Distributed coverage of nonconvex environments

  • Anurag Ganguli
  • Jorge Cortés
  • Francesco Bullo


Parent Node Robotic Network Kernel Point Topological Exploration Common Reference Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Chvátal, “A combinatorial theorem in plane geometry,” Journal of Combinatorial Theory. Series B, vol. 18, pp. 39-41, 1975.Google Scholar
  2. [2]
    R. Honsberger, Mathematical Gems II: The Dolciani Mathematical Ex-positions. Mathematical Association of America, 1976.Google Scholar
  3. [3]
    S. Fisk, “A short proof of Chvátal’s watchman theorem,” Journal of Combinatorial Theory. Series B, vol. 24, p. 374, 1978.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    I. Rekleitis and V. Dujmović, “Efficient topological exploration,” in IEEE Int. Conf. on Robotics and Automation, (Detroit, MI), pp. 676-681, May 1999.Google Scholar
  5. [5]
    G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Topological exploration with multiple robots,” in International Symposium on Robotics and Ap-plications, (Anchorage, Alaska), May 1998.Google Scholar
  6. [6]
    I. M. Rekleitis, G. Dudek, and E. E. Milios, “Multi-robot exploration of an unknown environment, efficiently reducing the odometry error,” in International Joint Conference in Artifical Intelligence, vol. 2, (Nagoya, Japan), pp. 1340-1346, Aug. 1997.Google Scholar
  7. [7]
    A. Howard, M. J. Matarić, and G. S. Sukhatme, “An incremental self-deployment algorithm for mobile sensor networks,” Autonomous Robots, vol. 13, no. 2, pp. 113-126, 2002.MATHCrossRefGoogle Scholar
  8. [8]
    J. Cort´es, S. Mart´ınez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,” IEEE Transactions on Robotics and Automation, vol. 20, no. 2, pp. 243-255, 2004.Google Scholar
  9. [9]
    J. Grace and J. Baillieul, “Stochastic algorithms for autonomous robotic surveillance,” in IEEE Conf. on Decision and Control and European Con-trol Conference, (Seville, Spain), pp. 2200-2205, Dec. 2005.Google Scholar
  10. [10]
    R. Simmons, D. Apfelbaum, D. Fox, R. Goldman, K. Haigh, D. Musliner, M. Pelican, and S. Thrun, “Coordinated deployment of multiple heterogenous robots,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, (Takamatsu, Japan), pp. 2254-2260, 2000.Google Scholar
  11. [11]
    T. C. Shermer, “Recent results in art galleries,” IEEE Proceedings, vol. 80, no. 9, pp. 1384-1399, 1992.CrossRefGoogle Scholar
  12. [12]
    J. Urrutia, “Art gallery and illumination problems,” in Handbook of Com- putational Geometry (J. R. Sack and J. Urrutia, eds.), pp. 973-1027, Amsterdam, the Netherlands: North-Holland, 2000.Google Scholar
  13. [13]
    J. E. Goodman and J. O’Rourke, eds., Handbook of Discrete and Com- putational Geometry. Boca Raton, FL: CRC Press, 1997.Google Scholar
  14. [14]
    H. Choset, “Coverage for robotics - a survey of recent results,” Annals of Mathematics and Artificial Intelligence, vol. 31, pp. 113-126, 2001.CrossRefGoogle Scholar
  15. [15]
    H. H. González-Baños, A. Efrat, J.-C. Latombe, E. Mao, and T. M. Mu- rali, “Planning robot motion strategies for efficient model construction,” in International Symposium on Robotics Research, (Snowbird, UT), Oct. 1999.Google Scholar
  16. [16]
    J. S. B. Mitchell, “Shortest paths and networks,” in Handbook of Discrete and Computational Geometry (J. E. Goodman and J. O’Rourke, eds.), ch. 24, pp. 445-466, Boca Raton, FL: CRC Press, 1997.Google Scholar
  17. [17]
    P. K. Agarwal and M. Sharir, “Efficient algorithms for geometric opti- mization,” ACM Computing Surveys, vol. 30, no. 4, pp. 412-458, 1998.CrossRefGoogle Scholar
  18. [18]
    A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley Series in Proba-bility and Statistics, New York: John Wiley, 2 ed., 2000.Google Scholar
  19. [19]
    Z. Drezner, ed., Facility Location: A Survey of Applications and Methods. Springer Series in Operations Research, New York: Springer Verlag, 1995.Google Scholar
  20. [20]
    N. A. Lynch, Distributed Algorithms. San Mateo, CA: Morgan Kaufmann Publishers, 1997.Google Scholar
  21. [21]
    D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa- tion: Numerical Methods. Belmont, MA: Athena Scientific, 1997.Google Scholar
  22. [22]
    ınez, F. Bullo, J. Cortés, and E. Frazzoli, “On synchronous robotic networks - Part I: Models, tasks, and complexity . Part II: Time complexity of rendezvous and deployment algorithms,” IEEE Transactions on Automatic Control, Apr. 2005. Submitted.Google Scholar
  23. [23]
    L. Guilamo, B. Tovar, and S. M. LaValle, “Pursuit-evasion in an unkown environment using gap navigation trees,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, (Sendai, Japan), pp. 3456-3462, Sept. 2004.Google Scholar
  24. [24]
    V. Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion in a polygonal environment,” IEEE Transactions on Robotics, vol. 5, no. 21, pp. 864-875, 2005.Google Scholar
  25. [25]
    N. Moshtagh, A. Jadbabaie, and K. Daniilidis, “Vison-based distributed coordination of multiagent systems,” In Robotics: Science and Systems (S. Thrun, G. Sukhatme, S. Schaal, and O. Brock, eds.), pp. 41-48, Cam-bridge, MA: MIT Press, 2005.Google Scholar
  26. [26]
    A. Ganguli, J. Cortés, and F. Bullo, “Distributed deployment of asyn-chronous guards in art galleries,” in American Control Conference, (Min-neapolis, MN), pp. 1416-1421, June 2006.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anurag Ganguli
    • 1
  • Jorge Cortés
    • 2
  • Francesco Bullo
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Applied Mathematics and StatisticsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations