Micro- and Nanofluidics for Biological Separations

  • Joshua D. Cross
  • Harold G. Craighead
Part of the Series on Integrated Circuits and Systems book series (ICIR)


Capillary Electrophoresis Electron Beam Lithography Physical Review Letter Separation Channel American Physical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. O. Tegenfeldt, C. Prinz, H. Cao, R. L. Huang, R. H. Austin, S. Y. Chou, E. C. Cox, and J. C. Sturm, “Micro- and nanofluidics for DNA analysis,” Analytical and Bioanalytical Chemistry, vol. 378, pp. 1678-1692, 2004.CrossRefGoogle Scholar
  2. [2]
    P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in micro-fluidic channels - the Holy Grail in mu TAS?,” Analytical and Bioanalytical Chemistry, vol. 382, pp. 1771-1782, 2005.CrossRefGoogle Scholar
  3. [3]
    A. Manz, N. Graber, and H. M. Widmer, “Miniaturized Total Chemical- Analysis Systems - a Novel Concept for Chemical Sensing,” Sensors and Actuators B-Chemical, vol. 1, pp. 244-248, 1990.CrossRefGoogle Scholar
  4. [4]
  5. [5]
    D. L. Nelson and M. M. Cox, “Lehninger Principles of Biochemistry.” New York: Worth, 2000, pp. 325-359.Google Scholar
  6. [6]
    D. L. Nelson and M. M. Cox, “Lehninger Principles of Biochemistry.” New York: Worth, 2000, pp. 115-153.Google Scholar
  7. [7]
    C. F. Chou, R. H. Austin, O. Bakajin, J. O. Tegenfeldt, J. A. Castelino, S. S. Chan, E. C. Cox, H. Craighead, N. Darnton, T. Duke, J. Y. Han, and S. Turner, “Sorting biomolecules with microdevices,” Electrophoresis, vol. 21, pp. 81-90, 2000.CrossRefGoogle Scholar
  8. [8]
    N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto, H. Nakanishi, Y. Horiike, and Y. Baba, “Separation of long DNA molecules by quartz nanopil-lar chips under a direct current electric field,” Anal Chem, vol. 76, pp. 15-22, 2004.CrossRefGoogle Scholar
  9. [9]
    D. L. Nelson and M. M. Cox, “Lehninger Principles of Biochemistry.” New York: Worth, 2000, pp. 3-18.Google Scholar
  10. [10]
    D. L. Nelson and M. M. Cox, “Lehninger Principles of Biochemistry.” New York: Worth, 2000, pp. 1020-1068.Google Scholar
  11. [11]
    D. L. Nelson and M. M. Cox, “Lehninger Principles of Biochemistry.” New York: Worth, 2000, p. 196.Google Scholar
  12. [12]
    D. L. Nelson and M. M. Cox, “Lehninger Principles of Biochemistry.” New York: Worth, 2000, pp. 1132-1133.Google Scholar
  13. [13]
    J. D. Watson and F. H. C. Crick, “Molecular Structure of Nucleic Acids - a Structure for Deoxyribose Nucleic Acid,” Nature, vol. 171, pp. 737-738, 1953.CrossRefGoogle Scholar
  14. [14]
    M. Doi, “Introduction to Polymer Physics.” Oxford: Oxford University Press, 2001, pp. 1-19.Google Scholar
  15. [15]
    C. R. Calladine and H. R. Drew, “Understanding DNA: The Molecule and How it Works,” 2nd ed. San Diego: Academic Press, Inc., 1997, pp. 1-15.Google Scholar
  16. [16]
    C. G. Baumann, S. B. Smith, V. A. Bloomfield, and C. Bustamante, “Ionic effects on the elasticity of single DNA molecules,” Proc Natl Acad Sci U S A, vol. 94, pp. 6185-90, 1997.CrossRefGoogle Scholar
  17. [17]
    N. C. Stellwagen, C. Gelfi, and P. G. Righetti, “The free solution mobility of DNA,” Biopolymers, vol. 42, pp. 687-703, 1997.CrossRefGoogle Scholar
  18. [18]
    C. Heller, G. W. Slater, P. Mayer, N. Dovichi, D. Pinto, J. L. Viovy, and G. Drouin, “Free-solution electrophoresis of DNA,” Journal of Chromatography A, vol. 806, pp. 113-121, 1998.CrossRefGoogle Scholar
  19. [19]
    J. Noolandi, “A New Concept for Sequencing DNA by Capillary Electrophoresis,” Electrophoresis, vol. 13, pp. 394-395, 1992.CrossRefGoogle Scholar
  20. [20]
    G. W. Slater, C. Desrulsseaux, S. J. Hubert, J. F. Mercier, J. Labrie, J. Boileau, F. Tessier, and M. P. Pepin, “Theory of DNA electrophoresis: A look at some current challenges,” Electrophoresis, vol. 21, pp. 3873-3887, 2000.CrossRefGoogle Scholar
  21. [21]
    J. R. Webster, M. A. Burns, D. T. Burke, and C. H. Mastrangelo, “Monolithic capillary electrophoresis device with integrated fluorescence detector,” Analytical Chemistry, vol. 73, pp. 1622-1626, 2001.CrossRefGoogle Scholar
  22. [22]
    R. Riehn and R. H. Austin, “Wetting micro- and nanofluidic devices using supercritical water,” Analytical Chemistry, vol. 78, pp. 5933-5934, 2006.CrossRefGoogle Scholar
  23. [23]
    S. Pennathur and J. G. Santiago, “Electrokinetic transport in nanochannels. 2. Experiments,” Anal Chem, vol. 77, pp. 6782-9, 2005.CrossRefGoogle Scholar
  24. [24]
    S. Pennathur and J. G. Santiago, “Electrokinetic transport in nanochannels. 1. Theory,” Anal Chem, vol. 77, pp. 6772-81, 2005.CrossRefGoogle Scholar
  25. [25]
    J. Han and H. G. Craighead, “Entropic trapping and sieving of long DNA mol- ecules in a nanofluidic channel,” Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 17, pp. 2142-2147, 1999.CrossRefGoogle Scholar
  26. [26]
    H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a lab-on-a-chip,” Annual Review of Fluid Mechanics, vol. 36, pp. 381-411, 2004.CrossRefGoogle Scholar
  27. [27]
    R. F. Probstein,“Physicochemical Hydrodynamics: An Introduction,” pp. 185-198, 1989.Google Scholar
  28. [28]
    M. Cabodi, Y. F. Chen, S. W. Turner, H. G. Craighead, and R. H. Austin, “Continuous separation of biomolecules by the laterally asymmetric diffusion array with out-of-plane sample injection,” Electrophoresis, vol. 23, pp. 3496-503, 2002.CrossRefGoogle Scholar
  29. [29]
    D. J. Harrison, A. Manz, Z. H. Fan, H. Ludi, and H. M. Widmer, “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip,” Analytical Chemistry, vol. 64, pp. 1926-1932, 1992.CrossRefGoogle Scholar
  30. [30]
    S. C. Jacobson, R. Hergenroder, L. B. Koutny, R. J. Warmack, and J. M. Ramsey, “Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices,” Analytical Chemistry, vol. 66, pp. 1107-1113, 1994.CrossRefGoogle Scholar
  31. [31]
    D. J. Harrison, K. Fluri, K. Seiler, Z. H. Fan, C. S. Effenhauser, and A. Manz, “Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical-Analysis System on a Chip,” Science, vol. 261, pp. 895-897, 1993.CrossRefGoogle Scholar
  32. [32]
    Y. F. Cheng and N. J. Dovichi, “Subattomole amino acid analysis by capillary zone electrophoresis and laser-induced fluorescence,” Science, vol. 242, pp. 562-4, 1988.CrossRefGoogle Scholar
  33. [33]
    S. C. Jacobson, A. W. Moore, and J. M. Ramsey, “Fused Quartz Substrates for Microchip Electrophoresis,” Analytical Chemistry, vol. 67, pp. 2059-2063, 1995.CrossRefGoogle Scholar
  34. [34]
    D. F. Swaile and M. J. Sepaniak, “Determination of Metal-Ions by Capillary Zone Electrophoresis with on-Column Chelation Using 8-Hydroxyquinoline-5-Sulfonic Acid,” Analytical Chemistry, vol. 63, pp. 179-184, 1991.CrossRefGoogle Scholar
  35. [35]
    M. N. Albargheuthi and A. E. Barron, “Polymeric matrices for DNA se-quencing by capillary electrophoresis,” Electrophoresis, vol. 21, pp. 4096-4111, 2000.Google Scholar
  36. [36]
    C. S. Effenhauser, A. Paulus, A. Manz, and H. M. Widmer, “High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device,” Analytical Chemistry, vol.66, pp.2949-2953, 1994.CrossRefGoogle Scholar
  37. [37]
    A. T. Woolley and R. A. Mathies, “Ultra-high-speed DNA fragment separa- tions using microfabricated capillary array electrophoresis chips,” Proc Natl Acad Sci U S A, vol. 91, pp. 11348-52, 1994.CrossRefGoogle Scholar
  38. [38]
    A. T. Woolley and R. A. Mathies, “Ultra-High-Speed DNA-Sequencing Using Capillary Electrophoresis Chips,” Analytical Chemistry, vol. 67, pp. 3676-3680, 1995.CrossRefGoogle Scholar
  39. [39]
    C. Lifesciences, “The Application Notebook.”Google Scholar
  40. [40]
    A. Technologies, “Agilent 2100 bioanalyzer.”Google Scholar
  41. [41]
    W. D. Volkmuth and R. H. Austin, “DNA electrophoresis in microlithograph- ic arrays,” Nature, vol. 358, pp. 600-2, 1992.CrossRefGoogle Scholar
  42. [42]
    T. A. Duke, R. H. Austin, E. C. Cox, and S. S. Chan, “Pulsed-field electro- phoresis in microlithographic arrays,” Electrophoresis, vol. 17, pp. 1075-9, 1996.CrossRefGoogle Scholar
  43. [43]
    S. W. Turner, A. M. Perez, A. Lopez, and H. G. Craighead, “Monolithic nano- fluid sieving structures for DNA manipulation,” Journal of Vacuum Science & Technology B, vol. 16, pp. 3835-3840, 1998.CrossRefGoogle Scholar
  44. [44]
    S. W. Turner, M. Cabodi, and H. G. Craighead, “Confinement-induced en- tropic recoil of single DNA molecules in a nanofluidic structure,” Phys Rev Lett, vol. 88, pp. 128103, 2002.Google Scholar
  45. [45]
    M. Cabodi, S. W. Turner, and H. G. Craighead, “Entropic recoil separation of long DNA molecules,” Anal Chem, vol. 74, pp. 5169-74, 2002.CrossRefGoogle Scholar
  46. [46]
    J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, “Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels,” Biophys J, vol. 90, pp. 4538-45, 2006.CrossRefGoogle Scholar
  47. [47]
    C. H. Reccius, J. T. Mannion, J. D. Cross, and H. G. Craighead, “Compression and free expansion of single DNA molecules in nanochannels,” Phys Rev Lett, vol. 95, pp. 268101, 2005.CrossRefGoogle Scholar
  48. [48]
    A. Baumgartner and M. Muthukumar, “A Trapped Polymer-Chain in Random Porous-Media,” Journal of Chemical Physics, vol. 87, pp. 3082-3088, 1987.CrossRefGoogle Scholar
  49. [49]
    M. Muthukumar and A. Baumgartner, “Effects of Entropic Barriers on Polymer Dynamics,” Macromolecules, vol. 22, pp. 1937-1941, 1989.CrossRefGoogle Scholar
  50. [50]
    M. Muthukumar and A. Baumgartner, “Diffusion of a Polymer-Chain in Random-Media,” Macromolecules, vol. 22, pp. 1941-1946, 1989.CrossRefGoogle Scholar
  51. [51]
    G. I. Nixon and G. W. Slater, “Entropic trapping and electrophoretic drift of a polyelectrolyte down a channel with a periodically oscillating width,” Physical Review E, vol. 53, pp. 4969-4980, 1996.CrossRefGoogle Scholar
  52. [52]
    G. W. Slater and S. Y. Wu, “Reptation, Entropic Trapping, Percolation, and Rouse Dynamics of Polymers in Random-Environments,” Physical Review Letters, vol. 75, pp. 164-167, 1995.CrossRefGoogle Scholar
  53. [53]
    L. Liu, P. S. Li, and A. S. Asher, “Crystalline colloidal array of water voids in hydrogels: Direct evidence for entropic trapping of flexible polymers,” Journal of the American Chemical Society, vol. 121, pp. 4040-4046, 1999.CrossRefGoogle Scholar
  54. [54]
    L. Liu, P. S. Li, and S. A. Asher, “Entropic trapping of macromolecules by mesoscopic periodic voids in a polymer hydrogel,” Nature, vol. 397, pp. 141-144, 1999.CrossRefGoogle Scholar
  55. [55]
    J. Rousseau, G. Drouin, and G. W. Slater, “Entropic trapping of DNA during gel electrophoresis: Effect of field intensity and gel concentration,” Physical Review Letters, vol. 79, pp. 1945-1948, 1997.CrossRefGoogle Scholar
  56. [56]
    D. L. Smisek and D. A. Hoagland,“Electrophoresis of Flexible Macro- molecules - Evidence for a New Mode of Transport in Gels,” Science, vol. 248, pp. 1221-1223, 1990.CrossRefGoogle Scholar
  57. [57]
    J. Han and H. G. Craighead, “Separation of long DNA molecules in a micro- fabricated entropic trap array,” Science, vol. 288, pp. 1026-1029, 2000.CrossRefGoogle Scholar
  58. [58]
    J. Y. Han and H. G. Craighead, “Characterization and optimization of an en- tropic trap for DNA separation,” Analytical Chemistry, vol. 74, pp. 394-401, 2002.CrossRefGoogle Scholar
  59. [59]
    J. Han, S. W. Turner, and H. G. Craighead, “Entropic trapping and escape of long DNA molecules at submicron size constriction,” Physical Review Letters, vol. 83, pp. 1688-1691, 1999.CrossRefGoogle Scholar
  60. [60]
    F. Tessier, J. Labrie, and G. W. Slater, “Electrophoretic separation of long polyelectrolytes in submolecular-size constrictions: A Monte Carlo study,” Macromolecules, vol. 35, pp. 4791-4800, 2002.CrossRefGoogle Scholar
  61. [61]
    Z. Chen and F. A. Escobedo, “Simulation of chain-length partitioning in a microfabricated channel via entropic trapping,” Molecular Simulation, vol. 29, pp. 417-425, 2003.CrossRefGoogle Scholar
  62. [62]
    M. Streek, F. Schmid, T. T. Duong, and A. Ros, “Mechanisms of DNA sepa- ration in entropic trap arrays: a Brownian dynamics simulation,” Journal of Biotechnology, vol. 112, pp. 79-89, 2004.CrossRefGoogle Scholar
  63. [63]
    J. P. Fu, J. Yoo, and J. Y. Han, “Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays,” Physical Review Letters, vol. 97, 2006.Google Scholar
  64. [64]
    J. P. Fu, P. Mao, and J. Y. Han, “Nanofilter array chip for fast gel-free biomol- ecule separation,” Applied Physics Letters, vol. 87, 2005.Google Scholar
  65. [65]
    R. P. Feynman, R. B. Leighton, and M. Sands, “The Feynman Lectures on Physics,” in The Feynman Lectures on Physics, vol. 1. Reading: AddisonWesley, 1963, pp. 46-1-9.Google Scholar
  66. [66]
    J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional Motion of Brownian Particles Induced by a Periodic Asymmetric Potential,” Nature, vol. 370, pp. 446-448, 1994.CrossRefGoogle Scholar
  67. [67]
    D. R. Chialvo and M. M. Millonas, “Asymmetric Unbiased Fluctuations Are Sufficient for the Operation of a Correlation Ratchet,” Physics Letters A, vol. 209, pp. 26-30, 1995.CrossRefMathSciNetGoogle Scholar
  68. [68]
    G. W. Slater, H. L. Guo, and G. I. Nixon, “Bidirectional transport of polyelec- trolytes using self-modulating entropic ratchets,” Physical Review Letters, vol. 78, pp. 1170-1173, 1997.CrossRefGoogle Scholar
  69. [69]
    T. A. J. Duke and R. H. Austin, “Microfabricated sieve for the continuous sorting of macromolecules,” Physical Review Letters, vol. 80, pp. 1552-1555, 1998.CrossRefGoogle Scholar
  70. [70]
    D. Ertas, “Lateral separation of macromolecules and polyelectrolytes in microlithographic arrays,” Physical Review Letters, vol. 80, pp. 1548-1551, 1998.CrossRefGoogle Scholar
  71. [71]
    S. Leibler, “Brownian-Motion - Moving Forward Noisily,” Nature, vol. 370, pp. 412-413, 1994.CrossRefGoogle Scholar
  72. [72]
    C. F. Chou, O. Bakajin, S. W. P. Turner, T. A. J. Duke, S. S. Chan, E. C. Cox, H. G. Craighead, and R. H. Austin, “Sorting by diffusion: An asymmetric obstacle course for continuous molecular separation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, pp. 13762-13765, 1999.CrossRefGoogle Scholar
  73. [73]
    D. E. Smith, H. P. Babcock, and S. Chu, “Single-polymer dynamics in steady shear flow,” Science, vol. 283, pp. 1724-1727, 1999.CrossRefGoogle Scholar
  74. [74]
    A. van Oudenaarden and S. G. Boxer, “Brownian ratchets: Molecular separa- tions in lipid bilayers supported on patterned arrays,” Science, vol. 285, pp. 1046-1048, 1999.CrossRefGoogle Scholar
  75. [75]
    B. J. Kane, M. J. Zinner, M. L. Yarmush, and M. Toner, “Liver-specific func- tional studies in a microfluidic array of primary mammalian hepatocytes,” Analytical Chemistry, vol. 78, pp. 4291-4298, 2006.CrossRefGoogle Scholar
  76. [76]
    J. H. Wittig, A. F. Ryan, and P. M. Asbeck, “A reusable microfluldic plate with alternate-choice architecture for assessing growth preference in tissue culture,” Journal of Neuroscience Methods, vol. 144, pp. 79-89, 2005.CrossRefGoogle Scholar
  77. [77]
    J. El-Ali, P. K. Sorger, and K. F. Jensen, “Cells on chips,” Nature, vol. 442, pp. 403-411, 2006.CrossRefGoogle Scholar
  78. [78]
    J. R. Burns and C. Ramshaw, “The intensification of rapid reactions in multi- phase systems using slug flow in capillaries,” Lab on a Chip, vol. 1, pp. 10-15, 2001.CrossRefGoogle Scholar
  79. [79]
    S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using “flow focusing” in microchannels,” Applied Physics Letters, vol. 82, pp. 364-366, 2003.CrossRefGoogle Scholar
  80. [80]
    I. Shestopalov, J. D. Tice, and R. F. Ismagilov, “Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic dropletbased system,” Lab on a Chip, vol. 4, pp. 316-321, 2004.CrossRefGoogle Scholar
  81. [81]
    E. M. Chan, A. P. Alivisatos, and R. A. Mathies, “High-temperature micro- fluidic synthesis of CdSe nanocrystals in nanoliter droplets,” Journal of the American Chemical Society, vol. 127, pp. 13854-13861, 2005.CrossRefGoogle Scholar
  82. [82]
    A. J. deMello, “Control and detection of chemical reactions in microfluidic systems,” Nature, vol. 442, pp. 394-402, 2006.CrossRefGoogle Scholar
  83. [83]
    G. J. M. Bruin, “Recent developments in electrokinetically driven analysis on microfabricated devices,” Electrophoresis, vol. 21, pp. 3931-3951, 2000.CrossRefGoogle Scholar
  84. [84]
    V. Dolnik, S. R. Liu, and S. Jovanovich, “Capillary electrophoresis on micro- chip,” Electrophoresis, vol. 21, pp. 41-54, 2000.CrossRefGoogle Scholar
  85. [85]
    C. T. Culbertson, Y. Tugnawat, A. R. Meyer, G. T. Roman, J. M. Ramsey, and S. R. Gonda, “Microchip separations in reduced-gravity and hypergravity environments,” Analytical Chemistry, vol. 77, pp. 7933-7940, 2005.CrossRefGoogle Scholar
  86. [86]
    J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Microlens systems for fluorescence detection in chemical micro-systems,” Optical Engineering, vol. 40, pp. 814-821, 2001.CrossRefGoogle Scholar
  87. [87]
    J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Performance of an integrated microoptical system for fluores- cence detection in microfluidic systems,” Analytical Chemistry, vol. 74, pp. 3400-3407, 2002.CrossRefGoogle Scholar
  88. [88]
    J. Hubner, K. B. Mogensen, A. M. Jorgensen, P. Friis, P. Telleman, and J. P. Kutter, “Integrated optical measurement system for fluorescence spectros- copy in microfluidic channels,” Review of Scientific Instruments, vol. 72, pp. 229-233, 2001.CrossRefGoogle Scholar
  89. [89]
    J. Seo and L. P. Lee, “Disposable integrated microfluidics with self-aligned planar microlenses,” Sensors and Actuators B-Chemical, vol. 99, pp. 615-622, 2004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Joshua D. Cross
  • Harold G. Craighead

There are no affiliations available

Personalised recommendations