Nanocomposites pp 143-173 | Cite as

Structure and Mechanical Properties of Nanocomposites with Rod- and Plate-Shaped Nanoparticles

  • S. J. Picken
  • D. P. N. Vlasveld
  • H. E. N. Bersee
  • C. Özdilek
  • E. Mendes
Part of the Electronic Materials: Science and Technology book series (EMST, volume 10)

Particle-reinforced polymer composites or compounds have been used for decades to increase the stiffness and strength of polymers and to reduce thermal expansion. Polymer nanocomposites based on exfoliated layered silicates have been developed more recently [11, 23, 24] for improved mechanical properties, barrier properties, and reduced flammability. Polymer nanocomposites are polymers filled with finely dispersed particles that have at least one dimension in the nanometer range. Compared to composites containing larger dispersed particles, nanocomposites have the advantage of achieving the optimal properties at relatively low filler content, resulting in a lower density and better surface smoothness and transparency. This is due to the large aspect ratio and high stiffness of the particles, resulting from the exfoliation of the layered silicate particles. This can be especially favorable for moisture-sensitive polymers like polyamides, which loose a lot of their stiffness under moist conditions [10, 12].


Aspect Ratio Dynamic Mechanical Analysis Matrix Modulus Silicate Content Heat Distortion Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akkapeddi MK. Glass fiber reinforced polyamide-6 nanocomposites. Polym Compos 2000;21(4):576–85.CrossRefGoogle Scholar
  2. 2.
    Buining PA, Pathmamanoharan C, Jansen JBH, Lekkerkerker HNW. Preparation of colloidal boehmite needles by hydrothermal treatment of aluminium alkoxide precursors. J Am Ceram Soc 1991;74:1303.CrossRefGoogle Scholar
  3. 3.
    Brydges WT, Gulati ST, Baum G. Permeability of glass-ribbon reinforced composites. J Mater Sci 1975;10(12):2044–49.CrossRefADSGoogle Scholar
  4. 4.
    Fornes TD, Paul DR. Modelling properties of nylon6/clay nanocomposites using composite theories. Polymer 2003;44(17):4993–5013.CrossRefGoogle Scholar
  5. 5.
    Giannelis EP. Polymer layered silicate nanocomposites. Adv Mater 1996;8(1):29.CrossRefGoogle Scholar
  6. 6.
    Halpin JC, Kardos JL. Halpin-Tsai Equations–Review. Polym Eng Sci 1976;16(5):344–52.CrossRefGoogle Scholar
  7. 7.
    Halpin JC. Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 1969;3:732–34.Google Scholar
  8. 8.
    Hatta H, Taya M, Kulacki FA, Harder JF. Thermal diffusivities of composites with various types of filler. J Compos Mater 1992;26(5):612–25.CrossRefGoogle Scholar
  9. 9.
    Kelly A, Tyson WR. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 1969;13:329–50.CrossRefADSGoogle Scholar
  10. 10.
    Kohan MI. Nylon plastics handbook. Munich: Carl Hanser; 1995.Google Scholar
  11. 11.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. Mechanical-properties of nylon 6–clay hybrid. J Mater Res 1993;8(5):1185–89.CrossRefADSGoogle Scholar
  12. 12.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O. Sorption of water in nylon-6 clay hybrid. J Appl Polym Sci 1993;49(7):1259–64.CrossRefGoogle Scholar
  13. 13.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, Kaji K. Novel preferred orientation in injection-molded nylon-6-clay hybrid. J Polym Sci B Polym Phys 1995;33(7):1039–45.CrossRefGoogle Scholar
  14. 14.
    Kuelpmann A, Osman MA, Kocher L, Suter UW. Influence of platelet aspect ratio and orientation on the storage and loss moduli of HDPE-mica composites. Polymer 2005;46(2): 523–30.CrossRefGoogle Scholar
  15. 15.
    Monte SJ. Neoalkoxy titanate and zirconate coupling agent additives in thermoplastics. Polym Polym Compos 2002;10(1):1–52.MathSciNetGoogle Scholar
  16. 16.
    Nielsen LE. J Macromol Sci A 1967;5(1):929–42.CrossRefGoogle Scholar
  17. 17.
    Özdilek C, Kazimierczak K, Van der Beek D, Picken SJ. Preparation and properties of polyamide-6-boehmite nanocomposites. Polymer 2004;45:5207–14.Google Scholar
  18. 18.
    Özdilek C, Kazimierczak K, Picken SJ. Preparation and characterization of titanate-modified boehmite–polyamide-6 nanocomposites. Polymer 2005;46:6025–34.CrossRefGoogle Scholar
  19. 19.
    Özdilek C, Mendes E, Picken SJ. Nematic phase formation of boehmite in polyamide-6 nanocomposites. Polymer 2006;47(6):2189–97.CrossRefGoogle Scholar
  20. 20.
    Pielichowski J, Puszynski A. Polymer preparation methods. Krakow: Technical University of Krakow; 1978.Google Scholar
  21. 21.
    Reichert P, Nitz H, Klinke S, Brandsch R, Thomann R, Mulhaupt R. Poly(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification. Macromol Mater Eng 2000;275(2):8–17.CrossRefGoogle Scholar
  22. 22.
    Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE. Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 2004;45(2):487–506.CrossRefGoogle Scholar
  23. 23.
    Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O. Swelling behaviour of montmorillonite cation exchanged for omega-amino acids by epsilon-caprolactam. J Mater Res 1993;8(5):1174–8.CrossRefADSGoogle Scholar
  24. 24.
    Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O. Synthesis of nylon 6–clay hybrid. J Mater Res 1993;8(5):1179–84.CrossRefADSGoogle Scholar
  25. 25.
    Usuki A, Koiwai A, Kojima Y, Kawasumi M, Okada A, Kurauchi T, Kamigaito O. Interaction of nylon-6 clay surface and mechanical properties of nylon-6 clay hybrid. J Appl Polym Sci 1995;55(1):119–23.CrossRefGoogle Scholar
  26. 26.
    Van Bruggen MPB, Donker M, Lekkerkerker HNW, Hughes TL. Anomalous stability of aqueous boehmite dispersions induced by hydrolyzed aluminium poly-cations. Colloids Surf A 1999;150:115–28.CrossRefGoogle Scholar
  27. 27.
    Van Es M, Xiqiao F, Van Turnhout J, Van der Giessen E. Comparing polymer–clay nanocomposites with conventional composites using composite modeling. Specialty polymer additives. Oxford: Blackwell Science; 2001.Google Scholar
  28. 28.
    Van Es M. Polymer clay nanocomposites. The importance of particle dimensions. Thesis, Delft University of Technology; 2001.Google Scholar
  29. 29.
    Varlot K, Reynaud E, Kloppfer MH, Vigier G, Varlet J. Clay-reinforced polyamide: Preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae. J Polym Sci B Polym Phys 2001;39(12):1360–70.CrossRefGoogle Scholar
  30. 30.
    Vlasveld DPN, de Jong M, Bersee HEN, Gotsis AD, Picken SJ. The relation between rheological and mechanical properties of PA6 nano- and micro-composites. Polymer 2005;46(23):10279–89.CrossRefGoogle Scholar
  31. 31.
    Vlasveld DPN, Groenewold J, Bersee HEN, Mendes E, Picken SJ. Analysis of the modulus of polyamide-6 silicate nanocomposites using moisture controlled variation of the matrix properties. Polymer 2005;46:6102–13.CrossRefGoogle Scholar
  32. 32.
    Vlasveld DPN, Groenewold J, Bersee HEN, Picken SJ. Moisture absorption in polyamide-6 silicate nanocomposites and its influence on the mechanical properties. Polymer 2005;46(26):12567–76.CrossRefGoogle Scholar
  33. 33.
    Vlasveld DPN, Vaidya SG, Bersee HEN, Picken SJ. A comparison of the temperature dependence of the modulus, yield stress and ductility of nanocomposites based on high and low MW PA6 and PA66. Polymer 2005;46(10):3452–61.CrossRefGoogle Scholar
  34. 34.
    Wu YP, Jia QX, Yu DS, Zhang LQ. Modeling Young’s modulus of rubber-clay nanocomposites using composite theories. Polym Test 2004;23(8):903–09.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. J. Picken
    • 1
  • D. P. N. Vlasveld
    • 2
  • H. E. N. Bersee
    • 3
  • C. Özdilek
    • 4
  • E. Mendes
    • 5
  1. 1.Nanostructured MaterialsDelft University of TechnologyNetherlands
  2. 2.Promolding BVNetherlands
  3. 3.Design and Production of Composite Structures, Faculty of Aerospace EngineeDelft University of TechnologyNetherlands
  4. 4.Fundamentals of Advanced Materials, Faculty of Aerospace EngineeringDelft University of TechnologyNetherlands
  5. 5.Nanostructured MaterialsDelft University of TechnologyNetherlands

Personalised recommendations