Advertisement

CMOS Electronic Microarrays in Diagnostics and Nanotechnology

  • Dalibor Hodko
  • Paul Swanson
  • Dietrich Dehlinger
  • Benjamin Sullivan
  • Michael J. Heller
Part of the Series on Integrated Circuits and Systems book series (ICIR)

Keywords

Test Site Nanoparticle Layer National Nanotechnology Initiative Array Device Molecular Biological Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Nature Genetics Supplement, vol. 21, pp. 1-60, 1999.Google Scholar
  2. [2]
    Chee M, Yang R, Hubbell E, Berno A, Huang X, Stern D, Winkler J, Lockhart D, Morris M, Fodor S, “Accessing Genetic Information with High-Density DNA Arrays,” Science, vol. 274, pp. 610-614, 1996.CrossRefGoogle Scholar
  3. [3]
    Pease A, Solas D, Sullivan E, Cronin M, Holmes C, Fodor S, “Light-Generated Oligonucleotide Arrays for Rapid DNA Sequence Analysis,” PNAS, vol. 99, pp. 5022-5026, 1994.CrossRefGoogle Scholar
  4. [4]
    Lipshutz RJ, Morris D, Chee M, Hubbell E, Kozal MJ, Shah N, Shen N, Yang R, Fodor SP , “Using oligonucleotide probe arrays to access genetic diver-sity,” Biotechniques, vol. 19, pp. 442-447, 1995.Google Scholar
  5. [5]
    Taton A, Mirkin C, Letsinger R, “Scanometric DNA Array Detection with Nanoparticle Probes,” Science, vol. 289, pp. 1757-1760, 2000.CrossRefGoogle Scholar
  6. [6]
    Sosnowski R, Tu E, Butler W, O’connel J, Heller M, “Rapid Determination of Single Base Mismatch Mutations in DNA Hybrids by Direct Electric Field Control,” PNAS, vol. 94, pp. 1119-1123, 1997.CrossRefGoogle Scholar
  7. [7]
    Harrington CA, Rosenow C, “Monitoring gene expression using DNA microarrays,” J Curr Opin Microbiol, vol. 3, pp. 285-291, 2000.CrossRefGoogle Scholar
  8. [8]
    Radtkey R, Feng L, Muralhidar M, Duhon M, Cantor D, DiPierro D, Fallon S, Tu E, McElfresh K, Nerenberg M, Sosnowski R, “Rapid, High Fidelity Analysis of Simple Sequence Repeats on an Electronically Active DNA Microchip,” Nucleic Acids Research, vol. 28, pp. 1-6, 2000.CrossRefGoogle Scholar
  9. [9]
    Gilles P, Wu D, Foster C, Dillon P, Chancock S, “Single Nucleotide Polymorphic Discrimination by and Electronic Dot Blot Assay on Semiconductor Microchips,” Nature Biotechnology, vol. 17, pp. 365-370, 1999.CrossRefGoogle Scholar
  10. [10]
  11. [11]
    Belgrader P, Smith JK, Weedn VW, Northrup MA.,”Rapid PCR for identity testing using a battery-powered miniature thermal cycler,” J Forens Sci, vol. 43, p. 315, 1998.Google Scholar
  12. [12]
    Ibrahim MS, Lofts RS, Jahrling PB, Henchal EA, Weedn VW, Northrup MA, Belgrader P, “Real-Time Microchip PCR for Detecting Single-Base Differences in Viral and Human DNA,” Anal Chem, vol. 70, p. 2013, 1998.CrossRefGoogle Scholar
  13. [13]
    K. Petersen, “DNA-chip technologies Part 2: State-of-the-art and competing technologies” IVD Technology, Nov./Dec., p. 35, 1998.Google Scholar
  14. [14]
    Clinical Laboratory News, February, 1998.Google Scholar
  15. [15]
    Christel L. A., K. Petersen, W. McMillan and M.A. Northrup, “Rapid, auto- mated nucleic acid probe assays using silicon microstructures for nucleic acid concentration,” J Biomech Eng - Trans ASME, vol. 121, pp. 22-27, 1999.CrossRefGoogle Scholar
  16. [16]
    Hodko D, “DNA Microarrays in Portable Diagnostic Systems”, at “Miniaturization in Biomedicine” Conference, University of California, Irvine, October 30, 2003.Google Scholar
  17. [17]
    Heller ML, “An active microelectronics device for multiplex DNA analysis,” IEEE Engineering In Medicine and Biology, March/April, p. 100, 1996.Google Scholar
  18. [18]
    Heller MJ, Tu E, US Patent No. 5,605,662 “Active Programmable Electronic Devices for Molecular Biological Analysis and Diagnostics”, February 25, 1997.Google Scholar
  19. [19]
    Ackley DE, Swanson PD, Graham SO, Mather EL, LeClair TL, Butler WF, US Patent No. 6,726,880 “Advanced Active Electronic Devices for Molecular Biological Analysis and Diagnostics and Methods of Manufacturing Same”, April 27, 2004.Google Scholar
  20. [20]
    Kricka, LJ, “Revolution on a square centimeter,” Nature Biotechnology, vol. 16, pp. 513-514, 1998.CrossRefGoogle Scholar
  21. [21]
    Cheng J, Sheldon EL, Wu L, Uribe A. Gerrue LO, Carrino, J, Heller, MJ, O’Connell J, “Electric field controlled preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips”, Nature Biotechnology, vol. 16, pp. 541-546, 1998.CrossRefGoogle Scholar
  22. [22]
    Kassegne K, Reese H, Hodko D, Yang JM, Sarkar K, Smolko D, Swanson P, Raymond DE, Heller MJ, Madou MJ, “Numerical modeling of transport and accumulation of DNA on electronically active biochips,” Sensors and Actuators B, vol. 94, p. 81, 2003.CrossRefGoogle Scholar
  23. [23]
    Huang Y, Mather EL, Bell JL, Madou MJ, “MEMS-based sample prepara- tion for molecular diagnostics,” Anal Bioanal Chem, vol. 372, p. 49, 2002.CrossRefGoogle Scholar
  24. [24]
    Westin L, Xu X, Miller C, Wang L, Edman CF, Nerenberg M, “Anchored mul-tiplex amplification on a microelectronic chip array,” Nature Biotechnology, vol. 18, p. 199, 2000.CrossRefGoogle Scholar
  25. [25]
    Yang JM, Bell J, Huang Y, Tirado M, Thomas T, Forster AH, Haigis RW, Swanson PD, Wallace RB, Martinsons B, Krihak M, “An integrated, stacked microlaboratory for biological agent detection with DNA and immunoassays,” Biosen Bioelect, vol. 17, p. 605, 2002.CrossRefGoogle Scholar
  26. [26]
    Heller MJ, Cable JM, Esener SC, US Patent No. 6,652,808 “Methods for the Electronic Assembly and Fabrication of Devices”, November 25, 2003.Google Scholar
  27. [27]
    Edman CF, Heller MJ, Gurtner C, Formosa R, US Patent No. 6,706,473 “Systems and Devices for Photoelectronic Transport and Hybridization of Oligonucleotides”, March 16, 2004.Google Scholar
  28. [28]
    Dehlinger D, Sullivan B, Esener S, Swanson P, Hodko D, and Heller MJ, “Reconfigurable CMOS Electronic Microarray System for the Assisted Self-Assembly of Higher-Order Nanostructures”, in Nanomanufacturing Handbook, Busnaina A Ed. Chapter 5, CRC Press, 2006.Google Scholar
  29. [29]
    Sullivan B, Dehlinger D, Zlatanovic, Esener S, Heller MJ, “Electrophoretically Actuated Nanoscale Optoentropic Transduction Mechanisms,” NSTI Nanotech 2006, vol. 2, pp. 209-212, 2006.Google Scholar
  30. [30]
    Dehlinger D, Sullivan B, Esener S, Swanson P, Hodko D, and Heller MJ, “Next Generation Microelectronic Array Devices”, in Handbook of Nanotechnology, Bhushan, B Ed. Part B, Chapter 14, Springer, 2006.Google Scholar
  31. [31]
    Heller MJ, Ozkan CS and Ozkan M, “Electric Field Devices for Assisted Assembly of DNA Nanocomponents and Other Nanofabrication Applications”, in BioMEMS and Biomedical Nanotechnology VI, Ferrari M Ed., vol. 2, Chapter 6, Springer, 2006.Google Scholar
  32. [32]
    Heller MJ, Dehlinger DA Sullivan BD, “Parallel Assisted Assembly of Multilayer DNA and Protein Nanoparticle Structures Using a CMOS Electronic Array”, DNA-Based Nanoscale Integration Symposium, W. Fritzsche (ed), American Institute of Physics, NY, pp. 73-81, 2006Google Scholar
  33. [33]
    Swanson P, Gelbart R, Atlas E, Yang L, Grogan T, Butler WF, Ackley DE, Sheldon E, “A fully multiplexed CMOS biochip for DNA Analysis,” Sensors and Actuators B, vol. 64, pp. 22-30, 2000.CrossRefGoogle Scholar
  34. [34]
    Svrcek V, Slaoui A, Muller JC, “Silicon nanocrystals as light converter for solar cells,” Thin Solid Films, vol. 451, pp. 384-388, 2004.CrossRefGoogle Scholar
  35. [35]
    Mwaura JK, Pinto MR, Witker D, Ananthakrishnan N, Schanze KS, Reynolds JR, “Photovoltaic cells based on sequentially adsorbed multilayers of conjugated poly(p-phenylene ethynylene)s and a water-soluble fullerene derivative,” Langmuir, vol. 22, pp. 10119-10126, 2005.CrossRefGoogle Scholar
  36. [36]
    Kapur VK, Bansal A, Le P, Asensio O, “Non-vacuum processing of CuIn1- xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks,” Thin Solid Films, vol. 431, pp. 53-57, 2003.CrossRefGoogle Scholar
  37. [37]
    Kim DW, Choi HS, Lee C, Blumstein A, Kang Y, “Investigation on methanol permeability of Nafion modified by self-assembled clay-nanocomposite multilayers,” Electrochimica Acta, vol. 50, pp. 659-662, 2004.CrossRefGoogle Scholar
  38. [38]
    Hacker V, Wallnofer E, Baumgartner W, Schaffer T, Besenhard JO, Schrottner H, Schmied M, “Carbon nanofiber-based active layers for fuel cell cathodes -preparation and characterization,” Electrochemistry Communications, vol. 7, pp. 377-382, 2005.CrossRefGoogle Scholar
  39. [39]
    Catledge SA, Fries MD, Vohra YK, Lacefield WR, Lemons JE, Woodard S, Venugopalan R, “Nanostructured Ceramics for Biomedical Implants,” Nanosci Nanotechno, vol. 2, pp. 293-312, 2002.CrossRefGoogle Scholar
  40. [40]
    Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E, “Nanocrystal Targeting In Vivo,” PNAS, vol. 99, pp. 12617-12621, 2002.CrossRefGoogle Scholar
  41. [41]
    Gao J, Gao T, Sailor MJ, “A porous silicon vapor sensor based on laser interferometry,” Appl Phys Lett, vol. 77, pp. 901-903, 2000.CrossRefGoogle Scholar
  42. [42]
    Dancil K-PS, Greiner DP, Sailor MJ., “A Porous Silicon Optical Bio- sensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface,” J Am Chem Soc, vol. 121, pp. 7925-7930, 1999.CrossRefGoogle Scholar
  43. [43]
    Chan S, Fauchet PM, Li Y, Rothberg LJ, Miller BL, “Porous Silicon Micro- cavities for Biosensing Applications,” Phys Stat Sol A, vol. 182. pp. 541-546, 2000.CrossRefGoogle Scholar
  44. [44]
    Crommelin DJ, Strom G, Jiskoot W, Stenkes R, Mastrobattista E, Hennick WE, “Nanotechnological approaches for the delivery of macromolecules,” Control Release, vol. 87, pp. 81-88, 2003.CrossRefGoogle Scholar
  45. [45]
    Prime KL and Whitesides GM, “Self-Assembled Organic Monolayers: Model Systems for Studying Adsorption of Proteins at Surfaces,” Science, vol. 252, pp. 1164-1167, 1991.CrossRefGoogle Scholar
  46. [46]
    Kim B, Tripp SL, and Wei A, “Self-organization of large gold nanoparticle arrays,” J Am Chem Soc, vol. 123, pp. 7955-7956, 2001.CrossRefGoogle Scholar
  47. [47]
    Bowden N, Terfort A, Carbeck J, and Whitesides GM, “Self-assembly of mesoscale objects into ordered two-dimensional arrays,” Science, vol. 276, pp. 233-235, 1997.CrossRefGoogle Scholar
  48. [48]
    Fink J, Kiely CJ, Bethell D, and Schiffrin DJ, “Self-organization of nano- sized gold particles,” Chem Mater, vol. 10, pp. 922-926, 1998.CrossRefGoogle Scholar
  49. [49]
    Lee S-W, Mao C, Flynn CE, and Belcher AM, “Ordering of quantum dots using genetically engineered viruses,” Science, vol. 296, pp. 892-895, 2002.CrossRefGoogle Scholar
  50. [50]
    Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature, vol. 382, pp. 607-609, 1996.CrossRefGoogle Scholar
  51. [51]
    Decher, D, Schlenoff, JB, Multilayer Thin Films-Sequential Assembly of Nanocomposite Materials, Wiley-VCH Verlag, Weinheim, 2003.Google Scholar
  52. [52]
    Goddard, Brenner, Lyashevski, Lafrate, Handbook of Nanoscience, Engineering and Technology, CRC Press, Boca Raton, 2003.Google Scholar
  53. [53]
    Wanunu M, Popovitz-Biro R, Cohen H, Vaskevich A, Rubinstein I, “Coordination-based gold nanoparticle layers,” J Am Chem Soc, vol. 127, pp. 9207-9215, 2005.CrossRefGoogle Scholar
  54. [54]
    Artyukhin AB, Bakajin O, Stroeve P, Noy A, “Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates,” Langmuir, vol. 20, pp. 1442-1448, 2004.CrossRefGoogle Scholar
  55. [55]
    Yuan JJ, Zhou SX, You B, Wu LM, “Organic pigment particles coated with colloidal nano-silica particles via layer-by-layer assembly,” Chem Mater, vol. 17, pp. 3587-3594, 2005.CrossRefGoogle Scholar
  56. [56]
    Ma N, Zhang HY, Song B, Wang ZQ, Zhang X, “Polymer micelles as build- ing blocks for layer-by-layer assembly: An approach for incorporation and controlled release of water-insoluble dyes,” Chem Mater, vol. 17, pp. 5065-5069, 2005.CrossRefGoogle Scholar
  57. [57]
    Zapotoczny S, Golonka M, Nowakowska M, “Novel photoactive polymeric multilayer films formed via electrostatic self-assembly,” Macromolecular Rapid Communications, vol. 26, pp. 1049-1054, 2005.CrossRefGoogle Scholar
  58. [58]
    Hammond PT, “Form and function in multilayer assembly: New applications at the nanoscale,” Advanced Materials, vol. 16, pp. 1271-1293, 2004.CrossRefGoogle Scholar
  59. [59]
    Jacobs HO, Campbell SA, Steward MG, “Approaching nanoxerography: The use of electrostatic forces to position nanoparticles with 100 nm scale resolution,” Advanced Materials, vol. 14, pp. 1553-1557, 2002.CrossRefGoogle Scholar
  60. [60]
    Barry CR, Gu J, Jacobs HO, “Charging process and coulomb-force-directed printing of nanoparticles with sub-100-nm lateral resolution,” Nano Lett, vol. 5, pp. 2078-2084, 2005.CrossRefGoogle Scholar
  61. [61]
    Mardilovich P, Kornilovitch P, “Electrochemical fabrication of nanodimen- sional multilayer films,” Nano Lett, vol. 5, pp. 1899-1904, 2005.CrossRefGoogle Scholar
  62. [62]
    Allred DB, Sarikaya M, Baneyx F, Schwartz DT, “Electrochemical nano- fabrication using crystalline protein masks,” Nano Lett, vol. 5, pp. 609-613, 2005.CrossRefGoogle Scholar
  63. [63]
    Tsai DH, Kim SH, Corrigan TD, Phaneuf RJ, Zachariah MR, “Electrostatic- directed deposition of nanoparticles on a field generating substrate,” Nanotechnology, vol. 16, pp. 1856-1862, 2005.CrossRefGoogle Scholar
  64. [64]
    Lumsdon SO, Kaler EW, Velev OD, “Two-dimensional crystallization of mi- crospheres by a coplanar AC electric field,” Langmuir, vol. 20, pp. 2108-2116, 2004.CrossRefGoogle Scholar
  65. [65]
    Hua F, Shi J, Lvov Y, Cui T, “Patterning of layer-by-layer self-assembled multiple types of nanoparticle thin films by lithographic technique,” Nano Lett, vol. 2, pp. 1219-1222, 2002.CrossRefGoogle Scholar
  66. [66]
    Ko HH, Jiang CY, Tsukruk VV, “Encapsulating nanoparticle arrays into layer-by-layer multilayers by capillary transfer lithography,” Chemistry of Materials, vol. 17, pp. 5489-5497, 2005.CrossRefGoogle Scholar
  67. [67]
    Small Wonders, Endless Frontiers: Review of the National Nanotechnology Initiative, National Research Council, 2002.Google Scholar
  68. [68]
    The National Nanotechnology Initiative - Strategic Plan, National Science and Technology Council, December 2004.Google Scholar
  69. [69]
    Heller MJ, Tu E, Martinsons R, Anderson RR, Gurtner C, Forster A, Sosnowski R, “Active microelectronic array systems for DNA hybridization, genotyping, pharmacogenomics and Nanofabrication Applications,” in Integrated Microfabricated Devices, Chapter 10, 2002.Google Scholar
  70. [70]
    Huang Y, Sunghae J, Duhon M, Heller MJ, Wallace B, Xu X, “Dielectro- phoretic separation and gene expression profiling on microelectronic chip arrays,” Anal Chem, vol. 74, pp. 3362-3371, 2002.CrossRefGoogle Scholar
  71. [71]
    Esener SC, Hartmann D, Heller MJ, and Cable JM, “DNA Assisted Micro- Assembly: A Heterogeneous Integration Technology For Optoelectronics,” Proc. SPIE Critical Reviews of Optical Science and Technology, Hetero-geneous Integration, Ed. A. Hussain, CR70, Chapter 7, 1998.Google Scholar
  72. [72]
    Gurtner C, Edman CF, Formosa RE, Heller MJ, “Photoelectrophoretic Transport and Hybridization of DNA on Unpatterned Silicon Substrates,” J Am Chem Soc, vol. 122, pp. 8589-8594, 2000.CrossRefGoogle Scholar
  73. [73]
    Huang Y, Ewalt KL, Tirado M, Haigis R, Forster A, Ackley D, Heller MJ, O’Connell JP, Krihak M, “Electric manipulation of bioparticles and mac romolecules on microfabricated electrodes,” Anal Chem, vol. 73, pp. 1549-1559, 2001.CrossRefGoogle Scholar
  74. [74]
    Edman CF, Gurtner C, Formosa RE, Coleman JJ, Heller MJ, “Electric-Field- Directed Pick-and-Place Assembly,” HDI, vol. 10, pp. 30-35, 2000.Google Scholar
  75. [75]
    Edman CF, Swint RB, Gurthner C, Formosa RE, Roh SD, Lee KE, Swanson PD, Ackley DE, Colman JJ, Heller MJ, “Electric Field Directed Assembly of an InGaAs LED onto Silicon Circuitry,” IEEE Photonics Tech. Letters, vol. 12, pp. 1198-1200, 2000.CrossRefGoogle Scholar
  76. [76]
    Daniel M. Hartmann, David Schwartz, Gene Tu, Mike Heller, Sadik C. Esener, “Selective DNA attachment of particles to substrates,” Journal of Materials Research, vol. 17, pp. 473-478, 2002.CrossRefGoogle Scholar
  77. [77]
    US # 6,569,382 “Methods and Apparatus for the Electronic Homogeneous Assembly and Fabrication of Devices”, Issued May 27, 2003.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Dalibor Hodko
    • 1
  • Paul Swanson
    • 2
  • Dietrich Dehlinger
    • 3
  • Benjamin Sullivan
    • 4
  • Michael J. Heller
    • 5
  1. 1.NanogenSan Diego
  2. 2.NanogenSan Diego
  3. 3.Department of Electrical and Computer EngineeringUniversity of CaliforniaSan Diego
  4. 4.Department of BioengineeringUniversity of CaliforniaSan Diego
  5. 5.Department of BioengineeringUniversity of CaliforniaSan Diego

Personalised recommendations