Introduction to Fluid Dynamics for Microfluidic Flows

  • Howard A. Stone
Part of the Series on Integrated Circuits and Systems book series (ICIR)


Reynolds Number Shear Rate Pressure Drop Rectangular Channel Small Device 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Squires and S. Quake, “Microfluidics: Fluid physics at the nanoliter scale,” Reviews of Modern Physics, vol. 77, pp. 977-1026, 2005.CrossRefGoogle Scholar
  2. [2]
    H.A. Stone, A.D. Stroock and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a lab-on-a-chip,” Annual Reviews of Fluid Mechanics, vol. 36, pp. 381-411, 2004.CrossRefGoogle Scholar
  3. [3]
    P. Tabeling, Introduction to Microfluidics (Oxford University Press, 2005).Google Scholar
  4. [4]
    G. Karniadakis, A. Beshok and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulations (Springer, 2005).Google Scholar
  5. [5]
    T. Thorsen, S.J. Maerkl and S.R. Quake, “Microfluidic large-scale integra- tion,” Science, vol. 298, pp. 580-584, 2002.CrossRefGoogle Scholar
  6. [6]
    R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides and H.A. Stone, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Appl Phys Lett, vol. 76, pp. 2376-2378, 2000.CrossRefGoogle Scholar
  7. [7]
    P.J.A. Kenis, R.F. Ismagilov and G.M. Whitesides, “Microfabrication inside capillaries using multiphase laminar flow patterning,” Science, vol. 284, pp. 83-85, 1999.CrossRefGoogle Scholar
  8. [8]
    S. Wiggins and J.M. Ottino, “Foundations of chaotic mixing,” Phil Trans Roy Soc Lond Ser A, vol. 362, pp. 937-970, 2004; see also other paper in this special issue.Google Scholar
  9. [9]
    P. Garstecki, I. Gitlin, W. DiLuzio, G.M. Whitesides, E. Kumacheva and H.A. Stone, “Formation of monodisperse bubbles in a microfluidic flow-focusing device,” Appl Phys Lett, vol. 85, pp. 2649-2651, 2004.CrossRefGoogle Scholar
  10. [10]
    H. Song, J.D. Tice and R. Ismagilov, “A microfluidic system for controlling reaction networks in time,” Angew Chem Int Ed, vol. 42, pp. 768-772, 2003.CrossRefGoogle Scholar
  11. [11]
    M. Joanicot and A. Ajdari, “Droplet control for microfluidics,” Science, vol. 309, pp. 887-888, 2005.CrossRefGoogle Scholar
  12. [12]
    K. Jensen and A. Lee, “The science and application of droplets in microflu- idic devices,” Lab on a Chip, vol. 4, pp. 31N-32N; see also the other articles in this special issue.Google Scholar
  13. [13]
    N. Rott, “Note on the history of the Reynolds number,” Annual Review of Fluid Mechanics, vol. 22, pp. 1-11, 1990.CrossRefMathSciNetGoogle Scholar
  14. [14]
    D.J. Tritton, Physical Fluid Dynamics. (Oxford University Press, 1988).Google Scholar
  15. [15]
    K.V.R. Sharp, R.J. Adrian, J.G. Santiago and J.I. Molho, “Liquid flow in microchannels,” in MEMS Handbook, M. Gad-El-Hak editor, (Boca Raton, FL, CRC Press) 2001.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Howard A. Stone

There are no affiliations available

Personalised recommendations