Advertisement

Nanocomposites pp 227-246 | Cite as

Dynamical Aspects of Nanocrystalline Ion Conductors Studied by NMR

  • P. Heitjans
  • Sylvio Indris
  • M. Wilkening
Part of the Electronic Materials: Science and Technology book series (EMST, volume 10)

In recent years, nanocrystalline materials have considerably attracted the interest of the materials research community [1–4]. Single-phase materials with an average particle diameter of less than 50 nm exhibit new or at least enhanced chemical and physical properties when compared to their coarse-grained counterparts. For example, they show new mechanical [5–8], electrical [9–13], magnetic [14–19], optical [20–24], catalytic [25, 26], and/or thermodynamic [27–29] features. In ion conducting nanocrystalline materials, an enhancement of the diffusivity of small cations and anions like Li+ and F, or even larger anions like O2−, is often observed [2–4, 30–41]. The diffusivity is additionally influenced by admixing an ionic insulator to the conducting phase [4, 42–47].

Keywords

Nuclear Magnetic Resonance Interfacial Region Nuclear Magnetic Resonance Line Nuclear Magnetic Resonance Line Shape Nuclear Magnetic Resonance Line Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Gleiter: Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
  2. 2.
    P. Knauth, H. L. Tuller: Solid State Ionics 136–137, 1215 (2000).CrossRefGoogle Scholar
  3. 3.
    A. V. Chadwick: Diffusion Fundamentals 2, 44 (2005).Google Scholar
  4. 4.
    P. Heitjans, S. Indris: J. Phys. Condens. Matter 15, R1257 (2003).CrossRefADSGoogle Scholar
  5. 5.
    J. Karch, R. Birringer, H. Gleiter: Nature 330 556 (1987).CrossRefADSGoogle Scholar
  6. 6.
    S. Yip: Nature 391 532 (1998).CrossRefADSGoogle Scholar
  7. 7.
    J. Baller, J. K. Krüger, R. Birringer, C. Proust C: J. Phys. Condens. Matter 12 5403 (2000).Google Scholar
  8. 8.
    U. Betz, H. Hahn: Nanostruct. Mater. 12 911 (1999).CrossRefGoogle Scholar
  9. 9.
    H. L. Tuller: J. Electroceram. 1, 211 (1997).CrossRefGoogle Scholar
  10. 10.
    A. M. George, J. Íñiguez, L. Bellaiche: Nature. 413, 54 (2001).CrossRefPubMedADSGoogle Scholar
  11. 11.
    C. Demetry, X. Shi: Solid State Ionics 118, 271 (1998).CrossRefGoogle Scholar
  12. 12.
    C.-W. Nan, S. Holten, R. Birringer, H. Gao, H. Kliem, H. Gleiter: Phys. Status Solidi a 164, R1 (1997).CrossRefGoogle Scholar
  13. 13.
    H. Wittmer, S. Holten, H. Kliem, H. D. Breuer: Phys. Status Solidi a 181, 461 (2000).CrossRefADSGoogle Scholar
  14. 14.
    H. Mamiya, I. Nakatani, T. Furubayashi: Phys. Rev. Lett. 80, 177 (1998).CrossRefADSGoogle Scholar
  15. 15.
    T. Jonsson, J. Mattsson, C. Djurberg, F. A. Khan, P. Nordblad, P. Svedlindh: Phys. Rev. Lett. 75, 4138 (1995).CrossRefPubMedADSGoogle Scholar
  16. 16.
    S. J. Stewart, R. A. Borzi, G. Punte, R. C. Mercader, F. Garcia: J. Phys. Condens. Matter 13, 1743 (2001).CrossRefADSGoogle Scholar
  17. 17.
    J. Garcia-Otero, M. Porto, J. Rivas, A. Bunde: Phys. Rev. Lett. 84, 167 (2000).CrossRefPubMedADSGoogle Scholar
  18. 18.
    J. P. Chen, C. M. Sorensen, K. J. Klabunde, G. C. Hadjipanayis: Phys. Rev. B 51, 11527 (1995).CrossRefADSGoogle Scholar
  19. 19.
    D. Zhang, K. J. Klabunde, K. J. Sorensen, G. C. Hadjipanayis: Phys. Rev. B 58, 14167 (1998).CrossRefADSGoogle Scholar
  20. 20.
    H. Weller, H. M. Schmidt, U. Koch, A. Fojtik, S. Baral, A. Henglein, A. Kunath, K. Weiss, E. Dieman: Chem. Phys. Lett. 124, 557 (1986).CrossRefADSGoogle Scholar
  21. 21.
    X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos: Nature 404, 59 (2000).CrossRefPubMedADSGoogle Scholar
  22. 22.
    M. Shim, P. Guyot-Sionnest: Nature 407, 981 (2000).CrossRefPubMedADSGoogle Scholar
  23. 23.
    C.-W. Nan, R. Birringer, W. Krauss, H. Gao, H. Gleiter: Phys. Status Solidi A 162, R3 (1997).CrossRefGoogle Scholar
  24. 24.
    R. Schmechel, M. Kennedy, H. von Seggern, H. Winkler, M. Kolbe, R. A. Fischer, L. Xaomao, A. Benker, M. Winterer, H. Hahn: J. Appl. Phys. 89, 1679 (2001).CrossRefADSGoogle Scholar
  25. 25.
    A. L. Linsebigler, G. Lu, J. T. Yates Jr: Chem. Rev. 95, 735 (1995).CrossRefGoogle Scholar
  26. 26.
    J. Y. Ying, T. Sun: J. Electroceram. 1, 219 (1997).CrossRefGoogle Scholar
  27. 27.
    H. Gleiter: Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
  28. 28.
    J. Weissmüller, H. Ehrhardt: Phys. Rev. Lett. 81, 1114 (1998).CrossRefADSGoogle Scholar
  29. 29.
    K. T. Jacob, K. P. Jayadevan, R. M. Mallya, Y. Waseda: Adv. Mater. 12, 440 (2000).CrossRefGoogle Scholar
  30. 30.
    D. Bork, P. Heitjans: J. Phys. Chem. B 102, 7303 (1998).CrossRefGoogle Scholar
  31. 31.
    D. Bork, P. Heitjans: J. Phys. Chem. B 105, 9162 (2001).CrossRefGoogle Scholar
  32. 32.
    S. Indris, P. Heitjans, H. E. Roman, A. Bunde, Phys. Rev. Lett. 84, 2889 (2000).CrossRefPubMedADSGoogle Scholar
  33. 33.
    W. Puin, P. Heitjans: Nanostruct. Mater. 6, 885 (1995).CrossRefGoogle Scholar
  34. 34.
    W. Puin, S. Rodewald, R. Ramlau, P. Heitjans, J. Maier: Solid State Ionics 131, 159 (2000).CrossRefGoogle Scholar
  35. 35.
    U. Brossmann, R. Würschum, U. Södervall, H.-E. Schaefer: Nanostruct. Mater. 12, 871 (1999).CrossRefGoogle Scholar
  36. 36.
    P. Knauth: J. Solid State Electrochem. 147, 115 (2002).Google Scholar
  37. 37.
    Y.-M. Chiang, E. B. Lavik, I. Kosacki, H. L. Tuller, J. Y. Ying: J. Electroceram. 1, 7 (1997).CrossRefGoogle Scholar
  38. 38.
    A. Tschöpe, E. Sommer, R. Birringer: Solid State Ionics 139, 255 (2001).CrossRefGoogle Scholar
  39. 39.
    J. Lee, J. H. Hwang, J. J. Mashek, F. O. Mason, A. E. Miller, R. W. Siegel: J. Mater Res. 10, 2295 (1995).CrossRefADSGoogle Scholar
  40. 40.
    C.-W. Nan, A. Tschöpe, S. Holten, H. Kliem, R. Birringer: J. Appl. Phys. 85, 7735 (1995).CrossRefADSGoogle Scholar
  41. 41.
    G. Li, L. Li, S. Feng, M. Wang, L. Zhang, X. Yao: Adv. Mater. 11, 146 (1999).CrossRefGoogle Scholar
  42. 42.
    J. Maier: Prog. Solid State Chem. 23, 171 (1995).CrossRefGoogle Scholar
  43. 43.
    J. Maier: Nat. Mater. 4, 805 (2005).CrossRefPubMedADSGoogle Scholar
  44. 44.
    S. Indris, P. Heitjans: J. Non-Cryst. Solids 307, 555 (2002).CrossRefADSGoogle Scholar
  45. 45.
    M. Wilkening, S. Indris, P. Heitjans: Phys. Chem. Chem. Phys. 5, 2225 (2003).CrossRefGoogle Scholar
  46. 46.
    H. Maekawa, Y. Fujimaki, H. Shen, J. Kawamura, T. Yamamura: Solid State Ion. 177, 2711 (2006).CrossRefGoogle Scholar
  47. 47.
    C. C. Liang: J. Electrochem. Soc. 120, 1289 (1973).CrossRefGoogle Scholar
  48. 48.
    P. Heitjans, A. Schirmer, S. Indris: NMR and 4-NMR Studies of Diffusion in Interface-dominated and Disordered Solids. In: Diffusion in Condensed Matter–Methods, Materials, Models, ed. by P. Heitjans, J. Kärger (Springer, Berlin Heidelberg, 2005) pp. 367–415.Google Scholar
  49. 49.
    P. Heitjans, S. Indris, M. Wilkening: Diffusion Fundamentals 2, 45 (2005).Google Scholar
  50. 50.
    F. Qi, T. Jörg, R. Böhmer: Solid State Nucl. Magn. Reson. 22, 484 (2002).CrossRefPubMedGoogle Scholar
  51. 51.
    F. Qi, C. Rier, R. Böhmer, W. Franke, P. Heitjans: Phys. Rev. B 72, 104301 (2005).CrossRefADSGoogle Scholar
  52. 52.
    M. Wilkening, W. Küchler, P. Heitjans: Phys. Rev. Lett. 97, 065901 (2006).CrossRefPubMedADSGoogle Scholar
  53. 53.
    Z. Xu, J. F. Stebbins: Science 270, 1332 (1995).CrossRefADSGoogle Scholar
  54. 54.
    M. Wagemaker, A. P. M. Kentgens, F. M. Mulder: Nature 418, 397 (2002).CrossRefPubMedADSGoogle Scholar
  55. 55.
    M. Wilkening, R. Amade, W. Iwaniak, P. Heitjans: Phys. Chem. Chem. Phys. 9, 1239 (2007).CrossRefPubMedGoogle Scholar
  56. 56.
    M. Wilkening, C. Mühle, M. Jansen, P. Heitjans: J. Phys. Chem. B 111, 8691 (2007).CrossRefPubMedGoogle Scholar
  57. 57.
    M. Wilkening, D. Bork, S. Indris, P. Heitjans: Phys. Chem. Chem. Phys. 4, 3246 (2002).CrossRefGoogle Scholar
  58. 58.
    P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening: Faraday Discuss. 134, 67 (2007).CrossRefPubMedGoogle Scholar
  59. 59.
    R. W. Siegel: Nanophase Materials. In: Encyclopedia of Applied Physics, vol. 11, ed. by G. L. Trigg, E. H. Immergut, E. S. Vera, W. Greulich (VCH, New York, 1994) pp. 173–200.Google Scholar
  60. 60.
    W. Puin, P. Heitjans, W. Dickenscheid, H. Gleiter: NMR Study of Dynamic Processes in Nanocrystalline CaF2. In: Defects in Insulating Materials, ed. by O. Kanert, J. Spaeth (World Scientific, Singapore, 1993) pp. 137–139.Google Scholar
  61. 61.
    P. Heitjans, S. Indris: J. Mater. Sci. 39, 5091 (2004).CrossRefADSGoogle Scholar
  62. 62.
    R. Winter, P. Heitjans: J. Phys. Chem. B 105, 6108 (2001).CrossRefGoogle Scholar
  63. 63.
    S. Indris, P. Heitjans, H. E. Roman, A. Bunde: Defect Diffus. Forum 194–199, 935 (2001).CrossRefGoogle Scholar
  64. 64.
    J.-M. Debierre, P. Knauth, G. Albinet: Appl. Phys. Lett. 71, 1335 (1997).CrossRefADSGoogle Scholar
  65. 65.
    P. Knauth, G. Albinet, J.-M. Debierre: Ber. Bunsenges. Phys. Chem. 102, 945 (1998).Google Scholar
  66. 66.
    P. Knauth: J. Electroceram. 5, 111 (2000).CrossRefGoogle Scholar
  67. 67.
    N. Bloembergen, E. M. Purcell, R. V. Pound: Phys. Rev. 73, 679 (1948).CrossRefADSGoogle Scholar
  68. 68.
    A. Bunde, W. Dieterich, P. Maass, M. Meyer: Ionic Transport in Disordered Materials. In: Diffusion in Condensed Matter–Methods, Materials, Models, ed. by P. Heitjans, J. Kärger (Springer, Berlin Heidelberg, 2005) pp. 367–415.Google Scholar
  69. 69.
    Z. H. Xie, M. E. Smith, J. H. Strange, C. Jaeger: J. Phys. Condens. Matter 7, 2479 (1995).CrossRefADSGoogle Scholar
  70. 70.
    M. Masoud, P. Heitjans: Defect Diffus. Forum 237–240, 1016 (2005).CrossRefGoogle Scholar
  71. 71.
    A. V. Chadwick, M. J. Pooley, S. L. P. Savin: Physica status solidi C 2, 302 (2005).CrossRefADSGoogle Scholar
  72. 72.
    J. Maier: Solid State Ionics 23, 59 (1987).CrossRefGoogle Scholar
  73. 73.
    S. Indris, D. Bork, P. Heitjans: J. Mater. Synth. Process. 8, 245 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • P. Heitjans
    • 1
  • Sylvio Indris
    • 2
  • M. Wilkening
    • 1
  1. 1.Electrochemistry, and Center for Solid State Chemistry and New MaterialsLeibniz University HannoverGermany
  2. 2.Forschungzentrum Karlsruhe, Institute of NanotechnologyGermany

Personalised recommendations