Advertisement

CMOS Sensors for Optical Molecular Imaging

  • Abbas El Gamal
  • Helmy Eltoukhy
  • Khaled Salama
Part of the Series on Integrated Circuits and Systems book series (ICIR)

Keywords

Dark Current Image Sensor Readout Circuit Conversion Gain CMOS Image Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Massoud and S. Gambhir, “Molecular imaging in living subjects: seeing fundamental biological processes in a new light,” Genes & Dev. vol. 17, pp. 545-590, 2003.CrossRefGoogle Scholar
  2. [2]
    D.M. Wilson, S. Hoyt, J. Janata, L. Abando, and K. Booksh, “Chemical Sensors for Portable, Handheld Field Instruments,” IEEE Sensors Journal, vol. 1, No. 4, pp. 256-276, 2001.CrossRefGoogle Scholar
  3. [3]
    R. Davies, D. Bartholomeusz and J. Andrade, “Personal Sensors for the Diagnosis and Management of Metabolic Disorders,”. IEEE Engineering in Medicine and Biology Magazine, vol. 22, No. 1, pp. 32-42, 2003.CrossRefGoogle Scholar
  4. [4]
    U. Lu, B. Hu, Y. Shih, C. Wu and Y. Yang, “The design of a novel comple-mentary metal oxide semiconductor detection system for biochemical luminescence,” Biosensors and Bioelectronics, vol. 19, No. 10, pp. 1185-1191, 2004.CrossRefGoogle Scholar
  5. [5]
    S. Huang, Y. Shih, C. Wu, C. Yuan, Y. Yang, Y. Li and T. Wu, “Detection of serum uric acid using the optical polymeric enzyme biochip system,” Biosensors and Bioelectronics, vol. 19, No. 12, pp. 1627-1633, 2004.CrossRefGoogle Scholar
  6. [6]
    M.L. Simpson, G.S. Sayler, B.M. Applegate, S. Ripp, D.E. Nivens, M.J. Paulus and G.E. Jellison, “Bioluminescent bioreporter integrated circuits form novel whole-cell biosensors,” Trends in Biotechnology, vol. 16, pp. 332-333, 1998.CrossRefGoogle Scholar
  7. [7]
    E.K. Bolton, G.S. Sayler, D.E. Nivens, J.M. Rochelle, S. Ripp, M.L. Simpson, “Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit,” Sensors and Actuators B: Chemical, vol. 85, pp. 179-185, June 2002.CrossRefGoogle Scholar
  8. [8]
    J.P. Golden and F.S. Ligler, “A comparison of imaging methods for use in an array biosensor,” Biosensors and Bioelectronics, vol. 17, No. 9, pp. 719-725, 2002.CrossRefGoogle Scholar
  9. [9]
    N. Van Dyke, C. Van Dyke, K. Woodfork, (Eds.), 2002. Luminescence Biotechnology: Instruments and Applications. CEC Press, Boca Raton, New York.Google Scholar
  10. [10]
    X. Michalet, “The Power and Prospects of Fluorescence Microscopies and Spectroscopies,” Annual Review of Biophysics Biomolecular Structures, vol. 32, pp. 161-182, 2003.CrossRefGoogle Scholar
  11. [11]
    L. Brovko, O. Gandel’man, T. Polenova, N. Ugarova,“Kinetics of Bioluminescence in the Firefly Luciferin-Luciferase System. Biochemistry,” vol. 59, pp. 195-201, 1994.Google Scholar
  12. [12]
    L.J. Kricka, “Clinical and biological applications of luciferases and luci- ferins,” Analytical Biochemistry, vol. 175, pp. 14-22, 1988.CrossRefGoogle Scholar
  13. [13]
    M. Oda, M, T. Kaida, S. Izawa, T. Ogo, K. Itsumi, Y. Okada, K. Sasada, “A 1/4.5in 3.1M pixel FT-CCD with 1.56 µm pixel size for mobile applications,” ISSCC Digest of Technical Papers, pp. 346-347, 2005.Google Scholar
  14. [14]
    A. Krymski, D. Van Blerkom, A. Andersson, N Block, B. Mansoorian and E.R. Fossum, “A High Speed, 500 Frames/s, 1024 ×1024 CMOS Active Pixel Sensor”, Proceedings of the 1999 Symposium on VLSI Circuits, pp. 137-138, June 1999.Google Scholar
  15. [15]
    N. Stevanovic, M. Hillegrand, B.J. Hostica, and A. Teuner, “A CMOS Image Sensor for High Speed Imaging,” ISSCC Digest of Technical Papers, vol. 43, pp. 104-105, February 2000.Google Scholar
  16. [16]
    S. Kleinfelder, S.H. Lim, X.Q. Liu and A. El Gamal, “A 10,000 Frames/s 0.18 µm CMOS Digital Pixel Sensor with Pixel-Level Memory,” ISSCC Digest of Technical Papers, pp. 88-89, San Francisco, CA, February 2001.Google Scholar
  17. [17]
    B. C. Burkey, et al., “The Pinned Photodiode for an Interline Transfer CCD Imager,” Proceedings of IEDM, pp. 28-31, Dec. 1984.Google Scholar
  18. [18]
    X. Liu, P. Catrysse, and A. El Gamal, “QE Reduction due to Pixel Vignetting in CMOS Image Sensors,” In Proceedings of the SPIE Electronic Imaging 2000 conference, vol. 3965, San Jose, CA, January 2000.Google Scholar
  19. [19]
    H. Takahashi, M. Kinoshita, K. Morita, T. Shirai, T. Sato, T. Kimura, H. Yuzurihara, S. Inoue, “A 3.9 µm Pixel Pitch VGA Format 10b Digital Image Sensor with 1.5-Transistor/Pixel,” ISSCC Digest of Technical Papers, vol. 47, pp. 108-109, February 2004.Google Scholar
  20. [20]
    T.H. Hsu, Y.K. Fang, D.N. Yaung, S.G. Wuu, H.C. Chien, C.S. Wang, J.S. Lin, C.H. Tseng, S.F. Chen, C.S. Lin, C.Y. Lin, “Dramatic Reduction of Optical Crosstalk in Deep-Submicrometer CMOS Imager With Air Gap Guard Ring,” Electron Device Letters, vol. 25, pp. 375-377, June 2004.CrossRefGoogle Scholar
  21. [21]
    N.S. Saks, “A Technique for Suppressing Dark Current Generated by Interface States in Buried Channel CCD Imagers,” IEEE Electron Device Letters, EDL-1, No. 7, pp. 131-133, July 1980.CrossRefGoogle Scholar
  22. [22]
    H.C. Chien et al., “Active Pixel Image Sensor Scale Down in 0.18¹m CMOS Technology,” IEDM Technical Digest, pp. 813-816, 2002.Google Scholar
  23. [23]
    S. Ohba, M. Nakai, H. Ando, S. Hanamura, S. Shimda, K. Satoh, K. Takahashi, M. Kubo, T. Fujita, “MOS Area Sensor: Part II - Low-Noise MOS Area Sensor with Antiblooming Photodiodes,” JSSC, vol. 15, pp. 747-752, Aug. 1980.Google Scholar
  24. [24]
    S.J. Decker, R.D. McGrath, K. Brehmer, and C.G. Sodini, “A 256×256 CMOS imaging array with wide dynamic range pixels and column-parallel- digital output,” IEEE Journal of Solid State Circuits, vol. 33, pp. 2081-2091, December 1998.CrossRefGoogle Scholar
  25. [25]
    M. Mori, M. Katsuno, S. Kasuga, T. Murata, T. Yamaguchi, “A 1/4in 2M Pixel CMOS Image Sensor with 1.75 Transistor/Pixel,” ISSCC Digest of Technical Papers, vol. 47, pp. 110-111, February 2004.Google Scholar
  26. [26]
    D. Yang, A. El Gamal, B. Fowler, and H. Tian, “A 640×512 CMOS Image Sensor with Ultrawide Dynamic Range Floating-Point Pixel-Level ADC,” Journal of Solid State Circuits, vol. 34, No. 12, pp. 1821-1834, December 1999.CrossRefGoogle Scholar
  27. [27]
    W. Bidermann, A. El Gamal, S. Ewedemi, J. Reyneri, H. Tian, D. Wile, and D. Yang, “A 0.18 µm high dynamic range NTSC/PAL imaging system-on-chip with embedded DRAM frame buffer,” SSCC Digest of Technical Papers, pp. 212-213, February 2003.Google Scholar
  28. [28]
    D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G. Dalla Betta, “A 138 dB dynamic range CMOS image sensor with new pixel architecture,” ISSCC Digest of Technical Papers, vol. 45, pp. 40-41, February 2002.Google Scholar
  29. [29]
    L. McIlrath, “A low-power low-noise ultrawide-dynamic-range CMOS ima-ger with pixel-parallel A/D conversion,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 846 -853, May 2001.CrossRefGoogle Scholar
  30. [30]
    David Yang, and Abbas El Gamal, “Comparative Analysis of SNR for Image Sensors with Enhanced Dynamic Range,” Proceedings of SPIE, vol. 3649, pp. 197-211, San Jose, CA, January 25-26, 1999.CrossRefGoogle Scholar
  31. [31]
    S. Kavusi and A. El Gamal, “A Quantitative Study of High Dynamic Range Image Sensor Architectures,” to appear in Proceedings of SPIE, January 2004.Google Scholar
  32. [32]
    S. Kavusi and A. El Gamal, “Quantitative study of high-dynamic range SigmaDelta-based focal plane array architectures,” to appear in Proceedings of SPIE Defense and Security Symposium, April 2004.Google Scholar
  33. [33]
    M.H. White, D.R. Lampe, F.C. Blaha and I.A. Mack, “Charactarization of surface channel CCD image arrays at low light levels,” IEEE Journal of Solid State Circuits, vol. 9, pp. 1-13, 1974.CrossRefGoogle Scholar
  34. [34]
    R.W. Brodersen and S.P. Emmons, “The measurment of noise in buried channel charge coupled devices,” Proceedings of International Conference Applications of CCD’s, pp. 331-345, 1975.Google Scholar
  35. [35]
    A.M. Fowler, I. Gatley, “Demonstration of an algorithm for read-noise reduc- tion in infrared arrays,” Astrophysics Journal, vol. 353, pp. L33-L34, 1990.CrossRefGoogle Scholar
  36. [36]
    A. Fowler and I. Gatley, “Noise reduction strategy for hybrid IR focal plane arrays,” Proceedings of SPIE, vol. 1541, pp. 127-133, 1991.CrossRefGoogle Scholar
  37. [37]
    K. Yoon, C. Kim, B. Lee, and D. Lee, “Single-chip CMOS Image Sensor for Mobile Applications,” ISSCC Digest of Technical Papers, vol. 45, pp. 36-37, February 2002.Google Scholar
  38. [38]
    G. Patoukanis, K. Shepard, R. Levicky, “Active CMOS Biochip for Time- Resolved Fluorescence Detection,” VLSI Symposium Digest of Technical Papers, pp. 68-71, 2005.Google Scholar
  39. [39]
    B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl, P. Fromherz, M. Merz, M. Brenner, M. Schreiter, R. Gabl, K. Plehnert, M. Steinhauser, G. Eckstein, D. Schmitt-Landsiedel, R. Thewes, “A 128 × 128 CMOS biosensor array for extracellular recording of neural activity,” IEEE Journal of Solid-State Circuits, vol. 38, No. 12, pp. 2306-2317, 2003.CrossRefGoogle Scholar
  40. [40]
    N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, R. Guerrieri, “A CMOS chip for individual cell manipulation and detection,” IEEE Journal of Solid-State Circuits, vol. 38, No. 12, pp. 2297-2305, 2003.CrossRefGoogle Scholar
  41. [41]
    A. Romani, N. Manaresi, L. Marzocchi, G. Medoro, A. Leonardi, L. Altomare, M. Tartagni, R. Guerrieri, “Capacitive sensor array for localization of bioparticles in CMOS lab-on-a-chip,” IEEE ISSCC Digest of Technical Papers, vol. 47, pp. 224-225, 2004.Google Scholar
  42. [42]
    M. Schienle, C. Paulus, A. Frey, F. Hofmann, B. Holzapfl, P. Schindler-Bauer, R. Thewes, “A Fully Electronic DNA Sensor With 128 Positions and In-Pixel A/D Conversion,” IEEE Journal of Solid-State Circuits, vol. 39, No. 12, pp. 2438-2445, 2004.CrossRefGoogle Scholar
  43. [43]
    R. Yotter, L. Lee and D.M. Wilson, “Sensor Technologies for Monitoring Metabolic Activity in Single Cells-Part I: Optical Methods,” IEEE Sensors Journal, vol. 4, No. 4, pp. 395-411, 2004.CrossRefGoogle Scholar
  44. [44]
    R. Yotter, L. Lee and D.M. Wilson, “Sensor Technologies for Monitoring Metabolic Activity in Single Cells-Part II: Non optical Methods and Applications,” IEEE Sensors Journal, vol. 4, No. 4, pp. 412-429, 2004.CrossRefGoogle Scholar
  45. [45]
    H. Eltoukhy, K. Salama and A. El Gamal, “A 0.18 µm CMOS Luminescence Detection Lab-on-Chip,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 551-562, 2006.CrossRefGoogle Scholar
  46. [46]
    M. Eggers, et al., “A microchip for quantitative detection of molecules utiliz- ing luminescent and radioisotope reporter groups,” Biotechniques, vol. 17, pp. 516-25, 1994.Google Scholar
  47. [47]
    J.B. Lamture et al., “Direct detection of nucleic acid hybridization on the surface of a charge coupled device,” Nucleic Acids Research, vol. 22, pp. 2121-2125, 1994.CrossRefGoogle Scholar
  48. [48]
    K. Salama, H. Eltoukhy, A. Hassibi and Abbas El Gamal, “Modeling and simulation of integrated bioluminescence detection platforms,” Biosensors and Bioelectronics Special issue: Micro and Nano Bioengineering, vol. 19, pp. 1377-1386, 2004.Google Scholar
  49. [49]
    B. Fowler, A. El Gamal, and D. Yang, “Techniques for pixel-level analog-to- digital conversion,” Proceedings of SPIE, Infrared Readout Electronics IV, vol. 3360, pp. 2-12, 1998.Google Scholar
  50. [50]
    T.M. Souders, “Code probability distributions of A/D converters with ran- dom input noise,” IEEE Transactions on Instrumentation and Measurement, vol. 47, pp. 1042-1045 Oct. 1998.CrossRefGoogle Scholar
  51. [51]
    E. Sackinger and W. Guggenbuhl, “A versatile building block: the CMOS differential difference amplifier,” IEEE Journal of Solid-State Circuits, vol. 22, pp. 287-294, 1987.CrossRefGoogle Scholar
  52. [52]
    M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlen and P. Nyren, “Real-Time DNA Sequencing using Detection of Pyrophosphate Release,” Analytical Biochemistry, vol. 242, pp. 84-89, 1996.CrossRefGoogle Scholar
  53. [53]
    M. Ronaghi, “Pyrosequencing Sheds Light on DNA Sequencing,” Genome Research, vol. 11, pp. 3-11, 2001.CrossRefGoogle Scholar
  54. [54]
    Beckman Coulter LD400 Specifications, “http://www.beckman.com/products/ instrument/automatedsolutions/integsystems/ld400 inst dcr.asp,” 2005.

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Abbas El Gamal
  • Helmy Eltoukhy
  • Khaled Salama

There are no affiliations available

Personalised recommendations