Advertisement

End-to-End Design Principles for Broadband Cellular Mesh Networks

  • Ö. Oyman
  • S. Sandhu

Keywords

Mutual Information Orthogonal Frequency Division Multiplex Channel State Information Orthogonal Frequency Division Multiplex System Relay Station 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Pabst, B. Walke, D. Schultz, P. Herhold, H. Yanikomeroglu, S. Mukherjee, H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Aghvami, D. Falconer, and G.Fettweis, “Relay-based deployment concepts for wireless and mobile broadband radio,” IEEE Communications Magazine, vol. 42, no. 9, pp. 80–89, Sept. 2004.CrossRefGoogle Scholar
  2. 2.
    Ö. Oyman, J.N. Laneman, and S. Sandhu, “Multihop relaying for broadband wireless mesh networks: From theory to practice,” IEEE Communications Magazine, 2007.Google Scholar
  3. 3.
    Ö. Oyman, “End-to-end throughput and latency measures for multihop routing in relay-assisted broadband cellular OFDM systems,” in Proc. IEEE Radio and Wireless Symposium, Long Beach, CA, Jan. 2007.Google Scholar
  4. 4.
    Ö. Oyman, “OFDM2A: A centralized resource allocation policy for cellular multihop networks,” in Proc. IEEE Asilomar Conference on Signals, SystemsComputers, Monterey, CA, Oct. 2006.Google Scholar
  5. 5.
    Ö. Oyman, “OFDM^2A:A centralized resource allocation policy for cellular multihop networks,” in Proc. IEEE Asilomar Conference on Signals, Systems and Computers, Monterey, CA, Oct. 2006.Google Scholar
  6. 6.
    Ö. Oyman and S.Sandhu, “Non-ergodic power-bandwidth tradeoff in linear multihop networks,”in Proc. IEEE International Symposium on Information Theory (ISIT’06), Seattle, WA, July 2006.Google Scholar
  7. 7.
    Ö. Oyman, “Reliability bounds for delay-constrained multihop networks,” in Proc. Allerton Conference on Communication, Control and Computing, Monticello, IL, Sep. 2006.Google Scholar
  8. 8.
    Ö. Oyman and S.Sandhu, “Throughput improvements in micro-cellular multihop networks,” in IEEE 802.16 Multihop Relay Study Group, Vancouver, Canada, Nov. 2005, available online at: http://wirelessman.org/relay/index.html.Google Scholar
  9. 9.
    Ö. Oyman, S.Sandhu, and N. Himayat, “End-to-end throughput metrics for QoS management in 802.16j MR Systems,” in IEEE 802.16 Multihop Relay Task Group, Dallas, TX, Nov. 2006, available online at: http://wirelessman.org/relay/index.html.Google Scholar
  10. 10.
    R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio multihop wireless mesh networks,” in Proc. ACM MobiCom’04, Philadelphia, PA, Sep. 2004.Google Scholar
  11. 11.
    C. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers,” in Proc. ACM SIGCOMM, London, UK, 1994.Google Scholar
  12. 12.
    M. Sikora, J.N. Laneman, M. Haenggi, D.J. Costello, and T.E. Fuja, “On the optimum number of hops in linear ad hoc networks,” in Proc. IEEE Inform. Theory Workshop (ITW), San Antonio, TX, Oct. 2004.Google Scholar
  13. 13.
    M. Sikora, J.N. Laneman, M. Haenggi, D.J. Costello, and T.E. Fuja, “Bandwidth and power efficient routing in linear wireless networks,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2624–2633, June 2006.CrossRefMathSciNetGoogle Scholar
  14. 14.
    H. BÖlcskei, D. Gesbert, and A.J. Paulraj, “On the capacity of OFDM-based spatial multiplexing systems,” IEEE Transactions on Communications, vol. 50, no. 2, pp. 225–234, Feb. 2002.CrossRefGoogle Scholar
  15. 15.
    Channel Models for Fixed Wireless Applications, IEEE 802.16.3c-01/29r5, 2003.Google Scholar
  16. 16.
    L.H. Ozarow, S. Shamai, and A.D. Wyner, “Information theoretic considerations for cellular mobile radio,” IEEE Transactions on Vehicular Technology, vol. 43, no. 2, pp. 359–378, May 1994.CrossRefGoogle Scholar
  17. 17.
    R. Knopp and P. Humblet, “Information capacity and power control in single cell multiuser communications,” in Proc. IEEE Int. Computer Conf., Seattle, WA, Jun. 1995.Google Scholar
  18. 18.
    D.Tse and S.Hanly, “Multi-access fading channels: Polymatroid structure, optimal resource allocation and throughput capacities,” IEEE Transactions on Information Theory, vol. 44, no. 7, pp. 2796–2815, Nov. 1998.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    P. Viswanath, D.N.C. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Transactions on Information Theory, vol. 48, no. 6, pp. 1277–1294, Jun. 2002.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Y.W. Cheong, R.S. Cheng, K.B. Latief, and R.D. Murch, “Multiuser OFDM with adaptive subcarrier, bit and power allocation,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 10, pp. 1747–1758, Oct. 1999.CrossRefGoogle Scholar
  21. 21.
    D.Kivanc, G.Li, and H.Liu, “Computationally efficient bandwidth allocation and power control for OFDMA,” IEEE Transactions on Wireless Communications, vol. 2, no. 6, pp. 1150–1158, Nov. 2003.CrossRefGoogle Scholar
  22. 22.
    M. Ergen, S. Coleri, and P. Varaiya, “QoS aware adaptive resource allocation techniques for fair scheduling in OFDMA based broadband wireless access systems,” IEEE Transactions on Broadcasting, vol. 49, no. 4, pp. 362–370, Dec. 2003.CrossRefGoogle Scholar
  23. 23.
    H. Viswanathan and S. Mukherjee, “Throughput-range tradeoff of wireless mesh backhaul networks,” IEEEJournal on Selected Areas in Communications, vol. 24, no. 3, pp. 593–602, Mar. 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ö. Oyman
    • 1
  • S. Sandhu
    • 1
  1. 1.Intel CorporationUSA

Personalised recommendations