Advertisement

Degrees of Cooperation in Dynamic Spectrum Access for Distributed Cognitive Radios

Keywords

Nash Equilibrium Cognitive Radio Cluster Head Primary User Secondary User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Select. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb. 2005.CrossRefGoogle Scholar
  2. 2.
    I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput. Netw. Int. J. Comput. Telecommun. Netw., vol. 50, no. 13, pp. 2127–2159, Sept. 2006.MATHGoogle Scholar
  3. 3.
    Z. Han, Z. Ji, and K. J. Ray Liu, “Fair multiuser channel allocation for OFDMA networks using Nash bargaining solutions and coalitions,” IEEE Trans. Commun., vol. 53, no. 8, pp. 1366–1376, 2005.CrossRefGoogle Scholar
  4. 4.
    Z. Han, C. Pandana, and K. J. Ray Liu, “Distributive opportunistic spectrum access for cognitive radio using correlated equilibrium and no-regret learning,” in Proc. of IEEE Wireless Communications and Networking Conference (Hong Kong, China), Mar. 2007.Google Scholar
  5. 5.
    Z. Han, Z. Ji, and K. J. Ray Liu, “A referee-based distributed scheme of resource competition game in multi-cell multi-user OFDMA networks,” IEEE J. Select. Areas Commun., Special Issue on Non-cooperative Behavior in Networking, 2nd Quarter, 2007.Google Scholar
  6. 6.
    Z. Han, C. Pandana, and K. J. R. Liu, “A self-learning repeated game framework for optimizating packet forwarding networks,” in Proc. of IEEE Wireless Communications and Networking Conference (New Orleans, LA), pp. 2131–2136, Mar. 2005.Google Scholar
  7. 7.
    Z. Han, Z. Ji, and K. J. Ray Liu, “Dynamic distributed rate control for wireless networks by optimal cartel maintenance strategy,” in Proc. of IEEE Global Telecommunications Conference, vol. 6 (Dallas, TX), pp. 3454–3458, Nov. 2004.Google Scholar
  8. 8.
    X. Liu and W. Wang, “On the characteristics of spectrum-agile communication networks,” in Proc. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005 (DySPAN 2005) (Baltimore, MD), pp. 214–223, Nov. 2005.Google Scholar
  9. 9.
    Z. Han and K. J. Ray Liu, “Non-cooperative power control game and throughput game over wireless networks,” IEEE Trans. Commun., vol. 53, no. 10, pp. 1625–1629 Oct. 2005.CrossRefGoogle Scholar
  10. 10.
    A. B. MacKenzie and L. A. DaSilva, Game theory for wireless engineers. Morgan and Claypool Publishers, 2006.Google Scholar
  11. 11.
    D. Niyato and E. Hossain, “A game-theoretic approach to competitive spectrum sharing in cognitive radio networks,” in Proc. of IEEE Wireless Communication and Networking Conference (Hong Kong), March 2007.Google Scholar
  12. 12.
    D. Niyato and E. Hossain, “Hierarchical spectrum sharing in cognitive radio: A microeconomic approach,” in Proc. of IEEE Wireless Communication and Networking Conference (Hong Kong), March 2007.Google Scholar
  13. 13.
    B. Wang, Z. Han, and K. J. Ray Liu, “Distributed relay selection and power control for multiuser cooperative communication networks using buyer/seller game,” in Proc. of Annual IEEE Conference on Computer Communications, INFOCOM (Anchorage, Alaska), May 2007.Google Scholar
  14. 14.
    D. P. Bertsekas and R. G. Gallager, Data networks, 2nd ed. Prentice-Hall, 1992.Google Scholar
  15. 15.
    Y. Yang and T. S. P. Yum, “Delay distributions of slotted ALOHA and CSMA,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1846–1857, Nov. 2003.CrossRefGoogle Scholar
  16. 16.
    R. J. Aumann, “Subjectivity and correlation in randomized strategy,” J. Math. Econ., vol. 1, no. 1, pp. 67–96, 1974.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    R. J. Aumann, “Correlated equilibrium as an expression of Bayesian rationality,” Econometrica, vol. 55, no. 1, pp. 1–18, Jan. 1987.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to correlated equilibrium,” Econometrica, vol. 68, no. 5, pp. 1127–1150, Sept. 2000.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    R. B. Myerson, Game theory: Analysis of conflict, 5th ed. Harvard University Press 2002.Google Scholar
  20. 20.
    Q. Zhao, L. Tong, and A. Swami, “Decentralized cognitive MAC for dynamic spectrum access,” in Proc. of IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005 (DySPAN 2005) (Baltimore, MD), pp. 224–232, Nov. 2005.Google Scholar
  21. 21.
    Z. Han, Z. Ji, and K. J. Ray Liu, “Power minimization for multi-cell OFDM networks using distributed non-cooperative game approach,” in Proc. of IEEE Global Telecommunications Conference (Dallas, TX), Nov. 2004.Google Scholar
  22. 22.
    S. T. Chung, S. J. Kim, and J. M. Cioffi, “A game-theoretic approach to power allocation in frequency-selective Gaussian interference channels,” in Proc. of IEEE International Symposium on Information Theory (Pacifico Yokohama, Kanagawa, Japan), June 2003.Google Scholar
  23. 23.
    S. T. Chung and A. J. Goldsmith, “Degrees of freedom in adaptive modulation: A unified view,” IEEE Trans. Commun., vol. 49, no. 9, pp. 1561–1571, Sept. 2001.MATHCrossRefGoogle Scholar
  24. 24.
    D. P. Bertsekas, Nonlinear programming, 2nd ed. Athena Scienific, 1999.Google Scholar
  25. 25.
    R. Yates, “A framework for uplink power control in cellular radio systems,” IEEE J. Select. Areas Commun., vol. 13, no. 7, pp. 1341–1348, Sept. 1995.CrossRefGoogle Scholar
  26. 26.
    G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power control algorithms and its convergence,” IEEE Trans. Veh. Technol., vol. 40, no. 4, pp. 641–646, Nov. 1993.Google Scholar
  27. 27.
    L. Anderegg and S. Eidenbenz, “Ad hoc-VCG: A truthful and cost-efficient routing protocol for mobile ad hoc networks with selfish agents,” in Proc. of ACM Ninth Annual International Conference on Mobile Computing and Networking (MobiCom) (San Diego, CA), Sept. 2003.Google Scholar
  28. 28.
    V. Krishna, Auction theory. Academic Press, 2002.Google Scholar
  29. 29.
    J. Huang, R. Berry, and M. L. Honig, “Auction-based spectrum sharing,” ACM/Springer Mobile Netw. Appl. J. (MONET), vol. 11, no. 3, pp. 405–418, June 2006.CrossRefGoogle Scholar
  30. 30.
    H. Yaiche, R. R. Mazumdar, and C. Rosenberg, “A game theoretic framework for bandwidth allocation and pricing in broadband networks,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 667–678, Oct. 2000.CrossRefGoogle Scholar
  31. 31.
    D. Grosu, A. T. Chronopoulos, M. Y. Leung, “Load balancing in distributed systems: An approach using cooperative games,” in Proc. of IPDPS 2002, pp. 52–61, 2002.Google Scholar
  32. 32.
    H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Res. Log., Quarterly 2, 1955.Google Scholar
  33. 33.
    J. E. Suris, L. DaSilva, Z. Han, and A. MacKenzie, “Cooperative game theory approach for distributed spectrum sharing,” in Proc. of IEEE International Conference on Communications (Glasgow, Scotland), June 2007.Google Scholar
  34. 34.
    H. Zheng and L. Cao, “Device-centric spectrum management,” in Proc. of IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005 (DySPAN 2005) (Baltimore, MD), pp. 56–65, Nov. 2005.Google Scholar
  35. 35.
    K.-D. Lee and V. C. M. Leung, “Fair allocation of subcarrier and power in an OFDMA wireless mesh network,” IEEE J. Select. Areas Commun., vol. 24, no. 11, pp. 2051–2060, Nov. 2006.CrossRefGoogle Scholar
  36. 36.
    F. Fu, A. Fattahi, and M. van der Schaar, “Game-theoretic paradigm for resource management in spectrum agile wireless networks,” in Proc. of IEEE International Conference on Multimedia and Expo (Toronto, Canada), July 2006.Google Scholar

Additional Reading

  1. 1.
    X. Liu and S. Shankar, “Sensing-based opportunistic channel access,” ACM MONET, vol. 11, no. 4, pp. 577–591, Aug. 2006.Google Scholar
  2. 2.
    J. Huang, R. A. Berry, and M. L. Honig, “Spectrum sharing with distributed interference compensation,” in Proc. of IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005 (DySPAN 2005) (Baltimore, MD), pp. 88–93, Nov. 2005.Google Scholar
  3. 3.
    V. Srivastava, J. Neel, A. MacKenzie, R. Menon, L. A. DaSilva, J. Hicks, J. H. Reed, and R. Gilles, “Using game theory to analyze wireless ad hoc networks,” IEEE Commun. Surv. Tutor., vol. 7, no. 4, pp. 46–56, 4th quarter 2005.CrossRefGoogle Scholar
  4. 4.
    R. Etkin, A. Parekh, and D. Tse, “Spectrum sharing for unlicenced bands,” in Proc. of IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005 (DySPAN 2005) (Baltimore, MD), pp. 251–258, Nov. 2005.Google Scholar
  5. 5.
    N. Nie and C. Comaniciu, “Adaptive channel allocation spectrum etiquette for cognitive radio networks,” ACM MONET (Mobile Networks and Applications), Special Issue on Reconfigurable Radio Technologies in Support of Ubiquitous Seamless Computing, 2006.Google Scholar
  6. 6.
    J. Neel, J. Reed, and R. Gilles, “Game models for cognitive radio algorithm analysis,” in Proc. of SDR Forum Technical Conference (Phoenix, Arizona), pp. 15–18, Nov. 2004.Google Scholar
  7. 7.
    C. Saraydar, N. Mandayam, and D. Goodman, “Efficient power control via pricing in wireless data networks,” IEEE Trans. Commun., vol. 50, no. 2, pp. 291–303, Feb. 2002.CrossRefGoogle Scholar
  8. 8.
    C. Pandana and K. J. Ray Liu, “Near-optimal reinforcement learning framework for energy-aware sensor communications,” IEEE J. Select. Areas Commun., vol. 23, pp. 259–268, Apr. 2005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Zhu Han
    • 1
  1. 1.Electrical and Computer Engineering DepartmentBoise State UniversityBoiseUSA

Personalised recommendations