Advertisement

Sparse multidimensional scaling for blind tracking in sensor networks

  • R. Rangarajan
  • R. Raich
  • A. O. Hero III

In this chapter, we consider the problem of tracking a moving target using sensor network measurements. We assume no prior knowledge of the sensor locations and so we refer to this tracking as ‘blind’. We use the distributed weighted multidimensional scaling (dwMDS) algorithm to obtain estimates of the sensor positions. Since dwMDS can only find sensor position estimates up to rotation and translation, there is a need for alignment of sensor positions from one time frame to another. We introduce a sparsity constraint to dwMDS to align current time sensor positions estimates with those of the previous time frame. In the presence of a target, location estimates of sensors in the vicinity of the target will vary from their initial values. We use this phenomenon to perform link level tracking relative to the initially estimated sensor locations.

Keywords

Sensor Network Sensor Node Wireless Sensor Network Receive Signal Strength Sensor Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. L. Alspach and H. W. Sorensen. Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Automat. Contr., 82:1032-1063,1987.Google Scholar
  2. [2]
    A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, and S. Kulkarni. A line in the sand: a wireless sensor network for detection, classification, and tracking. Computer Networks, 46(5):605-634, 2004.CrossRefGoogle Scholar
  3. [3]
    Y. Bar-Shalom. Multitarget Multisensor Tracking: Advanced Applica-tions. Artech House, 1990.Google Scholar
  4. [4]
    R. R. Brooks, P. Ramanathan, and A. M. Sayeed. Distributed target classification and tracking in sensor networks. Proc. IEEE, 91(8):1163-1171,2003.CrossRefGoogle Scholar
  5. [5]
    S. Capkun, L. Buttyan, and J. Hubaux. SECTOR: Secure tracking of node encounters in multi-hop wireless networks. In Proc. 1st ACM Work-shop on Security of Ad Hoc and Sensor Networks (SASN), pages 21-32, 2003.Google Scholar
  6. [6]
    V. Cevher and J. H. McClellan. Sensor array calibration via tracking with the extended Kalman filter. In Proc. IEEE Intl. Conf. Acoust., Speech, Signal Processing, volume 5, pages 2817-2820, 2001.Google Scholar
  7. [7]
    J. Chamberland and V. V. Veeravalli. Decentralized detection in sensor networks. IEEE Trans. Signal Processing, 51(2):407-416, 2003.CrossRefGoogle Scholar
  8. [8]
    W. Cleveland. Robust locally weighted regression and smoothing scat-terplots. J. Am. Statist. Assoc., 74(368):829-836, 1979.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. Costa, N. Patwari, and A. O. Hero III. Distributed multidimensional scaling with adaptive weighting for node localization in sensor networks. ACM J. Sensor Networking, 2(1):39-64, 2006.CrossRefGoogle Scholar
  10. [10]
    A. J. Coulson, A. G. Williamson, and R. G. Vaughan. A statistical basis for lognormal shadowing effects in multipath fading channels. IEEE Trans. on Veh. Tech., 46(4):494-502, 1998.CrossRefGoogle Scholar
  11. [11]
    T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, London, 1994.MATHGoogle Scholar
  12. [12]
    M. L. Davidson. Multidimensional scaling. Wiley, New York, NY, 1983.Google Scholar
  13. [13]
    P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo, and J. Miguez. Particle filtering. IEEE Signal Processing Mag-azine, 20(5):19-38, 2003.CrossRefGoogle Scholar
  14. [14]
    L. Doherty, K. S. Pister, and L. E. Ghaoui. Convex position estimation in wireless sensor networks. In Proc. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), volume 3, pages 1655-1663, 2001.CrossRefGoogle Scholar
  15. [15]
    D. L. Donoho, M. Elad, and V. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. on Inform. Theory, 52(1):6-18, 2006.CrossRefMathSciNetGoogle Scholar
  16. [16]
    C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns of resource consumption in network traffic. In ACM SIGCOMM, pages 137-148, 2003.Google Scholar
  17. [17]
    J. C. Gower and G .B. Dijksterhuis. Procrustes Problems. Oxford University Press, 2004.Google Scholar
  18. [18]
    M. J. Greenacre. Theory and Applications of Correspondence Analysis. Academic Press Inc., London, UK, 1984.MATHGoogle Scholar
  19. [19]
    C. J. Gregory, R. R. Carthy, and L. G. Pearlstine. Survey and monitoring of species at risk at camp blanding training site, northeastern florida. Southeastern Naturalist, 5(3):473-498, 2006.CrossRefGoogle Scholar
  20. [20]
    P. Groenen. The majorization approach to multidimensional scaling: some problems and extensions. DSWO Press, 1993.Google Scholar
  21. [21]
    A. O. Hero III. Geometric entropy minimization (GEM) for anomaly de- tection and localization. In Proc. Advances in Neural Information Processing Systems (NIPS), 2006.Google Scholar
  22. [22]
    Y. Hu, A. Perrig, and D. Johnson. Packet leashes: A defense against wormhole attacks in wireless ad hoc networks. In Proc. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), volume 3, pages 1976-1986, 2003.Google Scholar
  23. [23]
    X. Ji and H. Zha. Sensor positioning in wirless ad-hoc sensor networks with multidimensional scaling. In Proc. IEEE Infocom, pages 2652-2661, 2004.Google Scholar
  24. [24]
    S. J. Julier and J. K. Uhlman. A new extension of the kalman fil- ter to nonlinear systems. In Proc. AeroSense: Eleventh Intl. Symp. on Aerospace/Defense Sensing, Simulations and Control Multi Sensor Fu-sion, Tracking and Resource Management II, volume 3068, pages 182-193,1997.Google Scholar
  25. [25]
    W. Kim, K. Mechitov, J. Y. Choi, and S. Ham. On target tracking with binary proximity sensors. In Proc. Fourth Intl Symposium Information Processing in Sensor Networks, pages 301-308, 2005.Google Scholar
  26. [26]
    J. Kumagai and S. Cherry. Sensors and sensibility. IEEE Spectrum, 41 (7):22-28, 2004.CrossRefGoogle Scholar
  27. [27]
    K. Lange, D. R. Hunter, and I. Yang. Optimization transfer using surro- gate objective functions. Journal of Computational and Graphical Statistics, 9(1):1-20, 2000.CrossRefMathSciNetGoogle Scholar
  28. [28]
    M. S. Lee and Y. H. Kim. An efficient multitarget tracking for car ap- plications. IEEE Trans. Industrial Electronics, 50(2):397-399, 2003.CrossRefGoogle Scholar
  29. [29]
    M. Leoncini, G. Resta, and P. Santi. Analysis of a wirless sensor dropping problem for wide-area environmental monitoring. In Fourth Intl. Symp. on Inform. Processing Sensor Networks (IPSN), pages 239-245, 2005.Google Scholar
  30. [30]
    R. L. Moses, D. Krishanmurthy, and R. Patterson. A self-localization method for wireless sensor networks. EURASIP J. Applied Signal Pro-cessing, 4:348-358, 2003.Google Scholar
  31. [31]
    R. Nagpal, H. Shrobe, and J. Bachrach. Organizing a global coordinate system from local information on an ad hoc sensor network. In Proc. 2nd Intl Workshop on Inform. Processing Sensor Networks (IPSN), Lecture Notes in Computer Science, volume 2634, pages 333-348, 2003.Google Scholar
  32. [32]
    D. Niculescu and B. Nath. Ad hoc positioning systems. In Proc. IEEE Global Communications Conference (GLOBECOM), volume 5, pages 2926-2931, 2001.Google Scholar
  33. [33]
    R. Niu, P. K. Varshney, and Q. Cheng. Distributed detection in a large wireless sensor network. Information Fusion, 7:380-394, 2006.CrossRefGoogle Scholar
  34. [34]
    P. Pathirana, N. Bulusu, S. Jha, and A. Savkin. Node localization using mobile robots in delay-tolerant sensor networks. IEEE Trans. Mobile Computing, 4(3):285-296, 2005.CrossRefGoogle Scholar
  35. [35]
    N. Patwari, A. O. Hero III, M. Perkins, N. S. Correal, and R. J. O’Dea. Relative location estimation in wireless sensor networks. IEEE Trans. Signal Processing, 51(8):2137-2148, 2003.CrossRefGoogle Scholar
  36. [36]
    N. Patwari, A. O. Hero III, and A. Pacholski. Manifold learning visual- ization of network traffic data. In Proc. Workshop on Mining Network Data, Philadelphia, PA, pages 191-196, 2005.Google Scholar
  37. [37]
    H. V. Poor. An Introduction to Signal Detection and Estimation. Springer-Verlag, New York, N.Y, 1988.MATHGoogle Scholar
  38. [38]
    R. Rangarajan, R. Raich, and A. O. Hero III. Single-stage waveform selection for adaptive resource constrained state estimation. In Proc. IEEE Intl. Conf. Acoust., Speech, Signal Processing, volume 3, pages 672-675, 2006.Google Scholar
  39. [39]
    A. Savvides, H. Park, and M. B. Srivastava. The bits and flops of the n-hop multilateration primitive for node localization problems. In Proc. Intl Workshop on Sensor Nets & Apps., pages 112-121, 2002.Google Scholar
  40. [40]
    Y. Shang, W. Rumi, Y. Zhang, and M. P. Fromherz. Localization from mere connectivity. In Proc. 4th ACM Intl. Symp. on Mobile ad hoc net-working and computing, pages 201-212, 2003.Google Scholar
  41. [41]
    N. Shrivastava, R. Mudumbai, U. Madhow, and S. Suri. Target tracking with binary proximity sensors: fundamental limits, minimal descriptions, and algorithms. In Proc. ACM 4th Intl. Conf. Embedded networked sensor systems (SenSys), pages 251-264, 2006.Google Scholar
  42. [42]
    C. Taylor, A. Rahimi, J. Bachrach, H. Shrobe, and A. Grue. Simultaneous localization, calibration, and tracking in an ad hoc sensor network. In Proc. 5th Intl. Conf. Proc. Information Processing in Sensor Networks (IPSN), pages 27-33, 2006.Google Scholar
  43. [43]
    E. A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear estimation. In IEEE Symp. Adaptive Systems for Signal Pro-cessing, Communications, and Control, pages 153-158, 2000.Google Scholar
  44. [44]
    N. Wang, M. H. Wang, and N. Q. Zhang. Wireless sensors in agriculture and food industry: Recent developments and future perspective. Com-puters and electronics in agriculture, 50(1):1-14, 2006.CrossRefGoogle Scholar
  45. [45]
    W. Wang and B. Bhargava. Visualization of wormholes in sensor net- works. In Proc. ACM Workshop on wireless security, pages 51-60, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. Rangarajan
    • 1
  • R. Raich
    • 1
  • A. O. Hero III
    • 1
  1. 1.University of MichiganAnn ArborUSA

Personalised recommendations