Optofluidic Microscope – Fitting a Microscope onto a Sensor Chip

  • Changhuei Yang
  • Xin Heng
  • Xiquan Cui
  • Demetri Psaltis
Part of the Series on Integrated Circuits and Systems book series (ICIR)


Point Spread Function Numerical Aperture Aperture Size Large Aperture Conventional Microscope 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, “A microfab- ricated fluorescence-activated cell sorter,” Nature Biotechnology, vol. 17, pp. 1109-1111, 1999.CrossRefGoogle Scholar
  2. [2]
    Y. C. Tai, J. Xie, Q. He, J. Liu, and T. Lee, “Integrated micro/nano fluidics for mass-spectrometry protein analysis,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 3, pp. 739-741, 2002.Google Scholar
  3. [3]
    J. Xie, Y. N. Miao, J. Shih, Q. He, J. Liu, Y. C. Tai, and T. D. Lee, “An elec-trochemical pumping system for on-chip gradient generation,” Analytical Chemistry, vol. 76, pp. 3756-3763, 2004.CrossRefGoogle Scholar
  4. [4]
    L. Licklider, X. Q. Wang, A. Desai, Y. C. Tai, and T. D. Lee, “A microma- chined chip-based electrospray source for mass spectrometry,” Analytical Chemistry, vol. 72, pp. 367-375, 2000.CrossRefGoogle Scholar
  5. [5]
    M. Tokeshi, Y. Kikutani, A. Hibara, K. Sato, H. Hisamoto, and T. Kitamori, “Chemical processing on microchips for analysis, synthesis, and bioassay,” Electrophoresis, vol. 24, pp. 3583-3594, 2003.CrossRefGoogle Scholar
  6. [6]
    L. J. Jin, J. Ferrance, and J. P. Landers, “Miniaturized electrophoresis: An evolving role in laboratory medicine,” Biotechniques, vol. 31, p. 1332, 2001.Google Scholar
  7. [7]
    P. S. Doyle, J. Bibette, A. Bancaud, and J. L. Viovy, “Self-assembled mag-netic matrices for DNA separation chips,” Science, vol. 295, pp. 2237-2237, 2002.CrossRefGoogle Scholar
  8. [8]
    D. Trau, T. M. H. Lee, A. I. K. Lao, R. Lenigk, I. M. Hsing, N. Y. Ip, M. C. Carles, and N. J. Sucher, “Genotyping on a complementary metal oxide semiconductor silicon polymerase chain reaction chip with integrated DNA microarray,” Analytical Chemistry, vol. 74, pp. 3168-3173, 2002.CrossRefGoogle Scholar
  9. [9]
    S. R. Liu, “A microfabricated hybrid device for DNA sequencing,” Electrophoresis, vol. 24, pp. 3755-3761, 2003.CrossRefGoogle Scholar
  10. [10]
    R. D. Loberg, Y. Fridman, B. A. Pienta, E. T. Keller, L. K. McCauley, R. S. Taichman, and K. J. Pienta, “Detection and isolation of circulating tumor cells in urologic cancers: A review,” Neoplasia, vol. 6, pp. 302-309, 2004.CrossRefGoogle Scholar
  11. [11]
    D. Lange, C. W. Storment, C. A. Conley, and G. T. A. Kovacs, “A microflu-idic shadow imaging system for the study of the nematode Caenorhabditis elegans in space,” Sensors and Actuators B-Chemical, vol. 107, pp. 904-914, 2005.CrossRefGoogle Scholar
  12. [12]
    M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic inte- gration on detector arrays for absorption and fluorescence micro-spectro-meters,” Sensors and Actuators a-Physical, vol. 104, pp. 25-31, 2003.CrossRefGoogle Scholar
  13. [13]
    D. Psaltis, R. S. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature, vol. 442, p. 381, 2006.CrossRefGoogle Scholar
  14. [14]
    X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip, vol. 6, pp. 1274 -1276, 2006.Google Scholar
  15. [15]
    B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” Journal Of Chemical Physics, vol. 112, pp. 7761-7774, 2000.CrossRefGoogle Scholar
  16. [16]
    T. R. Corle, and G. S. Kino, Confocal scanning optical microscopy and re- lated imaging systems: San Diego: Academic Press, 1996.Google Scholar
  17. [17]
    E. Popov, M. Neviere, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Optics Communications, vol. 255, pp. 338-348, 2005.CrossRefGoogle Scholar
  18. [18]
    E. X. Jin, and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Applied Physics Letters, vol. 86, pp. 111106-1-3, 2005.CrossRefGoogle Scholar
  19. [19]
    X. L. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Optics Letters, vol. 28, pp. 1320-1322, 2003.CrossRefGoogle Scholar
  20. [20]
    H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science, vol. 297, pp. 820-822, 2002.CrossRefGoogle Scholar
  21. [21]
    H. J. Lezec, and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Optics Express, vol. 12, pp. 3629-3651, 2004.CrossRefGoogle Scholar
  22. [22]
    T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp. 667-669, 1998.CrossRefGoogle Scholar
  23. [23]
    M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science, vol. 299, pp. 682-686, 2003.CrossRefGoogle Scholar
  24. [24]
    J. Wenger, P. F. Lenne, E. Popov, H. Rigneault, J. Dintinger, and T. W. Ebbesen, “Single molecule fluorescence in rectangular nano-apertures,” Optics Express, vol. 13, pp. 7035-7044, 2005.CrossRefGoogle Scholar
  25. [25]
    A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir, vol. 20, pp. 4813-4815, 2004.CrossRefGoogle Scholar
  26. [26]
    A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H. J. Yeh, “High-power laser light source for near-field optics and its application to high-density optical data storage,” Applied Physics Letters, vol. 75, pp. 1515-1517, 1999.CrossRefGoogle Scholar
  27. [27]
    F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, “Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser,” Applied Physics Letters, vol. 83, pp. 3245-3247, 2003.CrossRefGoogle Scholar
  28. [28]
    A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas,” Nano Letters, vol. 6, pp. 355-360, 2006.CrossRefGoogle Scholar
  29. [29]
    J. O. Tegenfeldt, O. Bakajin, C. F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou, E. Chan, T. Duke, and E. C. Cox, “Near-field scanner for moving mol - ecules,” Physical review letters, vol. 86, pp. 1378-1381, 2001.CrossRefGoogle Scholar
  30. [30]
    X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis and C. Yang, “Optofluidic microscopy- a method for implementing a high resolution optical microscope on a chip,” Lab on a Chip, vol. 6, pp. 1274 -1276, 2006.CrossRefGoogle Scholar
  31. [31]
    D. P. Tsai, A. Othonos, M. Moskovits, and D. Uttamchandani, “Raman- Spectroscopy Using a Fiber Optic Probe with Subwavelength Aperture,” Applied Physics Letters, vol. 64, pp. 1768-1770, 1994.CrossRefGoogle Scholar
  32. [32]
    K. Okamoto, and S. Kawata, “Radiation force exerted on subwavelength par- ticles near a nanoaperture,” Physical Review Letters, vol. 83, pp. 4534-4537, 1999.CrossRefGoogle Scholar
  33. [33]
    E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the Diffraction Barrier - Optical Microscopy on a Nanometric Scale,” Science, vol. 251, pp. 1468-1470, 1991.CrossRefGoogle Scholar
  34. [34]
    D. Courjon, Near-field microscopy and near-field optics: London: Imperial College Press, 2003.Google Scholar
  35. [35]
    S. Inoue, and K. R. Spring, Video microscopy: the fundamentals, 2nd ed: New York: Plenum Press, 1997).Google Scholar
  36. [36]
    J. W. Goodman, Introduction to Fourier optics, 3rd ed: New York: McGraw- Hill, 2004).Google Scholar
  37. [37]
    L. G. Schulz, and F. R. Tangherlini, “Optical Constants of Silver, Gold, Copper, and Aluminum.2. the Index of Refraction-N,” Journal of the Optical Society of America, vol. 44, pp. 362-368, 1954.CrossRefGoogle Scholar
  38. [38]
    L. G. Schulz,“The Optical Constants of Silver, Gold, Copper, and Aluminum.1. the Absorption Coefficient-K,” Journal of the Optical Society of America, vol. 44, pp. 357-362, 1954.Google Scholar
  39. [39]
    D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Advanced Materials, vol. 11, pp. 860-862, 1999.CrossRefGoogle Scholar
  40. [40]
    “COMSOL Multiphysics 3.2 (2006),” in COMSOL Inc. (http://www.comsol. com/).
  41. [41]
    N. N. Rao, Elements of engineering electromagnetics, 6th ed: Upper Saddle River, N.J.: Pearson Prentice Hall, 2004.Google Scholar
  42. [42]
    J. P. Berenger, “Three-dimensional perfectly matched layer for the absorp-tion of electromagnetic waves,” Journal of Computational Physics, vol. 127, pp. 363-379, 1996.MATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    J. Jin, The finite element method in electromagnetics, 2nd ed: New York: Wiley, 2002.MATHGoogle Scholar
  44. [44]
    F. Collino, and P. Monk, “The perfectly matched layer in curvilinear co-ordinates,” SIAM Journal on Scientific Computing, vol. 19, pp. 2061-2090, 1998.MATHCrossRefMathSciNetGoogle Scholar
  45. [45]
    S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Transactions on Antennas and Propagation, vol. 44, pp. 1630-1639, 1996.CrossRefGoogle Scholar
  46. [46]
    H. A. Bethe, “Theory of diffraction by small holes,” Physical Review, vol. 66, p. 163, 1944.MATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    F. de Abajo, “Light transmission through a single cylindrical hole in a metal-lic film,” Optics Express, vol. 10, pp. 1475-1484, 2002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Changhuei Yang
  • Xin Heng
  • Xiquan Cui
  • Demetri Psaltis

There are no affiliations available

Personalised recommendations