwein, M. Lehmann, T. Henning, I. Freund, S. Drechsler, U. Friedrich, M. L. Hubert, E. Motrescu, A. Kob, H. Palzer, H. Grothe, and B. Wolf, “Multiparametric microsensor chips for screening applications,” Fresenius J Anal Chem, vol. 369, pp. 30-35, 2001.CrossRefGoogle Scholar
  83. [83]
    M. Lehmann, W. Baumann, M. Brischwein, R. Ehret, M. Kraus, A. Schwinde, M. Bitzenhofer, I. Freund, and B. Wolf, “Non-invasive measurement of cell membrane associated proton gradients by ion-sensitive field effect transistor arrays for microphysiological and bioelectronical applications,” Biosensors & Bioelectronics, vol. 15, pp. 117-124, 2000.CrossRefGoogle Scholar
  84. [84]
    R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, and B. Wolf, “On- line control of cellular adhesion with impedance measurements using inter-digitated electrode structures,” Med Biol Eng Comput, vol. 36, pp. 365-370, 1998.CrossRefGoogle Scholar
  85. [85]
    K. H. Gilchrist, V. N. Barker, L. E. Fletcher, B. D. DeBusschere, P. Ghanouni, L. Giovangrandi, and G. T. A. Kovacs, “General purpose, field-portable cell-based biosensor platform,” Biosensors & Bioelectronics, vol. 16, pp. 557-564, 2001.CrossRefGoogle Scholar
  86. [86]
    R. H. Olsson, 3rd, M. N. Gulari, and K. D. Wise, “Silicon neural recording arrays with on-chip electronics for in vivo data acquisition,” Proc. IEEE-EMBS Int. Conf. Microtechnology Medicine and Biology, pp. 237-240, 2002.Google Scholar
  87. [87]
    T. Akin, K. Najafi, and R. M. Bradley, “A Wireless Implantable Multichannel Digital Neural Recording System for a Micromachined Sieve Electrode,” Solid State Circuits, vol. 33, pp. 109-118, 1998.CrossRefGoogle Scholar
  88. [88]
    R. R. Harrison and C. Charles, “A Low-Power Low-Noise {CMOS} Amplifier for Neural Recording Applications,” Solid State Circuits, vol. 38, pp. 958-965, 2003.CrossRefGoogle Scholar
  89. [89]
    Y. Papananos, T. Georgantas, and Y. Tsividis, “Design considerations and implementation of very low frequencycontinuous-time CMOS monolithic filters,” IEE Proceedings on Circuits, Devices and Systems, vol. 144, pp. 68-74, 1997.CrossRefGoogle Scholar
  90. [90]
    T. Delbruck and C. A. Mead, “Adaptive photoreceptor with wide dynamic range,” Proceedings of ISCAS, vol. 4, pp. 339-342, 1994.Google Scholar
  91. [91]
    J. J. F. Rijns,“CMOS Low-Distortion High-Frequency Variable-Gain Amplifier “ Solid State Circuits, vol. 31, pp. 1029-1034, 1996.Google Scholar
  92. [92]
    K. Martin, L. Ozcolak, and Y. S. Lee, “Differential Switched-Capacitor Amplifier “ Solid State Circuits, vol. 22, pp. 104-106, 1987.Google Scholar
  93. [93]
    J. B. Bates and Y. T. Chu, “Electrode-electrolyte interface impedance: experi- ments and model,” Annals of Biomedical Engineering, vol. 20, pp. 349-362, 1992.CrossRefGoogle Scholar
  94. [94]
    X. Huang, D. Nguyen, D. W. Greve, and M. M. Domach, “Simulation of Microelectrode Impedance Changes Due to Cell Growth “IEEE Sensors, vol. 4, pp. 576-583, 2004.Google Scholar
  95. [95]
    S. Hafizovic, F. Heer, T. Ugniwenko, A. Blau, C. Ziegler, and A. Hierlemann, “System Integration of a CMOS-based Microelectrode Array for Interaction with Neuronal Cultures,” J Neurosci Methods, vol. submitted, 2006.Google Scholar
  96. [96]
    M. S. Lewicki, “A review of methods for spike sorting: the detection and classification of neural action potentials,” Network-Computation in Neural Systems, vol. 9, pp. R53-R78, 1998.MATHCrossRefGoogle Scholar
  97. [97]
    V. Hamburger and H. L. Hamilton, “A series of normal stages in the develop-ment of the chick embryo,” J. Morph., vol. 88, pp. 49-92, 1951.CrossRefGoogle Scholar
  98. [98]
    U. Frey, F. Heer, R. Pedron, F. Greve, S. Hafizovic, K. U. Kirstein, and A. Hierlemann, “11’000 Electrode-, 126 Channel-CMOS Microelectrode Array for Electrogenic Cells,” Proc IEEE MEMS, in press, 2007.Google Scholar
  99. [99]
    FDA, “ICH S7B Guideline: The Nonclinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals.,” RockvilleMD 20857-0001, USA: U. S. Food and Drug Administration, 2004.Google Scholar
  100. [100]
    T. Stieglitz and M. Gross, “Flexible BIOMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems,” Sensors and Actuators B (Chemical), vol. 83, pp. 8-14, 2002.CrossRefGoogle Scholar
  101. [101]
    M. A. Nicolelis, “Brain-machine interfaces to restore motor function and probe neural circuits,” Nat Rev Neurosci, vol. 4, pp. 417-422, 2003.CrossRefGoogle Scholar
  102. [102]
    E. Zrenner, “Will retinal implants restore vision?,” Science, vol. 295, pp. 1022-1025, 2002.CrossRefGoogle Scholar
  103. [103]
    G. E. Loeb, “Cochlear prosthetics,” Annu Rev Neurosci, vol. 13, pp. 357-371, 1990.CrossRefGoogle Scholar
  104. [104]
    J. P. Rauschecker and R. V. Shannon, “Sending sound to the brain,” Science, vol. 295, pp. 1025-1029, 2002.CrossRefGoogle Scholar
  105. [105]
    A. Sen, P. Dunnmon, S. A. Henderson, R. D. Gerard, and K. R. Chien, “Terminally differentiated neonatal rat myocardial cells proliferate and maintain specific differentiated functions following expression of SV40 large T antigen,” J Biol Chem, vol. 263, pp. 19132-19136, 1988.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Flavio Heer
  • Andreas Hierlemann

There are no affiliations available

Personalised recommendations