Nanocomposites pp 175-203 | Cite as

Gaining Insight into the Structure and Dynamics of Clay–Polymer Nanocomposite Systems Through Computer Simulation

  • Pascal Boulet
  • H. Christopher Greenwell
  • Rebecca M. Jarvis
  • William Jones
  • Peter V. Coveney
  • Stephen Stackhouse
Part of the Electronic Materials: Science and Technology book series (EMST, volume 10)

Clay minerals belong to a wider class of solids known as layered materials, which may be defined as ‘crystalline materials wherein the atoms in the layers are cross-linked by chemical bonds, while the atoms of adjacent layers interact by physical forces’ [1]. Both clay sheets and interlayer space have one dimension in the nanometre range. Cationic clays are the predominant naturally occurring minerals with aluminosilicate sheets carrying a negative charge. Therefore, the interlayer guest species are positively charged to compensate the layer charge [2]. In anionic clays, also known as layered double hydroxides (LDHs), the interlayer guest species carry a negative charge and the inorganic mixed metal hydroxide sheets are positively charged. In recent times, there has been a growing interest in anionic clays, although initial attention was focussed almost exclusively on the cationic clay materials. Reviews have appeared that often emphasise interesting properties and the use of experimental techniques to determine or at least infer the local structure of the clay sheet or intercalated material [3–5]. However, clays are polycrystalline materials and precise experimental location of interlayer species is extremely difficult.


Monte Carlo Potential Energy Surface Layered Double Hydroxide Clay Surface Gaining Insight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schoonheydt, R. A.; Pinnavaia, T. J.; Lagaly, G.; Gangas, N. Pure and Applied Chemistry, 1999, 71, 2367–2371.CrossRefGoogle Scholar
  2. 2.
    Grim, R. E. “Applied Clay Mineralogy,” Mcgraw-Hill, New York, 1962.Google Scholar
  3. 3.
    Newman, S. P.; Jones, W. New J. Chem., 1998, 22, 105–115.CrossRefGoogle Scholar
  4. 4.
    Cavani, F.; Trifirò, F.; Vaccari, A. Catal. Today, 1991, 11, 173–301.CrossRefGoogle Scholar
  5. 5.
    Carlino, S. Chem. Br., 1997, 33, 59–62.Google Scholar
  6. 6.
    Lagaly, G.; Beneke, K. Colloid. Polym. Sci., 1991, 269, 1198–1211.CrossRefGoogle Scholar
  7. 7.
    Newman, S. P.; Williams, S. J.; Coveney, P. V.; Jones, W. J. Phys. Chem. B, 1998, 102, 6710–6719.CrossRefGoogle Scholar
  8. 8.
    Swenson, J.; Schwartz, G. A.; Bergman, R.; Howells, W. S., Eur. Phys. J. E., 2003, 12, 179–183.PubMedCrossRefGoogle Scholar
  9. 9.
    Kagunya, W. W. J. Phys. Chem., 1996, 100, 327–330.CrossRefGoogle Scholar
  10. 10.
    Rives, V. (ed.), “Layered Double Hydroxides: Present and Future,” Nova Science, New York, 2001.Google Scholar
  11. 11.
    Greenwell, H. C.; Jones, W.; Coveney, P. V.; Stackhouse, S., J. Mater. Chem., 2006, 16, 708–723.CrossRefGoogle Scholar
  12. 12.
    Boulet, P.; Greenwell, H. C.; Stackhouse, S.; Coveney, P. V., J. Mol. Struct. THEOCHEM, 2006, 762, 33–48.CrossRefGoogle Scholar
  13. 13.
    (a) Leach, A. R., “Molecular Modelling, Principles and Applications”, 2nd Ed., Pearson Education, England, 2001; (b) Allen, M. P.; Tildesley, D. J. “Computer Simulation of Liquids,” Clarendon, Oxford, 1987; (c) Frenkel, D.; Smit, B. “Understanding Molecular Simulation: From Algorithms to Applications,” 2nd Ed., Academic Press, London, England, 2002.Google Scholar
  14. 14.
    Born, D.; Oppenheimer, J. R. Ann. Phys. Rev., 1927, 84, 457.ADSGoogle Scholar
  15. 15.
    Sato, T.; Tokunaka, K.; Tanaka, K. J. chem. Phys., 2006, 124, 024314.PubMedADSCrossRefGoogle Scholar
  16. 16.
    (a) Hartree, D. R. Proc. Cambridge Philos., 1928, 24, 89. (b) Hartree, D. R. Proc. Cambridge Philos., 1928, 24, 11, ibid. 426.Google Scholar
  17. 17.
    Fock, V. Z. Phys., 1930, 61, 126.ADSCrossRefGoogle Scholar
  18. 18.
    Slater, J.C. Phys. Rev., 1930, 48, 35.Google Scholar
  19. 19.
    Pauli, W. Phys. Rev., 1940, 58, 719.ADSCrossRefGoogle Scholar
  20. 20.
    Møller, C.; Plesset, M. S. Phys. Rev., 1934, 46, 618–622.MATHADSCrossRefGoogle Scholar
  21. 21.
    Parr, R. G.; Yang, W. “Density-Functional Theory of Atoms and Molecules,” Oxford Science Publication, Oxford, 1989.Google Scholar
  22. 22.
    Kohn, W.; Sham, L. J. Phys. Rev. A, 1965, 140, 1133.MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Hohenberg, P.; Kohn, W. Phys. Rev. A, 1964, 136, 864.MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Mooij, W. T. M.; van Duijneveldt, F. B.; van Duijneveldt-van de Rijdt, J. G. C. M.; van Eijck, B. P. J. Phys. Chem. A, 1999, 103, 9872–9882.CrossRefGoogle Scholar
  25. 25.
    Elsner, M.; Hobza, P.; Frauenheim, T.; Suhai, S.; Kaxiras, E. J. Chem. Phys., 2001, 114, 5149–5155.ADSCrossRefGoogle Scholar
  26. 26.
    Cortona, P. Phys. Rev. B, 1991, 44, 8455.ADSCrossRefGoogle Scholar
  27. 27.
    (a) Wesolowski, T. A.; Warshel, A. J. Phys. Chem., 1993, 97, 8050; (b) Wesolowski, T. A.; Weber, J. Chem. Phys. Lett., 1996, 248, 71.Google Scholar
  28. 28.
    (a) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys., 1983, 79, 926–935; (b) Mahoney, M. W.; Jorgensen, W. L. J. Chem. Phys., 2000, 112, 8910–8922; (c) Matsuoka, O.; Clementi, E.; Yoshimine, M. J. Chem. Phys., 1976, 64, 1351–1361; (d) Teleman, O.; Jonsson, B.; Engstrom, S. Mol. Phys., 1987, 60, 193–203; (e) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem., 1987, 91, 6269–6271.Google Scholar
  29. 29.
    Mayo, S. L.; Olafson, B. D.; Goddard III, W. A. J. Phys. Chem., 1990, 94, 8897–8909.CrossRefGoogle Scholar
  30. 30.
    (a) Jackson, R. A.; Catlow, C. R. A. Mol. Simul., 1988, 1, 207–224; (b) Faux, D. A.; Smith, W.; Forester, T. R. J. Phys. Chem. B, 1997, 101, 1762–1768; (c) Catlow, C. R. A.; Freeman, M.; Vessal, B.; Tomlinson, S. M.; Leslie, M. J. Chem. Soc. Faraday Trans., 1991, 87, 1947–1950; (d) de Vos Burchart, E.; Ph.D. Thesis, 1992, “Studies on Zeolites: Molecular Mechanics, Framework Stability and Crystal Growth,” Table I, Chap. XII.Google Scholar
  31. 31.
    (a) Cygan, R. T.; Liang, J.-J.; Kalinichev, A. G. J. Phys. Chem., B, 2004, 108, 1255–1266; (b) Teppen, B. J.; Rasmussen, K.; Bertsch, P. M.; Miller, D. M.; Lothar Schäfer, L. J. Phys. Chem. B, 1997, 101, 1579–1587; (c) Teppen, B. J.; Yu, C.-H.; Newton, S. Q.; Miller, D. M.; Schäfer, L. J. Mol. Struct., 1998, 445, 65–88.Google Scholar
  32. 32.
    Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P. J. Phys. Chem. B, 2001, 105, 9980–9987.CrossRefGoogle Scholar
  33. 33.
    Goddard III, W. A.; van Duin, A.; Chenoweth, K.; Cheng, M.-J.; Pudar, S.; Oxgaard, J.; Merinov, B.; Jang, Y. H.; Persson, P. Topics Catal., 2006, 38, 93–103.CrossRefGoogle Scholar
  34. 34.
    Kornherr, A.; French, S. A.; Sokol, A. A.; Catlow, C. R. A.; Hansal, S.; Hansal, W. E. G.; Besenhard, J. O.; Kronberger, H.; Nauer, G. E.; Zifferer, G. Chem. Phys. Lett., 2004, 393, 107–111.ADSCrossRefGoogle Scholar
  35. 35.
    (a) Sun, H. J. Phys. Chem. B, 1998, 102, 7338–7364; (b) Sun, H.; Ren, P.; Fried, J. R. Comput. Theor. Polym. Sci., 1998, 229–246.Google Scholar
  36. 36.
    MacKerell Jr., A. D.; Bashford, D.; Bellott, M.; Dunbrack Jr., R.L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher III, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B, 1998, 102, 3586–3616.Google Scholar
  37. 37.
    Foloppe, N.; MacKerell Jr., A. D. J. Comp. Chem., 2000, 21, 86–104.CrossRefGoogle Scholar
  38. 38.
    Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. J. Phys. Chem. B, 2001, 105, 6474–6487.CrossRefGoogle Scholar
  39. 39.
    (a) Han, S. S.; Kang, J. K.; Lee, H. M.; van Duin, A. C. T.; Goddard, W. A. J. Chem. Phys., 2005, 123, 114703; (b) van Duin, A. C. T.; Strachan, A.; Stewman, S.; Zhang, Q. S.; Xu, X.; Goddard, W. A. J. Phys. Chem. A, 2003, 107, 3803–3811; (c) van Duin, A. C. T.; Dasgupta, S.; Lorant, F.; Goddard, W. A. J. Phys. Chem. A, 2001, 105, 9396–9409.Google Scholar
  40. 40.
    Yin, K. L.; Xia, Q.; Xu, D. J.; Ye, Y. J.; Chen, C. L. Comput. Chem. Eng. 2006, 30, 1346–1353.CrossRefGoogle Scholar
  41. 41.
    (a) Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B, 1998, 102, 2569–2577; (b) Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B, 1999, 103, 4508–4517; (c) Wick, C. D.; Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B, 2000, 104, 8008–8016; (d) Mundy, C. J.; Balasubramanian, S.; Bagchi, K.; Siepmann, J. I.; Klein, M. L. Faraday Discuss., 1996, 104, 17–36.Google Scholar
  42. 42.
    Ewald, P. P. Ann. Phys., 1921, 64, 253–287.CrossRefGoogle Scholar
  43. 43.
    Hokney, R. W.; Eastwood, J. W. “Computer simulations using particles,” McGraw-Hill, New York, 1981.Google Scholar
  44. 44.
    Plimpton, S. J. Comput. Phys., 1995, 117, 1–19.MATHADSCrossRefGoogle Scholar
  45. 45.
    Boulet, P.; Coveney, P. V.; Stackhouse, S. Chem. Phys. Lett., 2004, 389, 261–267.ADSCrossRefGoogle Scholar
  46. 46.
    Schlick, T. “Optimization Methods in Computational Chemistry” in Reviews in Computational Chemistry, Lipkowitz, K. B.; Boyd, D. B. (ed.), Wiley, New York, Vol. 3, pp. 1–71.Google Scholar
  47. 47.
    Csaszar, P.; Pulay, P. J. Mol. Struct., 1984, 114, 31–34.ADSCrossRefGoogle Scholar
  48. 48.
    Farkas, O.; Schlegel, H. B. Phys. Chem. Chem. Phys., 2002, 4, 11–15.CrossRefGoogle Scholar
  49. 49.
    Hansen, J.-P.; McDonald, I. R. “Theory of Simple Liquids,” 2nd Edn., Academic Press, London, 1986.Google Scholar
  50. 50.
    Skipper, N. T.; Refson, K.; McConnell J. D. C. J. Chem. Phys., 1991, 94, 7434–7445.ADSCrossRefGoogle Scholar
  51. 51.
    Panagiotopoulos, A. Z. Mol. Phys., 1987, 61, 813–826.ADSCrossRefGoogle Scholar
  52. 52.
    Suter, J. L.; Coveney, P. V.; Greenwell, H. C.; Thyveetil, M.-A., J Phys Chem C, 2007, 111, 8248–8259.CrossRefGoogle Scholar
  53. 53.
    Thyveetil, M.-A.; Coveney, P. V.; Suter, J. L.; Greenwell, H. C., “Emergence of undulations and determination of materials properties from large-scale molecular dynamics simulation of layered double hydroxides” preprint (2007).Google Scholar
  54. 54.
    Tambach, T. J.; Boek, E. S.; Smit, B. Phys. Chem. Chem. Phys., 2006, 8, 2700–2702.PubMedCrossRefGoogle Scholar
  55. 55.
    Tambach, T. J.; Bolhuis, P. G.; Hensen, E. J. M.; Smit, B. Langmuir, 2006, 22, 1223–1234.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang, L. M.; Chen, D. Q. Macromol. Mater. Eng., 2003, 288, 252–258.CrossRefGoogle Scholar
  57. 57.
    Zhang L. M. J. Appl. Polym. Sci., 2001, 79, 1416–1422.CrossRefGoogle Scholar
  58. 58.
    Boek, E. S.; Coveney, P. V.; Skipper, N. T. J. Am. Chem. Soc., 1995, 117, 12608–12617.CrossRefGoogle Scholar
  59. 59.
    Vaia, R. A.; Vasudevan, S.; Krawiec, W.; Giannelis, E. P., Adv. Mater., 1995, 7, 154–156.CrossRefGoogle Scholar
  60. 60.
    Yang, D. K.; Zax, D. B. J. Chem. Phys., 1999, 110, 5325–5336.ADSCrossRefGoogle Scholar
  61. 61.
    Hackett, E.; Manias, E.; Giannelis, E. P. Chem. Mater., 2000, 12, 2161–2167.CrossRefGoogle Scholar
  62. 62.
    Bujdák, J.; Hackett, E.; Giannelis, E. P. Chem. Mater., 2000, 12, 2168–2174.CrossRefGoogle Scholar
  63. 63.
    Kuppa, V.; Manias, E. Chem. Mater., 2002, 14, 2171–2175.CrossRefGoogle Scholar
  64. 64.
    Reinholdt, M. X.; Kirkpatrick, R. J.; Pinnavaia, T. J. J. Phys. Chem. B, 2005, 109, 16296–16303.PubMedCrossRefGoogle Scholar
  65. 65.
    Greenwell, H. C.; Bowden, A. A.; Chen, B. Q.; Boulet, P.; Evans, J. R. G.; Coveney, P. V.; Whiting, A. J. Mater. Chem., 2006, 16, 1082–1094.CrossRefGoogle Scholar
  66. 66.
    Pospísil, M.; Capková, P.; Merínská, D.; Malác, Z.; Simoník, J. J. Colloid Interface Sci., 2001, 236, 127–131.PubMedCrossRefGoogle Scholar
  67. 67.
    Zeng, Q. H.; Yu, A. B.; Lu, G. Q.; Standish, R. K. Chem. Mater., 2003, 15, 4732–4738.CrossRefGoogle Scholar
  68. 68.
    Zeng, Q. H.; Yu, A. B.; Lu, G. Q.; Standish, R. K. J. Phys. Chem. B, 2004, 108, 10025–10033.CrossRefGoogle Scholar
  69. 69.
    Heinz, H.; Castelijns, H. J.; Suter, U. W. J. Am. Chem. Soc., 2003, 125, 9500–9510.PubMedCrossRefGoogle Scholar
  70. 70.
    Heinz, H.; Suter, U. W. J. Phys. Chem. B, 2004, 108, 18341–18352.CrossRefGoogle Scholar
  71. 71.
    Born, M. Verh. Dtsch. Phys. Ges., 1919, 21, 13–24.Google Scholar
  72. 72.
    Haber, F. Verh. Dtsch. Phys. Ges., 1919, 21, 750–768.Google Scholar
  73. 73.
    Pospísil, M.; Kalendová, A.; Capková, P.; Simoník, J.; Valásková, M. J. Colloid Interface Sci., 2004, 277, 154–161.PubMedCrossRefGoogle Scholar
  74. 74.
    Paul, D. R.; Zeng, Q. H.; Yu, A. B.; Lu, G. Q. J. Colloid Interface Sci., 2005, 292, 462–468.PubMedCrossRefGoogle Scholar
  75. 75.
    Minisini, B.; Tsobnang, F. Composites A, 2005, 36, 531–537.CrossRefGoogle Scholar
  76. 76.
    Greenwell, H. C.; Jones, W.; Coveney, P. V.; Stackhouse, S. J. Mater. Chem., 2006, 16, 708–723.CrossRefGoogle Scholar
  77. 77.
    Tanaka, G.; Goettler, L. A. Polymer, 2002, 43, 541–553.CrossRefGoogle Scholar
  78. 78.
    Fermeglia, M.; Ferrone, M.; Pricl, S. Fluid Phase Equilib., 2003, 212, 315–329.CrossRefGoogle Scholar
  79. 79.
    Toth, R.; Coslanich, A.; Ferrone, M.; Fermeglia, M.; Pricl, S.; Miertus, S.; Chiellini, E. Polymer, 2004, 45, 8075–8083.CrossRefGoogle Scholar
  80. 80.
    Minisini, B.; Tsobnang, F. Composites A, 2005, 36, 539–544.CrossRefGoogle Scholar
  81. 81.
    Sikdar, D.; Katti, D. R.; Katti, K. S. Langmuir, 2006, 22, 7738–7747.PubMedCrossRefGoogle Scholar
  82. 82.
    Katti, K. S.; Sikdar, D.; Katti, D. R.; Ghosh, P.; Verma, D. Polymer, 2006, 47, 403–414.CrossRefGoogle Scholar
  83. 83.
    Sikdar, D.; Katti, D. R.; Katti, K. S.; Bhowmik, R. Polymer, 2006, 47, 5196–5205.CrossRefGoogle Scholar
  84. 84.
    Gardebien, F.; Gaudel-Siri, A.; Bredas, J. L.; Lazzaroni, R. J. Phys. Chem. B, 2004, 108, 10678–10686.CrossRefGoogle Scholar
  85. 85.
    Aleperstein, D.; Artzi, N.; Siegmann, A.; Narkis, M. J. Appl. Polym. Sci., 2005, 97, 2060–2066.CrossRefGoogle Scholar
  86. 86.
    Kuppa, V.; Foley, T. M. D.; Manias, E. Eur. Phys. J. E, 2003, 12, 159–165.PubMedCrossRefGoogle Scholar
  87. 87.
    Kuppa, V.; Manias, E. J. Polym. Sci. B, 2005, 43, 3460–3477.CrossRefGoogle Scholar
  88. 88.
    Boulet, P.; Bowden, A. A.; Coveney, P. V.; Whiting, A. J. Mater. Chem., 2003, 13, 2540–2550.CrossRefGoogle Scholar
  89. 89.
    Greenwell, H. C.; Harvey, M. J.; Boulet, P.; Bowden, A. A.; Coveney, P. V.; Whiting, A. Macromolecules, 2005, 38, 6189–6200.ADSCrossRefGoogle Scholar
  90. 90.
    Coveney, P. V.; Watkinson, M.; Whiting, A.; Boek, E. S. Stabilizing Clayey Formations, US Patent Number 6,787,507.Google Scholar
  91. 91.
    Chenevert, M. E. J. Petrol. Technol., 1970, 11, 1141.Google Scholar
  92. 92.
    Mody, F. K, Hale, A. H. J. Petrol. Technol., 1993, 45, 1093.Google Scholar
  93. 93.
    Bains, A. D.; Boek, E. S.; Coveney, P. V.; Williams, S. J.; Akbar, M. V. Mol. Simul., 2001, 26, 101–145.CrossRefGoogle Scholar
  94. 94.
    Zhang, J.; Rivero, M.; Choi, S. K. J. Phys. B, 2007, 40, 545–553.ADSCrossRefGoogle Scholar
  95. 95.
    Coveney, P. V.; Griffin, J. L. W., Watkinson, M.; Whiting, A.; Boek, E. Mol. Simul., 2002, 28, 295.CrossRefGoogle Scholar
  96. 96.
    Gaudel-Siri, A.; Brocorens, P.; Siri, D.; Gardebien, F.; Brédas, J.-L.; Lazzaroni, R. Langmuir, 2003, 19, 8287–8291.CrossRefGoogle Scholar
  97. 97.
    Fois, E.; Gamba, A.; Tilocca, A. Microporous Mesoporous Mater., 2003, 57, 263–272.CrossRefGoogle Scholar
  98. 98.
    Toth, R.; Ferrone, M.; Miertus, S.; Chiellini, E.; Fermeglia, M.; Pricl, S. Biomacromolecules, 2006, 7, 1714–1719.PubMedCrossRefGoogle Scholar
  99. 99.
    Boulet, P.; Greenwell, H. C.; Stackhouse, S.; Coveney, P. V. J. Mol. Struct. THEOCHEM, 2006, 762, 33–48.CrossRefGoogle Scholar
  100. 100.
    Bougeard, D.; Smirnov, K. S. Phys. Chem. Chem. Phys., 2007, 9, 226–245.PubMedCrossRefGoogle Scholar
  101. 101.
    Stackhouse, S.; Coveney, P. V.; Sandré, E. J. Am. Chem. Soc., 2001, 123, 11764–11774.PubMedCrossRefGoogle Scholar
  102. 102.
    Aquino, A. J. A.; Tunega, D.; Haberhauer, G.; Gerzabek, M. H.; Lischka, H. J. Comput. Chem., 2003, 24, 1853–1863.PubMedCrossRefGoogle Scholar
  103. 103.
    Aquino, A. J. A.; Tunega, D.; Gerzabek, M. H.; Lischka, H. J. Phys. Chem. B, 2004, 108, 10120–10130.CrossRefGoogle Scholar
  104. 104.
    Greenwell, H. C.; Stackhouse, S.; Coveney, P. V.; Jones, W. J. Phys. Chem. B. 2003, 107, 3476–3485.CrossRefGoogle Scholar
  105. 105.
    Manevitch, O. L.; Rutledge, G. C. J. Phys. Chem. B, 2004, 108, 1428–1435.CrossRefGoogle Scholar
  106. 106.
    Katti, D. R.; Ghosh, P.; Schmidt, S.; Katti, K. S. Biomacromolecules, 2005, 6, 3276–3282.PubMedCrossRefGoogle Scholar
  107. 107.
    Lindahl, E.; Edholm, O. Biophys J., 79, 426, 2000.PubMedADSCrossRefGoogle Scholar
  108. 108.
    Sheng, N.; Boyce, M. C.; Parks, D. M.; Rutledge, G. C.; Abes, J. I.; Cohen, R. E. Polymer, 2004, 45, 487–506.CrossRefGoogle Scholar
  109. 109.
    Zhu, L. J.; Narh, K. A. J. Polym. Sci. B, 2004, 42, 2391–2406.CrossRefGoogle Scholar
  110. 110.
    Buryachenko, V. A.; Roy, A.; Lafdi, K.; Anderson, K. L.; Chellapilla, S. Compos. Sci. Technol., 2005, 65, 2435–2465.CrossRefGoogle Scholar
  111. 111.
    Borodin, O.; Bedrov, D.; Smith, G. D.; Nairn, J.; Bardenhagen, S. J. Polym. Sci. B, 2005, 43, 1005–1013.CrossRefGoogle Scholar
  112. 112.
    Valavala, P. K.; Odegard, G. M. Rev. Adv. Mater. Sci., 2005, 9, 34–44.Google Scholar
  113. 113.
    Ginzburg, V. V.; Balazs, A. C. Macromolecules, 1999, 32, 5681–5688.ADSCrossRefGoogle Scholar
  114. 114.
    Smith, J. S.; Bedrov, D.; Smith, G. D. Compos. Sci. Technol. 2005, 63, 1599–1605.CrossRefGoogle Scholar
  115. 115.
    Anderson, K. L.; Sinsawat, A.; Vaia, R. A.; Farmer, B. L. J. Polym. Sci. B, 2005, 43, 1014–1024.CrossRefGoogle Scholar
  116. 116.
    Sinsawat, A.; Anderson, K. L.; Vaia, R. A.; Farmer, B. L. J. Polym. Sci. B., 2003, 41, 3272–3284.CrossRefGoogle Scholar
  117. 117.
    Coveney, P. V.; Saksena, R. S.; Zasada, S. J.; McKeown, M.; Pickles, Comp. Phys. Comm., 2007, 176, 406–418.ADSCrossRefGoogle Scholar
  118. 118.
    Broughton, J. Q.; Abraham, F. F.; Bernstein, N.; Kaxiras, E. Phys. Rev. B, 1999, 60, 2391–2402.ADSCrossRefGoogle Scholar
  119. 119.
    De Fabritiis, G.; Delgado-Buscalioni, R.; Coveney, P. V., Physical Review Letters, 2006, 97, 134501.PubMedADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pascal Boulet
    • 1
  • H. Christopher Greenwell
    • 2
  • Rebecca M. Jarvis
    • 2
  • William Jones
    • 3
  • Peter V. Coveney
    • 4
  • Stephen Stackhouse
    • 5
  1. 1.Université de Provence, UMR 6121 CNRSFrance
  2. 2.Centre for Applied Marine Sciences, School of Ocean SciencesUniversity of WalesUK
  3. 3.Department of ChemistryUniversity of CambridgeUK
  4. 4.Centre for Computational Science and Department of ChemistryUniversity College of LondonUK
  5. 5.Department of Earth SciencesUniversity College of LondonUK

Personalised recommendations