Advertisement

Nanocomposites pp 247-271 | Cite as

Mössbauer Spectroscopy and New Composite Electrodes for Li-ion batteries

  • Pierre-Emmanuel Lippens
  • Jean-Claude Jumas
Part of the Electronic Materials: Science and Technology book series (EMST, volume 10)

Lithium-ion batteries have become one of the most promising power sources for portable equipment because of their high specific energy and working voltage. Many studies have been devoted to negative electrodes, which are actually carbonbased materials, in order to improve their electrochemical performances, especially the energetic capacities and the safety. For example, the theoretical specific and volumetric capacities of graphite are 372 Ah kg−1 and about 800 Ah L−1, respectively [1]. Different families of new compounds have been proposed, especially tin- or silicon-based materials that form alloys with lithium and have specific and volumetric theoretical capacities higher than about 1,000 Ah kg−1 and 7,000 Ah L−1, respectively. These materials differ by the chemical nature of the elements and Li insertion mechanisms [2–10]. The study of such complex mechanisms requires different experimental tools, especially at the atomic scale, since commonly used techniques such as X-ray diffraction (XRD) fail to characterize small particles or amorphous phases.

Keywords

Isomer Shift Electric Field Gradient Composite Electrode Relative Transmission Nuclear Quadrupole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.R. Dahn, T. Zheng, Y. Liu, J.S. Xue, Science 270, 590 (1995).CrossRefADSGoogle Scholar
  2. 2.
    R.A. Huggins, “Handbook of Battery Materials”, J.O. Besenhard, ed., Wiley VCH, Weinheim (1999).Google Scholar
  3. 3.
    R.A. Huggins, J. Power Sources 81, 13 (1999).CrossRefMathSciNetGoogle Scholar
  4. 4.
    J.O. Besenhard, J. Yang, M. Winter, J. Power Sources 68, 87 (1997).CrossRefGoogle Scholar
  5. 5.
    O. Mao, R.L. Turner, I.A. Courtney, B.D. Fredericksen, M.I. Buckett, L.J. Krause, J.R. Dahn, Electrochem. Solid State Lett. 2, 3 (1999).CrossRefGoogle Scholar
  6. 6.
    J. Yang, Y. Takeda, N. Imanishi, J.Y. Xie, O. Yamamoto, Solid State Ionics 96, 77 (2000).Google Scholar
  7. 7.
    C.S. Johnson, J.T. Vaughey, M.M. Thackeray, T. Sarakonsri, S. Hackney, K. Edström, J.O. Thomas, Electrochem. Commun. 2, 595 (2000).CrossRefGoogle Scholar
  8. 8.
    J.M. Tarascon, M. Morcrette, L. Dupont, Y. Chabre, C. Payen, D. Larcher, V. Pralong, J. Electrochem. Soc. 150, 732 (2003).CrossRefGoogle Scholar
  9. 9.
    S. Grugeon, S. Laruelle, L. Dupont, J.M. Tarascon, Solid State Sciences 5, 895 (2003).CrossRefADSGoogle Scholar
  10. 10.
    J. Chouvin, J. Olivier-Fourcade, J.C. Jumas, B. Simon, O. Godiveau, Chem. Phys. Lett. 308, 413 (1999).CrossRefADSGoogle Scholar
  11. 11.
    T.C. Gibb, Principles of Mössbauer Spectroscopy, Chapman and Hall, London (1977).Google Scholar
  12. 12.
    U. Gonser, Topics in Applied Physics: Mössbauer Spectroscopy, Springer Verlag, Berlin (1981).Google Scholar
  13. 13.
    G. Long, Mössbauer Spectroscopy Applied to Inorganic Chemistry, vol. IX, Plenum Press, New York (1984).Google Scholar
  14. 14.
    P.E. Dickson, F.J. Berry, Mössbauer Spectroscopy, Cambrige University Press, Cambrige (1986).CrossRefGoogle Scholar
  15. 15.
    P.E. Lippens, J.C. Jumas, J.M.R. Génin, Proceedings of ICAME 2005, Springer, The Netherlands (2007).Google Scholar
  16. 16.
    P. Blaha, K. Schwarz, P. Herzig, Phys. Rev. Lett. 54, 1192 (1985).CrossRefPubMedADSGoogle Scholar
  17. 17.
    P.E. Lippens, J. Olivier-Fourcade, J.C. Jumas, Hyp. Int. 126, 137 (2000).CrossRefADSGoogle Scholar
  18. 18.
    P.E. Lippens, J. Olivier-Fourcade, J.C. Jumas, Hyp. Int. 141/142, 303 (2002).CrossRefADSGoogle Scholar
  19. 19.
    P.E. Lippens, Phys. Rev. B 60, 4576 (1999).CrossRefADSGoogle Scholar
  20. 20.
    P.E. Lippens, Solid State Commun. 113, 399 (2000).CrossRefADSGoogle Scholar
  21. 21.
    K. Rubenbauer, T. Birchall, Hyp. Int. 7, 125 (1979).CrossRefADSGoogle Scholar
  22. 22.
    C.J. Wen, R.A. Huggins, J. Electrochem.Soc. 128, 1181 (1981).CrossRefGoogle Scholar
  23. 23.
    G.R. Goward, N.J. Taylor, D.C.S. Souza, L.F. Nazar, J. Alloys Compds. 329, 82 (2001).CrossRefGoogle Scholar
  24. 24.
    G.-T. Zhou, O. Palchik, I. Nowik, R. Herber, Y. Koltypin, A. Gedanken, J. Solid State Chem. 177 (2004) 3014.CrossRefADSGoogle Scholar
  25. 25.
    I.A. Courtney, J.S. Tse, O. Mao, J. Hafner, J.R. Dahn, Phys. Rev. B 58, 15583 (1998).CrossRefADSGoogle Scholar
  26. 26.
    P.E. Lippens (unpublished results).Google Scholar
  27. 27.
    R.A. Dunlap, D.A Small, D.D MacNeil, M.N Obravac, J.R. Dahn, J. Alloys Compd. 289, 135 (1999).CrossRefGoogle Scholar
  28. 28.
    F. Robert, P.E. Lippens, R. Fourcade, J.C. Jumas, M. Morcrette, J.M. Tarascon, Hyp. Int. 167, 797 (2006).CrossRefADSGoogle Scholar
  29. 29.
    J. Chouvin, J. Olivier-Fourcade, J.C. Jumas, B. Simon, Ph. Biensan, F.J. Fernandez Madrigal, J.L. Tirado, C. Pérez Vicente, J. Electroanal. Chem. 494, 136 (2000).CrossRefGoogle Scholar
  30. 30.
    I.A. Courtney, W.R. McKinnon, J.R. Dahn, J. Electrochem. Soc. 146, 597 (1999).CrossRefGoogle Scholar
  31. 31.
    P. Blaha, K. Schwarz, J. Luitz, WIEN97, Vienna University of Technology, 1997 [improved and updated Unix version of the original copyright WIEN code, which was published by P. Blaha, K. Schwarz, P. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)].Google Scholar
  32. 32.
    P.E. Lippens, J.C. Jumas, J. Olivier-Fourcade, Hyp. Int. 156, 327 (2004).CrossRefADSGoogle Scholar
  33. 33.
    F. Robert, P.E. Lippens, J. Olivier-Fourcade, J.C. Jumas, M. Morcrette, J. Power Sources 146, 492 (2005).CrossRefGoogle Scholar
  34. 34.
    Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science 276, 1395 (1997).CrossRefGoogle Scholar
  35. 35.
    I.A. Courtney, J.R. Dahn, J. Electrochem. Soc. 144, 2045 (1997).CrossRefGoogle Scholar
  36. 36.
    J. Chouvin, C. Branci, J. Sarradin, J. Olivier-Fourcade, J.C. Jumas, B. Simon, Ph. Biensan, J. Power Sources 81–82, 277 (1999).CrossRefGoogle Scholar
  37. 37.
    H. Li, L. Shi, Q. Wang, L. Chen, X. Huang, Solid State Ionic 8263 (2002).Google Scholar
  38. 38.
    F. Robert, F. Morato, L. Aldon, P.E. Lippens, J. Olivier-Fourcade, J.C. Jumas, B. Simon, P. Biensan, J. Power Sources 119, 581 (2003).CrossRefGoogle Scholar
  39. 39.
    J.C. Jumas, P.E. Lippens, J. Olivier-Fourcade, F. Robert, P. Willmann, Matériau composite d’électrode négative, procédé de fabrication, électrode négative et accumulateur Lithium-ion, Patent n° 04 51742 30/07/2004.Google Scholar
  40. 40.
    A. Aboulaich, F. Robert, P.E. Lippens, L. Aldon, J. Olivier-Fourcade, P. Willmann, J.C. Jumas, Hyp. Int. 167, 733 (2007).CrossRefADSGoogle Scholar
  41. 41.
    A. Aboulaich, M. Mouyane, F. Robert, P.E. Lippens, J. Olivier-Fourcade, P. Willmann, J.C. Jumas, J. Power Source (in press).Google Scholar
  42. 42.
    O. Mao, R.L. Turner, I.A. Courtney, B.D. Fredericksen, M.I. Buckett, L.J. Krause, J.R. Dahn, Electrochem. Solid State Lett. 2, 3–5 (1999).CrossRefGoogle Scholar
  43. 43.
    R.A. Dunlap, O. Mao, J.R. Dahn, Phys. Rev. B 59, 3494 (1999).CrossRefADSGoogle Scholar
  44. 44.
    S. Sharma, L. Fransson, E. Sjöstedt, L. Nordström, B. Johansson, K. Edström, J. Electrochem. Soc. 150, A330 (2003).CrossRefGoogle Scholar
  45. 45.
    S. Naille, P.E. Lippens, F. Morato, J. Olivier-Fourcade, Hyp. Int. 167, 785 (2006).CrossRefADSGoogle Scholar
  46. 46.
    S. Naille, M.C. Ionica, P.E. Lippens, F. Robert, F. Morato, J. Olivier-Fourcade, J. Power Source (in press).Google Scholar
  47. 47.
    L. Aldon, C. Ionica, P.E. Lippens, M. Morcrette, D. Larcher, J.M. Tarascon, J.C. Jumas, Hyp. Int. 167, 729 (2006).CrossRefADSGoogle Scholar
  48. 48.
    R. Dedryvère, S. Leroy, S. Naille, H. Martinez, P.E. Lippens, J.C. Jumas, D. Gonbeau, J. Power Source (in press).Google Scholar
  49. 49.
    Sony, USA Patent 0053131 (2005).Google Scholar
  50. 50.
    C.M. Bousquet, P.E. Lippens, L. Aldon, J. Olivier-Fourcade, J.C. Jumas, Chem. Mater. 18, 6442 (2006).CrossRefGoogle Scholar
  51. 51.
    J. Sangster, A.D. Pelton, J. Phase Equilibria 14, 4 (1993).Google Scholar
  52. 52.
    J.T. Vaughey, C.S. Johnson, A.J. Kropf, R. Benedek, M.M. Thackeray, H. Tostmann, T. Sarakonsri, S. Hackney, L. Fransson, K. Edström, J.O. Thomas, J. Power Sources 97, 194 (2001).CrossRefGoogle Scholar
  53. 53.
    L.M.L. Fransson, J.T. Vaughey, K. Edström, M.M. Thackeray, J. Electrochem. Soc. 150, A86 (2003).CrossRefGoogle Scholar
  54. 54.
    C.M. Ionica, L. Aldon, P.E. Lippens, F. Morato, J. Olivier-Fourcade and J.C. Jumas Hyperfine Interactions 156, 555 (2004).CrossRefADSGoogle Scholar
  55. 55.
    L. Aldon, P. Kubiak, A. Picard, P.E. Lippens, J.C. Jumas, J. Olivier-Fourcade, Hyp. Int. 156, 497 (2004).CrossRefADSGoogle Scholar
  56. 56.
    C.M. Ionica, P.E. Lippens, J. Olivier Fourcade, J.C. Jumas, J. Power Sources 146, 481 (2005).CrossRefGoogle Scholar
  57. 57.
    L. Häggström, C. Ionica, J.C. Jumas, L. Aldon, P.E. Lippens, K. Edström, Hyp. Int. 167, 759 (2006).CrossRefADSGoogle Scholar
  58. 58.
    C. Ionica, M. Womes, P.E. Lippens, J. Olivier-Fourcade, B. Ducourant, A. Chadwick, Hyp. Int. 167, 773 (2006).CrossRefADSGoogle Scholar
  59. 59.
    P. Kubiak, A. Garcia, M. Womes, L. Aldon, J. Olivier-Fourcade, P.E. Lippens, J.C. Jumas, J. Power Sources 119–121, 626 (2003); T. Ozhuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 142, 1431 (1995).CrossRefGoogle Scholar
  60. 60.
    S. Panero, D. Satolli, M. Salomon, B. Scrosati, Electrochem. Commun. 2, 810 (2000).CrossRefGoogle Scholar
  61. 61.
    A. Wiebel, R. Bouchet S.L.P. Savin, A.V. Chadwick, P.E. Lippens, M. Womes, P. Knauth, ChemPhysChem 7, 2377 (2006).CrossRefGoogle Scholar
  62. 62.
    L. Aldon, P. Kubiak, A. Picard, J.C. Jumas, J. Olivier-Fourcade, Chem. Mater. 18, 1401 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pierre-Emmanuel Lippens
    • 1
  • Jean-Claude Jumas
    • 1
  1. 1.AIME, Institut Charles Gerhardt, UMR 5253 CNRSUniversité Montpellier IIFrance

Personalised recommendations