Skip to main content

CMOS-based Magnetic Cell Manipulation System

  • Chapter
CMOS Biotechnology

Part of the book series: Series on Integrated Circuits and Systems ((ICIR))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Kaul, N. I. Syed, and P. Fromherz, “Neuron-semiconductor chip with chemical synapse between identified neurons,” Physical Review Letters, vol. 92, p. 038102, 2004.

    Article  Google Scholar 

  2. P. Fromherz, “Joining ionics and electronics: semiconductor chips with ion channels, nerve cells, and brain tissue,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, vol. 1, pp. 76-77, 2005.

    Google Scholar 

  3. A. Hassibi and T. H. Lee, “A programmable electrochemical biosensor array in 0.18 µm standard CMOS,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, vol. 1, pp. 564-565, 2005.

    Google Scholar 

  4. B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl, P. Fromherz, M. Merz, M. Brenner, M. Schreiter, R. Gabl, K. Plehnert, M. Steinhauser, G. Eckstein, D. Schmitt-Landsiedel, and R. Thewes, “A 128 × 128 CMOS biosensor array for extracellular recording of neural activ-ity,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2306-2317, 2003.

    Article  Google Scholar 

  5. P. Cailat, M. Belleville, F. Clerc, C. Massit, J. H. Wuorinen, and J. H. Wuorinen, “Active CMOS biochips: an electro-addressed DNA probe,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, vol. 1, pp. 272-273, 1998.

    Google Scholar 

  6. N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, and R. Guerrieri, “A CMOS chip for individual cell manipulation and detec-tion,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2297-2305, 2003.

    Article  Google Scholar 

  7. C. Lee, “Control and manipulation of magnetic nanoparticles and cold atoms using micro-electromagnets,” Ph.D thesis, Harvard University, 2002.

    Google Scholar 

  8. H. Lee, A. M. Purdon, and R. M. Westervelt, “Manipulation of biological cells using a microelectromagnet matrix,” Applied Physics Letters, vol. 85, pp. 1063-1065, 2004.

    Article  Google Scholar 

  9. U. Häfeli, Scientific and clinical applications of magnetic carriers. New York: Plenum Press, 1997.

    Google Scholar 

  10. J. Bauer, Cell electrophoresis. Boca Raton: CRC Press, 1994.

    Google Scholar 

  11. H. A. Pohl, Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. Cambridge; New York: Cambridge University Press, 1978.

    Google Scholar 

  12. A. Radbruch, B. Mechtold, A. Thiel, S. Miltenyi, and E. Pfluger, “High-gra-dient magnetic cell sorting,” Methods Cell Biol, vol. 42 Pt B, pp. 387-403, 1994.

    Article  Google Scholar 

  13. J. Ugelstad, P. Stenstad, L. Kilaas, W. S. Prestvik, R. Herje, A. Berge, and E. Hornes, “Monodisperse magnetic polymer particles. New biochemical and biomedical applications,” Blood Purif, vol. 11, pp. 349-369, 1993.

    Article  Google Scholar 

  14. G. T. Rado and H. Suhl, Magnetism vol. 3. New York: Academic Press, 1963.

    Google Scholar 

  15. W. F. Brown, “Thermal Fluctuations of a Single-Domain Particle,” Physical Review, vol. 130, pp. 1677-1686, 1963.

    Article  Google Scholar 

  16. C. S. Lee, H. Lee, and R. M. Westervelt, “Microelectromagnets for the control of magnetic nanoparticles,” Applied Physics Letters, vol. 79, pp. 3308-3310, 2001.

    Article  Google Scholar 

  17. J. Happel and H. Brenner, Low Reynolds number hydrodynamics, with spe- cial applications to particulate media. Englewood Cliffs, N.J.: PrenticeHall, 1965.

    Google Scholar 

  18. M. D. Bale, S. J. Danielson, J. L. Daiss, K. E. Goppert, and R. C. Sutton, “Influence of Copolymer Composition on Protein Adsorption and Structural Rearrangements at the Polymer Surface,” Journal of Colloid and Interface Science, vol. 132, pp. 176-187, 1989.

    Article  Google Scholar 

  19. L. A. Cantarero, J. E. Butler, and J. W. Osborne, “The adsorptive characteris- tics of proteins for polystyrene and their significance in solid-phase imunoassays,” Anal Biochem, vol. 105, pp. 375-382, 1980.

    Article  Google Scholar 

  20. C. Deen, E. Claassen, K. Gerritse, N. D. Zegers, and W. J. Boersma, “A novel carbodiimide coupling method for synthetic peptides. Enhanced anti-peptide antibody responses,” J Immunol Methods, vol. 129, pp. 119-125, 1990.

    Article  Google Scholar 

  21. H. Heitzmann and F. M. Richards, “Use of the avidin-biotin complex for specific staining of biological membranes in electron microscopy,” Proc Natl Acad Sci U S A, vol. 71, pp. 3537-3541, 1974.

    Article  Google Scholar 

  22. R. P. Haugland and W. W. You, “Coupling of antibodies with biotin,” Methods Mol Biol, vol. 80, pp. 173-183, 1998.

    Article  Google Scholar 

  23. T. Sano and C. R. Cantor, “Intersubunit contacts made by tryptophan 120 with biotin are essential for both strong biotin binding and biotin-induced tighter subunit association of streptavidin,” Proc Natl Acad Sci U S A, vol. 92, pp. 3180-3184, 1995.

    Article  Google Scholar 

  24. H. Lee, Y. Liu, E. Alsberg, D. E. Ingber, and R. M. Westervelt, “An IC/ Microfluidic hybrid microsystem for 2D magnetic manipulation of individual biological cells,” IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 80-81, 2005.

    Google Scholar 

  25. H. Lee, Y. Liu, R. M. Westervelt, and D. Ham, “IC/microfluidic hybrid sys- tem for magnetic manipulation of biological cells,” IEEE Journal of SolidState Circuits, vol. 41, pp. 1471-1480, 2006.

    Article  Google Scholar 

  26. H. Lee, A. M. Purdon, V. Chu, and R. M. Westervelt, “Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays,” Nano Letters, vol. 4, pp. 995-998, 2004.

    Article  Google Scholar 

  27. H. Lee, Y. Liu, D. Ham, and R. M. Westervelt, “Integrated cell manipulation system - CMOS/Microfluidic hybrid,” Lab on a Chip, vol. 7, pp. 331-337, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liu, Y., Lee, H., Ham, D., Westervelt, R.M. (2007). CMOS-based Magnetic Cell Manipulation System. In: Lee, H., Westervelt, R.M., Ham, D. (eds) CMOS Biotechnology. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68913-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68913-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36836-8

  • Online ISBN: 978-0-387-68913-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics