Nanocomposites pp 119-141 | Cite as

Hybrid Metal Oxide–Polymer Nanostructured Composites: Structure and Properties

  • Alla Pivkina
  • Sergey Zavyalov
  • Joop Schoonman
Part of the Electronic Materials: Science and Technology book series (EMST, volume 10)

Within metal (metal oxide)/polymer nanocomposites, nanoparticles reveal specific interparticle interactions and interactions with the matrix they are dispersed in [1, 2]. Nanostructured anatase titanium dioxide has attracted widespread attention as a photo-electrode in an advanced regenerative dye-sensitised solar cell, referred to as the Grätzel cell [3]. It has been shown also that the nanostructured anatase material exhibits an enhancement factor of about 3 × 106 compared to the mean lithium-ion intercalation time of a dense layer of this Li-battery anode material [4].


Metal Content Adhesion Strength Percolation Threshold Polymer Nanocomposites Intrinsic Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.C. Roco, R.S. Williams, and A.P. Alivisatos, Nanotechnology Research Directions: IWGH Workshop Report. Vision for Nanotechnology R&D in the Next Decade, Dordrecht/Boston/London, Kluwer Academic Publishers, 2000.Google Scholar
  2. 2.
    EL. Nagaev, Small metal particles, Adv. Phys. Sci. (in Russian), 1992 162(9) 49–124.Google Scholar
  3. 3.
    B. O’Regan and M. Grätzel, Nature, 1991 353 737.CrossRefGoogle Scholar
  4. 4.
    J. Schoonman, Nanostructured materials in solid state ionics, Solid State Ionics, 2000 135 5–19.CrossRefGoogle Scholar
  5. 5.
    M. Szwarc, Polym. Eng. Sci., 1976 16 473.CrossRefGoogle Scholar
  6. 6.
    J.J. Senkevich, S.B. Desu, and V. Simkovic, Temperature studies of optical birefringence and X-ray diffraction with poly(p-xylylene), poly(chloro-p-xylylene) and poly(tetrafluoro-p-xylylene) CVD thin films. Polymer, 2000 41 2379–2390.Google Scholar
  7. 7.
    S. Zavyalov, A. Timofeev, A. Pivkina, and J. Schoonman, Metal–polymer nanocomposites: Formation and properties near the percolation threshold, in Nanostructured Materials: Selected Synthesis Methods, Properties and Applications, P. Knauth and J. Schoonman(editors), Boston/Dordrecht/London, Kluwer Academic Publishers, 2002, pp92–117.Google Scholar
  8. 8.
    S. Zavyalov, A. Pivkina, and J.Schoonman, Formation and characterization of metal-polymer nanostructured composites, Solid State Ionic, 2002 147 415–419.CrossRefGoogle Scholar
  9. 9.
    A.T. Fromhold and E.L. Cook, Kinetics of oxide films growth on metal crystals: Electron tunneling and ionic diffusion, Phys. Rev., 1967 158 610–612.CrossRefADSGoogle Scholar
  10. 10.
    N. Cabrera and N.F. Mott, Theory of oxidation of metals, Rep. Prog. Phys., 1948–1949 12 163–184.CrossRefADSGoogle Scholar
  11. 11.
    A.A. Volinsky, N.R. Moody, and W.W. Gerberich, Interfacial toughness measurements for thin films on substrates, Acta Mater., 2002 50 441–466.CrossRefGoogle Scholar
  12. 12.
    D. Kramer, H. Huang, M. Kriese, J. Robach, J. Nelson, A. Wright, D. Bahr, W.W. Gerberich, Acta Mater., 1999 47 333.CrossRefGoogle Scholar
  13. 13.
    Y. Wei and J.W. Hutchinson, J. Mech. Phys. Solids., 1997 45 1137.CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    W.F. Beach, Macromolecules, 1978 11 72–87.CrossRefADSGoogle Scholar
  15. 15.
    M. Pollak, T.H. Geballe, Phys. Rev., 1961 122 1742–1753.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alla Pivkina
    • 1
  • Sergey Zavyalov
    • 2
  • Joop Schoonman
    • 3
  1. 1.Semenov Institute of Physical ChemistryRussian Academy of ScienceRussia
  2. 2.Karpov Institute of Physical ChemistryRussia
  3. 3.Delft University of TechnologyDelft Institute for Sustainable EnergyNetherlands

Personalised recommendations