Variability Issue in the Nanometer Era

  • Kiyoo Itoh
  • Masashi Horiguchi
  • Hitoshi Tanaka
Part of the Series On Integrated Circuits And Systems book series (ICIR)


Logic Circuit Speed Spread SRAM Cell Dynamic Voltage Scaling Sense Amplifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T.C. Chen, “Where CMOS is going: trendy hype vs. real technology,” ISSCC Dig. Tech. Papers, pp. 22–28, Feb. 2006.Google Scholar
  2. [2]
    K. Itoh, VLSI Memory Chip Design, Springer-Verlag, NY, 2001.MATHGoogle Scholar
  3. [3]
    Y. Taur, D.A. Buchanan, W. Chen, D.J. Frank, K.E. Ismail, S.-H. Lo, G.A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S.J. Wind, and H.-S. Wong, “CMOS scaling into the nanometer regime,” Proc. IEEE, vol. 85, pp. 486–504, April 1997.Google Scholar
  4. [4]
    M. Yamaoka, K. Osada, R. Tsuchiya, M. Horiuchi, S. Kimura, and T. Kawahara, “Low power SRAM menu for SOC application using yin-yang-feedback memory cell technology,” Symp. VLSI Circuits Dig. Tech. Papers, pp. 288–291, June 2004.Google Scholar
  5. [5]
    K. Itoh, K. Osada, and T. Kawahara, “Reviews and future prospects of low-voltage embedded RAMs,” CICC Dig. Tech. Papers, pp.339–344, Oct. 2004.Google Scholar
  6. [6]
    K. Chen, C. Hu, P. Fang, M. R. Lin, and D. L. Wollesen, “Predicting CMOS speed with gate oxide and voltage scaling and interconnect loading effects,” IEEE Trans. Electron Devices, Vol. 44, no. 11, pp. 1951–1957, Nov. 1997.CrossRefGoogle Scholar
  7. [7]
    T. Burd, T. Pering, A. Stratakos and R. Brodersen, “A dynamic voltage scaled microprocessor system,” ISSCC Dig. Tech. Papers, pp. 294–295, Feb. 2000.Google Scholar
  8. [8]
    ITRS2003 Executive Summary Table 6a, p.57.Google Scholar
  9. [9]
    A. Agarwal, B. C. Paul and K. Roy, “Process variation in nano-scale memories: failure analysis and process tolerant architecture,” Proc. CICC, pp. 353–356, Oct. 2004.Google Scholar
  10. [10]
    A. Yamazaki, T. Fujino, K. Inoue, I. Hayashi, H. Noda, N. Watanabe, F. Morishita, J. Ootani, M. Kobayashi, K. Dosaka, Y. Morooka, H. Shimano, S. Soeda, A. Hachisuka, Y. Okumura, K. Arimoto, S. Wake and H. Ozaki, “A 56.8GB/s 0.18um embedded DRAM macro with dual port sense amplifier for 3D graphic controller,” ISSCC Dig. Tech. Papers, pp. 394–395, Feb. 2000.Google Scholar
  11. [11]
    O. Takahashi, S. H. Dhong, M. Ohkubo, S. Onishi, R. H. Dennard, R. Hannon, S. Crowder, S. S. Iyer, M. R. Wordeman, B. Davari, W. B. Weinberger and N. Aoki, “1-GHz fully pipelined 3.7-ns address access time 8 k x 1024 embedded synchronous DRAM macro,” IEEE J. Solid-State Circuits, vol. 35, pp. 1673–1679, Nov. 2000.Google Scholar
  12. [12]
    S. Hong, S. Kim, J.-K. Wee and S. Lee, “Low-voltage DRAM sensing scheme with offset-cancellation sense amplifier,” IEEE J. Solid-State Circuits, vol. 37, pp. 1356–1360, Oct. 2002.CrossRefGoogle Scholar
  13. [13]
    J. Y. Sim, K. W. Kwon, J. H. Choi, S. H. Lee, D. M. Kim, H. R. Hwang, K. C. Chun, Y. H. Seo, H. S. Hwang, D. I. Seo, C. Kim and S. I. Cho, “A 1.0V 256Mb SDRAM with offset-compensated direct sensing and charge-recycled precharge schemes,” ISSCC Dig. Tech. Papers, pp. 310–311, Feb. 2003.Google Scholar
  14. [14]
    H. L. Kalter, C. H. Stapper, J. E. Barth Jr., J. DiLorenzo, C. E. Drake, J. A. Fifield, G. A. Kelley Jr., S. C. Lewis, W. B. van der Hoeven and J. A. Yankosky, “A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip ECC,” IEEE J. Solid-State Circuits, vol. 25, pp. 1118–1128, Oct. 1990.CrossRefGoogle Scholar
  15. [15]
    K. Osada, Y. Saito, E. Ibe and K. Ishibashi, “16.7-fA/cell tunnel-leakage-suppressed 16-Mb SRAM for handling cosmic-ray-induced multierrors,” IEEE J. Solid-State Circuits, vol. 38, pp. 1952–1957, Nov. 2003.CrossRefGoogle Scholar
  16. [16]
    M. Miyazaki, G. Ono, T. Hattori, K. Shiozawa, K. Uchiyama, and K. Ishibashi, “1000-MIPS/W microprocessor using speed-adaptive threshold-voltage CMOS with forward bias,” ISSCC Dig. Tech. Papers, pp. 420–421, Feb. 2000.Google Scholar
  17. [17]
    K. Hardee, F. Jones, D. Butler, M. Parris, M. Mound, H. Calendar, G. Jones, L. Aldrich, C. Gruenschlaeger, M. Miyabayashi, K. Taniguchi, and T. Arakawa, “A 0.6V 205MHz 19.5ns tRC 16Mb embedded DRAM,” ISSCC Dig. Tech. Papers, pp. 200–201, Feb. 2004.Google Scholar
  18. [18]
    R. Tsuchiya, M. Horiuchi, S. Kimura, M. Yamaoka, T. Kawahara, S. Maegawa, T. Ipposhi, Y. Ohji, and H. Matsuoka, “Silicon on thin BOX: a new paradigm of the CMOSFET for low-power and high-performance application featuring wide-range back-bias control,” IEDM Dig. Tech. Papers, pp.631–634, Dec. 2004.Google Scholar
  19. [19]
    C. H. Stapper and H.-S. Lee, “Synergistic fault-tolerance for memory chips,” IEEE Trans. Computers, vol. 41, p.pp. 1078–1087, Sep. 1992.CrossRefGoogle Scholar
  20. [20]
    K. Itoh, M. Yamaoka, and T. Kawahara, “Impact of FD-SOI on deep-sub-100-nm CMOS LSIs–a view of memory designers–,” IEEE Intl. SOI Conference Dig. Tech. Papers, pp.103–104, Oct. 2006.Google Scholar
  21. [21]
    K. Itoh, M. Horiguchi, and T. Kawahara, “Ultra-low voltage nano-scale embedded RAMs,” ISCAS Proceedings, pp.25–28, May 2006.Google Scholar
  22. [22]
    A. Yamazaki, F. Horishita, N. Watanabe, T. Amano, M. Haraguchi, H. Noda, A. Hachisuka, K. Dosaka, K. Arimoto, S. Wake H. Ozaki and T. Yoshihara, “A study of sense-voltage margins in low-voltage-operating embedded DRAM Macros,” IEICE Trans. Electron., vol. E88-C, pp. 2020–2027, Oct. 2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+ Business Media, LLC 2007

Authors and Affiliations

  • Kiyoo Itoh
    • 1
  • Masashi Horiguchi
    • 2
  • Hitoshi Tanaka
    • 3
  1. 1.Hitachi, LtdTokyoJapan
  2. 2.Renesas Technology CorpTokyoJapan
  3. 3.Hitachi ULSI Systems Co., LtdTokyoJapan

Personalised recommendations