Skip to main content

Reducing Delay and Enhancing DoS Resistance in Multicast Authentication

  • Chapter
Network-Aware Security for Group Communications
  • 243 Accesses

In this chapter, our objective is to present strategies that reduce the delay associated with multicast authentication, make more efficient usage of receiver-side buffers, make delayed key disclosure authentication more resilient to buffer overflow denial of service attacks, and allow for multiple levels of trust in authentication. Throughout this chapter, we will focus our discussion on the popular multicast authentication scheme, Timed Efficient Stream Loss Tolerant Authentication (TESLA), though our techniques can apply to other authentication methods based upon the delayed key disclosure principle. Like other schemes based upon delayed key disclosure, TESLA is susceptible to DoS attacks and is not well-suited for delaysensitive applications. At the heart of our approach is a modification to TESLA, which we call Staggered TESLA, that employs several message authentication codes (MACs) that correspond to authentication keys that are staggered in time. Staggered MACs provide notions of partial authentication and allows for forged packets to be more readily removed from the buffer, thereby improving usage of the receiver’s buffer. A benefit of partial authentication is that one may define security policies that allow for partially authenticated packets to pass through the buffer, and thus packets will remain in the buffer for a shorter duration. In many scenarios accepting partially authenticated packets is unacceptable, and therefore we present two further techniques that may be used to reduce the delay needed for full authentication. The first strategy requires that the source has a guarantee that there are no adversaries within a certain network distance of the source. By having a guarantee of proximity protection, partially authenticated packets may be accepted as fully authentic. The second strategy for reducing full authentication delay that we present involves replicating the key distribution functionality within the network, and having a set of distributed key distributors transmit the key seeds. A benefit of all of these strategies is that they mitigate the threat of a buffer overflow DoS attack since an adversary must conduct a DoS attack at a higher attack rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Reducing Delay and Enhancing DoS Resistance in Multicast Authentication. In: Network-Aware Security for Group Communications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68848-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68848-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-68846-6

  • Online ISBN: 978-0-387-68848-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics