CMOS/Microfluidic Hybrid Systems

  • Hakho Lee
  • Donhee Ham
  • Robert M. Westervelt
Part of the Series on Integrated Circuits and Systems book series (ICIR)


Hybrid System Electrical Connection Direct Patterning Chip Surface Polymer Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. S. Kilby, “Invention of the integrated circuit,” IEEE Transactions on Electron Devices, vol. ED-23, pp. 648-654, 1976.CrossRefGoogle Scholar
  2. [2]
    G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, pp. 114-117, 1965.Google Scholar
  3. [3]
    A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” vol. 1, pp. 244-248, 1990.Google Scholar
  4. [4]
    G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, pp. 368-373, 2006.CrossRefGoogle Scholar
  5. [5]
    J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature, vol. 442, pp. 403-411, 2006.CrossRefGoogle Scholar
  6. [6]
    D. J. Harrison, K. Fluri, K. Seiler, F. Zhonghui, C. S. Effenhauser, and A. Manz, “Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip,” Science, vol. 261, pp. 895-897, 1993.CrossRefGoogle Scholar
  7. [7]
    T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integra- tion,” Science, vol. 298, pp. 580-584, 2002.CrossRefGoogle Scholar
  8. [8]
    H. Lee, Y. Liu, E. Alsberg, D. E. Ingber, R. M. Westervelt, and D. Ham, “An IC/microfluidic hybrid microsystem for 2D magnetic manipulation of individual biological cells,” 2005 IEEE International Solid-State Circuits Conference Dig. Tech. Papers, vol. 1, pp. 80-81, 2005.Google Scholar
  9. [9]
    H. Lee, Y. Liu, R. M. Westervelt, and D. Ham, “IC/microfluidic hybrid sys- tem for magnetic manipulation of biological cells,” IEEE Journal of SolidState Circuits, vol. 41, pp. 1471-1480, 2006.CrossRefGoogle Scholar
  10. [10]
    M. Schienle, C. Paulus, A. Frey, F. Hofmann, B. Holzapβ, P. Schindler-Bauer, and R. Thewes, “A fully electronic DNA sensor with 128 positions and inpixel A/D conversion,” IEEE Journal of Solid-State Circuits, vol.39, pp. 2438-2445, 2004.CrossRefGoogle Scholar
  11. [11]
    R. H. Farahi, A. Passian, T. L. Ferrell, and T. Thundat, “Microfluidic manipu- lation via Marangoni forces,” Applied Physics Letters, vol. 85, pp. 4237-4239, 2004.CrossRefGoogle Scholar
  12. [12]
    T. K. Jun and K. Chang-Jin, “Valveless pumping using traversing vapor bub- bles in microchannels,” Journal of Applied Physics, vol. 83, pp. 5658-5664, 1998.CrossRefGoogle Scholar
  13. [13]
    D. L. Huber, R. P. Manginell, M. A. Samara, B. I. Kim, and B. C. Bunker, “Programmed adsorption and release of proteins in a microfluidic device,” Science, vol. 301, pp. 352-354, 2003.CrossRefGoogle Scholar
  14. [14]
    D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature, vol. 442, pp. 381-386, 2006.CrossRefGoogle Scholar
  15. [15]
    A. J. DeMello, “Control and detection of chemical reactions in microfluidic systems,” Nature, vol. 442, pp. 394-402, 2006.CrossRefGoogle Scholar
  16. [16]
    H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small de- vices: microfluidics toward a lab-on-a-chip,” Annual review of fluid mechanics, vol. 36, pp. 381-411, 2004.CrossRefGoogle Scholar
  17. [17]
    T. H. Lee, The design of CMOS radio-frequency integrated circuits. Cambridge, [England] New York: Cambridge University Press, 1998.Google Scholar
  18. [18]
    N.-T. Nguyen and S. T. Wereley, Fundamentals and applications of microflu- idics. Boston, MA: Artech House, 2002.Google Scholar
  19. [19]
    H. Becker and C. Gartner, “Polymer microfabrication methods for microflu- idic analytical applications,” Electrophoresis, vol. 21, pp. 12-26, 2000.CrossRefGoogle Scholar
  20. [20]
    F. E. H . Tay, J. A. van Kan, F. Watt, and W. O. Choong, “A novel micro- machining method for the fabrication of thick-film SU-8 embedded microchannels,” Journal of Micromechanics and Microengineering, vol. 11, pp. 27-32, 2001.CrossRefGoogle Scholar
  21. [21]
    B. E. J. Alderman, C. M. Mann, D. P. Steenson, and J. M. Chamberlain, “Microfabrication of channels using an embedded mask in negative resist,” Journal of Micromechanics and Microengineering, vol. 11, pp. 703-705, 2001.CrossRefGoogle Scholar
  22. [22]
    K. Lee, J. He, R. Clement, S. Massia, and B. Kim, “Biocompatible ben- zocyclobutene (BCB)-based neural implants with micro-fluidic channel,” Biosensors & Bioelectronics, vol. 20, pp. 404-407, 2004.CrossRefGoogle Scholar
  23. [23]
    S. Metz, R. Holzer, and P. Renaud, “Polyimide-based microfluidic devices,” Lab Chip, vol. 1, pp. 29-34, Sep 2001.CrossRefGoogle Scholar
  24. [24]
    M. Agirregabiria, F. J. Blanco, J. Berganzo, M. T. Arroyo, A. Fullaondo, K. Mayora, and J. M. Ruano-Lopez, “Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps,” Lab on a Chip, vol. 5, pp. 545-552, 2005.CrossRefGoogle Scholar
  25. [25]
    H. Lee, Y. Liu, D. Ham, and R. M. Westervelt, “Integrated Cell Manipulation System- CMOS/Microfluidic Hybrid,” Lab on a Chip, DOI:10.1039/ B700373K.Google Scholar
  26. [26]
    Y. N. Xia and G. M. Whitesides, “Soft lithography,” Annual Review of Materials Science, vol. 28, pp. 153-184, 1998.CrossRefGoogle Scholar
  27. [27]
    W. J. Chang, D. Akin, M. Sedlak, M. R. Ladisch, and R. Bashir, “Poly(dimethylsiloxane) (PDMS) and silicon hybrid biochip for bacterial culture,” Biomedical Microdevices, vol. 5, pp. 281-290, 2003.CrossRefGoogle Scholar
  28. [28]
    P. Vulto, N. Glade, L. Altomare, J. Bablet, L. Del Tin, G. Medoro, I. Chartier, A. N. Manaresi, M. Tartagni, and R. Guerrieri, “Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips,” Lab on a Chip, vol. 5, pp. 158-162, 2005.CrossRefGoogle Scholar
  29. [29]
    M. O. Heuschkel, L. Guerin, B. Buisson, D. Bertrand, and P. Renaud, “Buried microchannels in photopolymer for delivering of solutions to neurons in a network,” Sensors and Actuators B, vol. B48, pp. 356-361, 1998.CrossRefGoogle Scholar
  30. [30]
    H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sensors and Actuators A: Physical, vol. 83, pp. 130-135, 2000.CrossRefGoogle Scholar
  31. [31]
    M. Heckele and W. K. Schomburg, “Review on micro molding of thermo- plastic polymers,” Journal of Micromechanics and Microengineering, vol. 14, pp. R1-14, 2004.CrossRefGoogle Scholar
  32. [32]
    M. Worgull, J. F. Hetu, K. K. Kabanemi, and M. Heckele, “Modeling and optimization of the hot embossing process for micro- and nanocomponent fabrication,” Microsystem Technologies, vol. 12, pp. 947-952, 2006.CrossRefGoogle Scholar
  33. [33]
    L. J. Kricka, P. Fortina, N. J. Panaro, P. Wilding, G. Alonso-Amigo, and H. Becker, “Fabrication of plastic microchips by hot embossing,” Lab on a Chip, vol. 2, pp. 1-4, 2002.CrossRefGoogle Scholar
  34. [34]
    W. Ehrfeld, V. Hessel, H. Lowe, C. Schulz, and L. Weber, “Materials of LIGA technology,” Microsystem Technologies, vol. 5, pp. 105-112, 1999.CrossRefGoogle Scholar
  35. [35]
    N. Maluf and K. Williams, Introduction to microelectromechanical systems engineering, 2nd ed. Boston: Artech House, 2004.Google Scholar
  36. [36]
    C. K. Fredrickson and Z. H. Fan, “Macro-to-micro interfaces for microfluidic devices,” Lab Chip, vol. 4, pp. 526-33, Dec 2004.CrossRefGoogle Scholar
  37. [37]
    B. L. Gray, D. Jaeggi, N. J. Mourlas, B. P. van Drieenhuizen, K. R. Williams, N. I. Maluf, and G. T. A. Kovacs, “Novel interconnection technologies for in- tegrated microfluidic systems,” Sensors and Actuators A (Physical), vol. 77, pp. 57-65, 1999.CrossRefGoogle Scholar
  38. [38]
    T. P. Hunt, H. Lee, R. M. Westervelt, “Addressable micropost array for the dielectrophoretic manipulation of particles in fluid,” Applied Physics Letters, vol. 85, pp. 6421-6423, 2004.CrossRefGoogle Scholar
  39. [39]
    J. H. Lau and S.-W. R. Lee, Chip scale package (CSP) : design, materials, processes, and applications. New York: McGraw-Hill, 1999.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Hakho Lee
    • 1
  • Donhee Ham
    • 2
  • Robert M. Westervelt
    • 3
  1. 1.Center for Molecular Imaging Research Massachusetts General HospitalHarvard Medical SchoolCharlestownUSA
  2. 2.School of Engineering and Applied Sciences Department of PhysicsHarvard UniversityCambridgeUSA
  3. 3.School of Engineering and Applied Sciences Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations