Ultra-Low Voltage Nano-Scale SRAM Cells

  • Kiyoo Itoh
  • Masashi Horiguchi
  • Hitoshi Tanaka
Part of the Series On Integrated Circuits And Systems book series (ICIR)


Soft Error SRAM Cell Sense Amplifier Subthreshold Current Soft Error Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Itoh, VLSI Memory Chip Design, Springer-Verlag, NY, 2001.Google Scholar
  2. [2]
    Y. Nakagome, M. Horiguchi, T. Kawahara, K. Itoh, “Review and future prospects of low-voltage RAM circuits,” IBM J. R&D, vol. 47, no. 5/6, pp. 525–552, Sep./Nov. 2003.Google Scholar
  3. [3]
    K. Itoh, K. Osada, and T. Kawahara, “Reviews and future prospects of low-voltage embedded RAMs,” CICC Dig. Tech. Papers, pp. 339–344, Oct. 2004.Google Scholar
  4. [4]
    K. Itoh, “Low-voltage embedded RAMs in the nanometer era,” ICICDT Dig. Tech. Papers, 235–242, May 2005.Google Scholar
  5. [5]
    S. Naffziger, B. Stackhouse, and T. Grutkowski, “The implementation of a 2-core multi-threaded Itanium®-family processor,” ISSCC Dig. Tech. Papers, pp. 182–183, Feb. 2005.Google Scholar
  6. [6]
    S-M Jung, J. Jang, W. Cho, J. Moon, K. Kwak, B. Choi, B. Hwang, H. Lim, J. Jeong, J. Kim, and K. Kim, “The revolutionary and truly 3-dimensional 25F2 SRAM technology with the smallest S3 (Stacked Single-crystal Si) cell, 0.16µm2, and SSTFT (Stacked Single-crystal Thin Film Transistor) for ultra high density SRAM,” Symp. VLSI Tech. Dig. Tech. Papers, pp. 228–229, June 2004.Google Scholar
  7. [7]
    H-J An, H-Y Nam, H-S Mo, J-P Son, B-T Lim, S-B Kang, G-H Han, J-M Park, K-H Kim, S-Y Kim, C-K Kwak, and H-G Byun, “64Mb mobile stacked single-crystal Si SRAM(S3RAM) with selective dual pumping scheme (SDPS) and multi cell burn-in scheme (MCBS) for high density and low power SRAM,” Symp. VLSI Circuits Dig. Tech. Papers, pp. 282–283, June 2004.Google Scholar
  8. [8]
    Y. H. Suh, H. Y. Nam, S. B. Kang, B. G. Choi, H. S. Mo, G. H. Han, H. K. Shin, W. R. Jung, H. Lim, C. K. Kwak, and H. G. Byun, “A 256 Mb synchronous-burst DDR SRAM with hierarchical bit-line architecture for mobile applications,” ISSCC Dig. Tech. Papers, pp. 476–477, Feb. 2005.Google Scholar
  9. [9]
    K. Noda, K. Matsui, K. Imai, K. Inoue, K. Takashiki, H. Kawamoto, K. Yoshida, K. Takada, N. Nakamura, T. Kimura, H. Toyoshima, Y. Koishikawa, S. Maruyama, T. Saitoh, and T. Tanigawa, “A 1.9-µm2 loadless CMOS four-transistor SRAM cell in a 0.18-µm logic technology,” IEDM Dig. Tech. Papers, pp. 643–646, Dec. 1998.Google Scholar
  10. [10]
    K. Takeda, Y. Aimoto, N. Nakamura, H. Toyoshima, T. Iwasaki, K. Noda, K. Matsui, S. Itoh, S. Masuoka, T. Horiuchi, A . Nakagawa, K. Shimogawa, and H. Takahashi, “A 16-Mb 400-MHz loadless CMOS four-transistor SRAM macro,” IEEE J. Solid-State Circuits, Vol. 35, no. 11, pp. 1631–1640, Nov. 2000.Google Scholar
  11. [11]
    K. Takeda, Y. Hagihara, Y. Arimoto, M. Nomura, Y. Nakazawa, T. Ishii, and H. Kobatake, “A read-static-noise-margin-free SRAM cell for low-VDD and high-speed applications,” ISSCC Dig. Tech. Papers, pp. 478–479, Feb. 2005.Google Scholar
  12. [12]
    K. Osada, Y. Saitoh, E. Ibe, and K. Ishibashi, “16.7fA/cell tunnel-leakage-suppressed 16-Mbit SRAM based on electric-field-relaxed scheme and alternate ECC for handling cosmic-ray-induced multi-errors”, ISSCC Dig. Tech Papers, pp. 302–303, Feb. 2003.Google Scholar
  13. [13]
    K. Itoh and H. Mizuno, “Low-voltage embedded-RAM technology: present and future,” Proc. 11th IFIP Int’l Conf. VLSI, pp. 393–398, Dec. 2001.Google Scholar
  14. [14]
    R. Tsuchiya, M. Horiuchi, S. Kimura, M. Yamaoka, T. Kawahara, S. Maegawa, T. Ipposhi, Y. Ohji, and H. Matsuoka, “Silicon on thin BOX: a new paradigm of the CMOSFET for low-power and high-performance application featuring wide-range back-bias control,” IEDM Dig. Tech. Papers, pp. 631–634, Dec. 2004.Google Scholar
  15. [15]
    M. Yamaoka, K. Osada, R. Tsuchiya, M. Horiuchi, S. Kimura, and T. Kawahara, “Low power SRAM menu for SOC application using yin-yang-feedback memory cell technology,” Symp. VLSI Circuits Dig. Tech. Papers, pp. 288–291, June 2004.Google Scholar
  16. [16]
    P. M. Carter and B. R. Wilkins, “Influences on soft error rates in static RAM’s,” IEEE J. Solid- State Circuits, vol. sc-22, No. 3, pp. 430–436, June 1987.CrossRefGoogle Scholar
  17. [17]
    S-M Jung, H. Lim, W. Cho, H. Cho, H. Hong, J. Jeong, S. Jung, H. Park, B. Son, Y. Jang, and K. Kim, “Soft error immune 0.46 µm2 SRAM cell with MIM node capacitor by 65 nm CMOS technology for ultra high speed SRAM,” IEDM Tech. Dig., pp. 289–292, Dec. 2003.Google Scholar
  18. [18]
    K. Osada, K. Yamaguchi, Y. Saitoh, and T. Kawahara, “SRAM immunity to cosmic-ray-induced multierrors based on analysis of an induced parasitic bipolar effect,” IEEE J. Solid-State Circuits, vol. 39, No. 5, pp. 827–833, May 2004.CrossRefGoogle Scholar
  19. [19]
    M. Horiguchi, M. Aoki, Y. Nakagome, S. Ikenaga, and K. Shimohigashi, “An experimental large-capacity semiconductor file memory using 16-level/cell storage,” IEEE J. Solid-State Circuits, Vol. 23, no. 1, pp. 27–33, Feb. 1988.CrossRefGoogle Scholar
  20. [20]
    H. L. Kalter, C. H. Stapper, J. E. Barth, Jr., J. DiLorenzo, C. E. Drake, J. A. Fifield, G. A. Kelley, Jr., S. C. Lewis, W. B. V. D. Hoeven, and J. A. Yankosky, “A 50-ns 16-Mb DRAM with a 10-ns data rate and on-chip ECC,” IEEE J. Solid-State Circuits, vol. 25, pp. 1118–1128, Oct. 1990.CrossRefGoogle Scholar
  21. [21]
    M. Khellah, N.S. Kim, J. Haward, G. Ruhl, M. Sunna, Y. Ye, J. Tschanz, D. Somasekhar, N. Borkar, F. Hamzaoglu, G. Pandya, A. Farhang, K. Zhang, and V. De, “A 4.2 GHz 0.3 mm2 256kb dual-VCC SRAM building block in 65nm CMOS,” ISSCC Dig. Tech. Papers, pp. 624–625, Feb. 2006.Google Scholar
  22. [22]
    K. Osada, J-U Shin, M. Khan, Y-de Liou, K. Wang, K. Shoji, K. Kuroda, S. Ikeda, and K. Ishibashi, “Universal-VDD 0.65–2.0V 32kB cache using voltage-adapted timing-generation scheme and a lithographical-symmetric Cell,” ISSCC, Dig. Tech. Papers, pp. 168–169, Feb. 2001.Google Scholar
  23. [23]
    K. Itoh, A. R. Fridi, A. Bellaouar, and M. I. Elmasry, “A deep sub-V, single power-supply SRAM cell with multi-Vt, boosted storage node and dynamic load,” Symp. VLSI Circuits Dig. Tech. Papers, pp. 132–133, June 1996.Google Scholar
  24. [24]
    M. Yamaoka, Y. Shinozaki, N. Maeda, Y. Shimazaki, K. Kato, S. Shimada, K. Yanagisawa, and K. Osada, “A 300MHz 25µA/Mb leakage on-chip SRAM module featuring process-variation immunity and low-leakage-active mode for mobile-phone application processor,” ISSCC Dig. Tech. Papers, pp. 494–495, Feb. 2004.Google Scholar
  25. [25]
    K. Zhang, U. Bhattacharya, Z. Chen, F. Hamzaoglu, D. Murray, N. Vallepalli, Y. Wang, and M. Bohr, “A 3-GHz 70Mb SRAM in 65nm CMOS technology with integrated column-based dynamic power supply,” ISSCC Dig. Tech. Papers, pp. 474–475, Feb. 2005.Google Scholar
  26. [26]
    M. Yamaoka, N. Maeda, Y. Shinozaki, Y. Shimazaki, K. Nii, S. Shimada, K. Yanagisawa, and T. Kawahara, “Low-power embedded SRAM modules with expanded margins for writing,” ISSCC Dig. Tech. Papers, pp. 480–481, Feb. 2005.Google Scholar
  27. [27]
    F. Assaderaghi, S. Parke, P. K. Ko, and C. Hu, “A novel silicon-on-insulator (SOI) MOSFET for ultralow voltage operation,” Symp. Low Power Electronics Dig. Tech. Papers, pp. 58–59, 1994.Google Scholar
  28. [28]
    M. Yamaoka, K. Osada, K. Itoh, R. Tsuchiya, and T. Kawahara, “Dynamic-Vt, dual-power-supply SRAM cell using D2G-SOI for low-power SoC application,” Int’l SOI Conf. Dig., pp. 109–111, Oct. 2004.Google Scholar
  29. [29]
    M. Yamaoka, R. Tsuchiya, and T. Kawahara, “SRAM circuit with expanded operating margin and reduced stand-by leakage current using thin-BOX FD-SOI transistors,” A-SSCC Dig. Tech. Papers, pp. 109–112, Nov. 2005.Google Scholar
  30. [30]
    T. C. Chen, “Where CMOS is going: trendy hype vs. real technology,” ISSCC Dig. Tech. Papers, pp. 22–28, Feb. 2006.Google Scholar
  31. [31]
    C-Ho Lee, J-M Yoon, C. Lee, K. Kim, S. B. Park, Y. J. Ahn, H. S. Kang, and D. Park, “The application of BT-FinFET technology for sub 60nm DRAM integration,” ICICDT Dig. Tech. Papers, pp. 37–41, May 2005.Google Scholar
  32. [32]
    J. Kedzierski, E. Nowak, T. Kanarsky, Y. Zhang, D. Boyd, R. Carruthers, C. Cabral, R. Amos, C. Lavoie, R. Roy, J. Newbury, E. Sullivan, J. Benedict, P. Saunders, K. Wong, D. Canaperi, M. Krishnan, K.-L. Lee, B. A. Rainey, D. Fried, P. Cottrell, H.-S. P. Wong, M. leong, and W. Haensch, “Metal-gate FinFET and fully-depleted SOI devices using total gate silicidation,” IEDM Dig. Tech. Papers, pp. 247–250, Dec. 2002.Google Scholar
  33. [33]
    E. Ibe, “Current and future trend on cosmic-ray-neutron induced single event upset at the ground down to 0.1-micron-devices,” The Svedberg Laboratory Workshop on Applied Physics, Uppsala, May 3, 2001.Google Scholar
  34. [34]
    E. Seevinck, F. J. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,” IEEE J. Solid-State Circuits, Vol. SC-22, No.5, pp.748–754, Oct.1987.Google Scholar
  35. [35]
    T. Douseki and S. Mutoh, “Static-noise margin analysis for a scaled-down CMOS memory cell,” IEICE Trans. on Electronics, Vol. J75-C-II, No. 7, pp. 350–361, July 1992 (in Japanese).Google Scholar
  36. [36]
    T. Sakurai, A. Matsuzawa, and T. Douseki, Fully-Depleted SOI CMOS Circuits and Technology for Ultralow-Power Applications, Springer, 2006.Google Scholar
  37. [37]
    R. V. Joshi, Y. Chan, D. Plass, T. Charest, R. Freese, R. Sautter, W. Huott, U. Srinivasan, D. Rodko, P. Patel, P. Shephard, and T. Werner, “A low power and high performance SOI SRAM circuit design with improved cell stability,” Int’l SOI Conf. Dig., pp. 4–7, Oct. 2006.Google Scholar
  38. [38]
    K. Itoh, M. Yamaoka, and T. Kawahara, “Impact of FD-SOI on deep sub-100-nm CMOS LSIs-a view of memory designers-” Int’l SOI Conf. Dig., pp. 103–104, Oct. 2006.Google Scholar
  39. [39]
    R. Takemura, K. Itoh, and T. Sekiguchi, “A 0.5-V FD-SOI twin-cell DRAM with offset-free dynamic-VT sense amplifiers,” ISLPED Dig. Tech. Papers, pp. 123–126, Oct. 2006.Google Scholar
  40. [40]
    C. M. Hsieh, P. C. Murley, and R. R. O’brien, “A Field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices,” IEEE Electron Device Letters, Vol. EDL-2, No.4, pp.103–105, April 1981.Google Scholar
  41. [41]
    K. Osada, Y. Saitoh, E. Ibe, and K. Ishibashi, “16.7-fA/cell tunnel-leakage-suppressed 16-Mbit SRAM for handling cosmic-ray-induced multi-errors,” IEEE J. Solid-State Circuits, Vol. 38, no. 11, pp. 1952–1957, Nov. 2003.CrossRefGoogle Scholar
  42. [42]
    K.-H. Kim, U. Kang, H.-J. Chung, D.-H. Park, W.-S. Kim, Y.-C. Jang, M. Park, H. Lee, J.-Y. Kim, J. Sunwoo, H.-W. Park, H.-K. Kim, S.-J. Chung, J.-K. Kim, H.-S. Kim, K.-W. Kwon, Y.-T. Lee, J. S. Choi, and C. Kim, “An 8Gb/s/pin 9.6ns row-cycle 288Mb deca-data rate SDRAM with an I/O error-detection scheme,” ISSCC Dig. Tech. Papers, pp. 156–157, Feb. 2006.Google Scholar
  43. [43]
    K. Itoh, M. Horiguchi, and T. Kawahara, “Ultra-low voltage nano-scale embedded RAMs,” ISCAS Proc., pp.25–28, May 2006.Google Scholar

Copyright information

© Springer Science+ Business Media, LLC 2007

Authors and Affiliations

  • Kiyoo Itoh
    • 1
  • Masashi Horiguchi
    • 2
  • Hitoshi Tanaka
    • 3
  1. 1.Hitachi, LtdTokyoJapan
  2. 2.Renesas Technology CorpTokyoJapan
  3. 3.Hitachi ULSI Systems Co., LtdTokyoJapan

Personalised recommendations