CMOS-based Magnetic Cell Manipulation System

  • Yong Liu
  • Hakho Lee
  • Donhee Ham
  • Robert M. Westervelt
Part of the Series on Integrated Circuits and Systems book series (ICIR)


Hybrid System Magnetic Bead Biological Cell Chip Surface Cell Manipulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. A. Kaul, N. I. Syed, and P. Fromherz, “Neuron-semiconductor chip with chemical synapse between identified neurons,” Physical Review Letters, vol. 92, p. 038102, 2004.CrossRefGoogle Scholar
  2. [2]
    P. Fromherz, “Joining ionics and electronics: semiconductor chips with ion channels, nerve cells, and brain tissue,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, vol. 1, pp. 76-77, 2005.Google Scholar
  3. [3]
    A. Hassibi and T. H. Lee, “A programmable electrochemical biosensor array in 0.18 µm standard CMOS,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, vol. 1, pp. 564-565, 2005.Google Scholar
  4. [4]
    B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl, P. Fromherz, M. Merz, M. Brenner, M. Schreiter, R. Gabl, K. Plehnert, M. Steinhauser, G. Eckstein, D. Schmitt-Landsiedel, and R. Thewes, “A 128 × 128 CMOS biosensor array for extracellular recording of neural activ-ity,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2306-2317, 2003.CrossRefGoogle Scholar
  5. [5]
    P. Cailat, M. Belleville, F. Clerc, C. Massit, J. H. Wuorinen, and J. H. Wuorinen, “Active CMOS biochips: an electro-addressed DNA probe,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, vol. 1, pp. 272-273, 1998.Google Scholar
  6. [6]
    N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, and R. Guerrieri, “A CMOS chip for individual cell manipulation and detec-tion,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2297-2305, 2003.CrossRefGoogle Scholar
  7. [7]
    C. Lee, “Control and manipulation of magnetic nanoparticles and cold atoms using micro-electromagnets,” Ph.D thesis, Harvard University, 2002.Google Scholar
  8. [8]
    H. Lee, A. M. Purdon, and R. M. Westervelt, “Manipulation of biological cells using a microelectromagnet matrix,” Applied Physics Letters, vol. 85, pp. 1063-1065, 2004.CrossRefGoogle Scholar
  9. [9]
    U. Häfeli, Scientific and clinical applications of magnetic carriers. New York: Plenum Press, 1997.Google Scholar
  10. [10]
    J. Bauer, Cell electrophoresis. Boca Raton: CRC Press, 1994.Google Scholar
  11. [11]
    H. A. Pohl, Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. Cambridge; New York: Cambridge University Press, 1978.Google Scholar
  12. [12]
    A. Radbruch, B. Mechtold, A. Thiel, S. Miltenyi, and E. Pfluger, “High-gra-dient magnetic cell sorting,” Methods Cell Biol, vol. 42 Pt B, pp. 387-403, 1994.CrossRefGoogle Scholar
  13. [13]
    J. Ugelstad, P. Stenstad, L. Kilaas, W. S. Prestvik, R. Herje, A. Berge, and E. Hornes, “Monodisperse magnetic polymer particles. New biochemical and biomedical applications,” Blood Purif, vol. 11, pp. 349-369, 1993.CrossRefGoogle Scholar
  14. [14]
    G. T. Rado and H. Suhl, Magnetism vol. 3. New York: Academic Press, 1963.Google Scholar
  15. [15]
    W. F. Brown, “Thermal Fluctuations of a Single-Domain Particle,” Physical Review, vol. 130, pp. 1677-1686, 1963.CrossRefGoogle Scholar
  16. [16]
    C. S. Lee, H. Lee, and R. M. Westervelt, “Microelectromagnets for the control of magnetic nanoparticles,” Applied Physics Letters, vol. 79, pp. 3308-3310, 2001.CrossRefGoogle Scholar
  17. [17]
    J. Happel and H. Brenner, Low Reynolds number hydrodynamics, with spe- cial applications to particulate media. Englewood Cliffs, N.J.: PrenticeHall, 1965.Google Scholar
  18. [18]
    M. D. Bale, S. J. Danielson, J. L. Daiss, K. E. Goppert, and R. C. Sutton, “Influence of Copolymer Composition on Protein Adsorption and Structural Rearrangements at the Polymer Surface,” Journal of Colloid and Interface Science, vol. 132, pp. 176-187, 1989.CrossRefGoogle Scholar
  19. [19]
    L. A. Cantarero, J. E. Butler, and J. W. Osborne, “The adsorptive characteris- tics of proteins for polystyrene and their significance in solid-phase imunoassays,” Anal Biochem, vol. 105, pp. 375-382, 1980.CrossRefGoogle Scholar
  20. [20]
    C. Deen, E. Claassen, K. Gerritse, N. D. Zegers, and W. J. Boersma, “A novel carbodiimide coupling method for synthetic peptides. Enhanced anti-peptide antibody responses,” J Immunol Methods, vol. 129, pp. 119-125, 1990.CrossRefGoogle Scholar
  21. [21]
    H. Heitzmann and F. M. Richards, “Use of the avidin-biotin complex for specific staining of biological membranes in electron microscopy,” Proc Natl Acad Sci U S A, vol. 71, pp. 3537-3541, 1974.CrossRefGoogle Scholar
  22. [22]
    R. P. Haugland and W. W. You, “Coupling of antibodies with biotin,” Methods Mol Biol, vol. 80, pp. 173-183, 1998.CrossRefGoogle Scholar
  23. [23]
    T. Sano and C. R. Cantor, “Intersubunit contacts made by tryptophan 120 with biotin are essential for both strong biotin binding and biotin-induced tighter subunit association of streptavidin,” Proc Natl Acad Sci U S A, vol. 92, pp. 3180-3184, 1995.CrossRefGoogle Scholar
  24. [24]
    H. Lee, Y. Liu, E. Alsberg, D. E. Ingber, and R. M. Westervelt, “An IC/ Microfluidic hybrid microsystem for 2D magnetic manipulation of individual biological cells,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 80-81, 2005.Google Scholar
  25. [25]
    H. Lee, Y. Liu, R. M. Westervelt, and D. Ham, “IC/microfluidic hybrid sys- tem for magnetic manipulation of biological cells,” IEEE Journal of SolidState Circuits, vol. 41, pp. 1471-1480, 2006.CrossRefGoogle Scholar
  26. [26]
    H. Lee, A. M. Purdon, V. Chu, and R. M. Westervelt, “Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays,” Nano Letters, vol. 4, pp. 995-998, 2004.CrossRefGoogle Scholar
  27. [27]
    H. Lee, Y. Liu, D. Ham, and R. M. Westervelt, “Integrated cell manipulation system - CMOS/Microfluidic hybrid,” Lab on a Chip, vol. 7, pp. 331-337, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yong Liu
  • Hakho Lee
    • 1
  • Donhee Ham
    • 2
  • Robert M. Westervelt
    • 3
  1. 1.Center for Molecular Imaging Research Massachusetts General HospitalHarvard Medical SchoolCharlestownUSA
  2. 2.School of Engineering and Applied Sciences Department of PhysicsHarvard UniversityCambridgeUSA
  3. 3.School of Engineering and Applied Sciences Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations