Skip to main content

Resource Allocation and Cost in Hybrid Solar/Wind Powered WLAN Mesh Nodes

  • Chapter
Book cover Wireless Mesh Networks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The SolarMESH Network. http://owl.mcmaster.ca/solarmesh/. McMaster University. Hamilton, Ontario, Canada., 2004.

    Google Scholar 

  2. L. Narvarte and E. Lorenzo, “On the usefulness of stand-alone PV sizing methods,” Progress in Photovoltaics: Research and Applications, Prog. Photovolt: Res. Appl., 8: 391–409, 2000.

    Google Scholar 

  3. H. A. M. Maghraby, M. H. Shwehdi, and G. K. Al-Bassam, “Probabilistic assessment of photovoltaic (PV) generation system,” IEEE Transactions on Power Systems, 17(1):205–208, 2002.

    Article  Google Scholar 

  4. L. L. Bucciarelli, “The effect of day-to-day correlation in solar radiation on the probability of loss of power in a stand-alone photovoltaic energy system,” Solar Energy, 36(1):11–14, 1986.

    Article  Google Scholar 

  5. L.L. Bucciarelli, “Estimating loss-of power probabilities of stand-alone photovoltaic solar energy systems,” Solar Energy, 32(2):205–209, 1984.

    Article  Google Scholar 

  6. F.M. Safie, “Probabilistic modeling of solar power systems,” in Proc. of Annual Reliability and Maintainability Symposium, 1989., pages 425–430, 1989.

    Google Scholar 

  7. I. Abouzahr and R. Ramakumar, “Loss of power supply probability of stand-alone photovoltaic systems: A closed form solution approach,” IEEE Transactions on Energy Conversion, 6(1):1–11, 1991.

    Article  Google Scholar 

  8. U. Grasselli, “Probabilistic design of high quality power supply photovoltaic systems,” in Industrial and Commercial Power Systems Technical Conference, 1993. Conference Record, Papers Presented at the 1993 Annual Meeting, 1993.

    Google Scholar 

  9. S. Saengthong and S. Premrudeepreechacham, “A simple method in sizing related to the reliability supply of stand-alone photovoltaic systems,” in Proc. of the Twenty-Eighth IEEE Photovoltaic Specialists Conference, 2000., pp. 1630–1633, 2000.

    Google Scholar 

  10. D. Macomber, “Optimizing residential photovoltaic system size using approximate reasoning,” in Proc. of First International Symposium on Uncertainty Modeling and Analysis, pp. 558–563, 1990.

    Google Scholar 

  11. M. Bouzguenda and S. Rahman, “Energy management onboard the space station-a rule-based approach,” IEEE Transactions on Aerospace and Electronic Systems, 27(2):302–310, 1991.

    Article  Google Scholar 

  12. P. E. Baikie, M. I. Gillibrand, and K. Peters, “The effect of temperature and current density on the capacity of lead-acid battery plates,” Electrochimica Acta, 17:839–844, 1972.

    Article  Google Scholar 

  13. Z. M. Salameh, M. A. Casacca, and W. A. Lynch, “A mathematical model for lead-acid batteries,” IEEE Transactions on Energy Conversion, 7(1):93–98, 1992.

    Article  Google Scholar 

  14. A. Pesaran and V. Johnson, “Battery thermal models for hybrid vehicle simulations,” Journal of Power Sources, 110:377–382, 2002.

    Article  Google Scholar 

  15. A. Farbod, “Design and resource allocation for solar-powered ESS mesh networks,” Master’s thesis, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1, August 2005.

    Google Scholar 

  16. B. S. Borowy and Z.M. Salameh, “Optimum photovoltaic array size for a hybrid wind/PV system,” IEEE Transactions on Energy Conversion, 9(3):482–488, 1994.

    Article  Google Scholar 

  17. A. D. Bagul, Z. M. Salameh, and B. Borowy, “Sizing of a stand-alone hybrid wind-photovoltaic system using a three-event probability density approximation,” Solar Energy, 56(4):323–335(13), April 1996.

    Google Scholar 

  18. W. Kellogg, M. Nehrir, G. Venkataramanan, and V. Gerez, “Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems,” IEEE Transactions on Energy Conversion, 13(1):70–75, March 1998.

    Article  Google Scholar 

  19. C. Leclerc and C. Masson, “Abnormally high power output of wind turbine in cold weather: A preliminary study,” International Journal of Rotating Machinery, 9(1):23–33, 2003. doi:10.1155/S1023621X03000034.

    Google Scholar 

  20. D.Heinemann, “Energy Meteorology: Lecture Notes,” Postgraduate Programme Renewable Eenergy Carl von Ossietzky University, 2002.

    Google Scholar 

  21. F. Zhang, T. D. Todd, D. Zhao, and V. Kezys, “Power saving access points for IEEE 802.11 wireless network infrastructure,” in Proc. of IEEE Wireless Communications and Networking Conference 2004 (WCNC’04), March 2004.

    Google Scholar 

  22. Y. Li, T.D. Todd, and D. Zhao, “Access point power saving in solar/battery powered IEEE 802.11 ESS mesh networks,” in Proc. of the Second International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QSHINE’2005), August 2005.

    Google Scholar 

  23. IEEE Standards Department. Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Quality of Service (QoS) Enhancements. IEEE Press, 2005.

    Google Scholar 

  24. IEEE Standards Department. 802.11s ESS Mesh Networking working group, 2004.

    Google Scholar 

  25. National Solar RadiationData Base. http://rredc.nrel.gov/solar/. National Renewable Energy Laboratory (NREL), U.S. Department of Energy, 2004.

    Google Scholar 

  26. NationalClimate Data and Information Archive. http://www.climate.weatheroffice.ec.gc.ca/. The Meteorological Service of Canada, Canada, 2004.

    Google Scholar 

  27. Marlec EngineeringCo Ltd. “Rutland 503 Wind Charger Data Sheet”. http://www.marlec.co.uk/products/prods/rut503.htm.

    Google Scholar 

  28. Canadian Wind EnergyAssociation CanWEA. “Cost Comparison for Small Wind Turbine Sizes”. http://www.smallwindenergy.ca/en/Overview/Costs/CostComparison.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sayegh, A.A., Todd, T.D., Smadi, M.N. (2008). Resource Allocation and Cost in Hybrid Solar/Wind Powered WLAN Mesh Nodes. In: Hossain, E., Leung, K. (eds) Wireless Mesh Networks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68839-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68839-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-68838-1

  • Online ISBN: 978-0-387-68839-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics