Skip to main content

Link Adaptation in OFDM-Based Cognitive Radio Systems

  • Chapter
Book cover Cognitive Wireless Communication Networks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Broderson, A. Wolisz, D. Cabric, S. M. Mishra, and D. Willkomm, “CORVUS: A cognitive radio approach for usage of virtual unlicensed spectrum,” White Paper submitted at the University of Berkeley, CA, July. 2004.

    Google Scholar 

  2. Federal Communications Commission, “Spectrum Policy Task Force,” Report ET Docket no. 02-135, Nov. 2002.

    Google Scholar 

  3. J. Mitola, “The software radio architecture,” IEEE Commun. Mag., vol. 33, no. 5, pp. 26–38, May 1995.

    Article  Google Scholar 

  4. J. Mitola III, “Cognitive radio for flexible mobile multimedia communications,” in Proc. 6th International Workshop on Mobile Multimedia Commun. (MoMuC’99) (San Diego, CA), pp. 310, Nov. 1999.

    Google Scholar 

  5. J. Mitola III and G. Q. Maguire Jr., “Cognitive radios: Making software radios more personal,” IEEE Pers. Commun. Mag., vol. 6, pp. 13–18, Aug. 1999.

    Article  Google Scholar 

  6. S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Select. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb. 2005.

    Article  Google Scholar 

  7. D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” in Proc. Asilomar Conf. on Signals, Systems, and Computers (Pacific Grove, CA), pp. 772–776, Nov. 2004.

    Google Scholar 

  8. S. M. Mishra, A. Sahai, and R. Brodersen, “Cooperative sensing among cognitive radios,” in Proc. IEEE Int. Conf. Commun. (ICC’06) (Istanbul, Turkey), June 2006.

    Google Scholar 

  9. T. Weiss and F. K. Jondral, “Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency,” IEEE Commun. Mag., vol. 43, no. 3, pp. S8–S14, Mar. 2004.

    Article  Google Scholar 

  10. I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput Netw (Elsevier), vol. 50, pp. 2127–2159, Sept. 2006.

    Article  MATH  Google Scholar 

  11. Darpa XG Working group, “The xg architectural framework,” rfc v1.0 2003.

    Google Scholar 

  12. Darpa XG Working group, “The xg vision,” rfc v1.0 2003.

    Google Scholar 

  13. C. Cordeiro, K. Challapali, D. Birru, and S. Shankar, “IEEE 802.22: The first worldwide wireless standard based on cognitive radios,” in Proc. IEEE Int. Symposium on Dynamic Spectrum Access Networks (DySPAN’05), pp. 328–337, Nov. 2005.

    Google Scholar 

  14. M. M. Buddhikot, P. Kolody, S. Miller, K. Ryan, and J. Evans, “DIMSUMNet: New directions in wireless networking using coordinated dynamic spectrum access,” in Proc. IEEE Int. Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’ 05), pp. 78–85, June 2005.

    Google Scholar 

  15. I. F. Akyildiz and Y. Li, “OCRA: OFDM-based cognitive radio networks,” Technical report, Broadband and Wireless Networking Laboratory, Georgia Institute of Technology, Mar. 2006.

    Google Scholar 

  16. L. Xu, R. Tonjes, T. Paila, W. Hansmann, M. Frank, and M. Albrecht, “DRiVE-ing to the internet: Dynamic radio for IP services in vehicular environments,” in Proc. 25th Annual IEEE Conference on Local Computer Networks, pp. 281–289, Nov. 2000.

    Google Scholar 

  17. T. Weiss, J. Hillenbrand, A. Krohn, and F. K. Jondral, “Mutual interference in OFDM-based spectrum pooling systems, ” in Proc. IEEE Vehicular Technol. Conf. (VTC’04), vol. 4, pp. 1873–1877, May 2004.

    Google Scholar 

  18. T. Keller and L. Hanzo, “Multicarrier modulation: A convenient framework for time-frequency processing in wireless communications,” Proc. IEEE, vol. 88, no. 5, pp. 611–640, May 2000.

    Google Scholar 

  19. A. T. Toyserkani, J. Ayan, S. Naik, Y. Made, and O. Al-Askary, “Sub-carrier based adaptive modulation in HIPERLAN/2 system,” in Proc. IEEE Int. Conf. Commun. (Paris, France), pp. 3460–3464, June 2004.

    Google Scholar 

  20. L. Goldfeld and V. Lyandres, “Capacity of the multicarrier channel with frequency-selective Nakagami fading,” IEICE Trans. Commun., vol. E83-B, no. 3, pp. 697–702, Mar. 2000.

    Google Scholar 

  21. C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, power, and power allocation,” IEEE J. Select. Areas Commun., vol. 17, no. 10, pp. 1747–1758, Oct. 1999.

    Article  Google Scholar 

  22. A. M. Wyglinski, “Effects of bit allocation on non-contiguous multicarrier-based cognitive radio transceivers,” in Proc. 64th IEEE Veh. Technol. Conf. – Fall (Montreal, Canada), Sept. 2006.

    Google Scholar 

  23. J. M. Cioffi, “A multicarrier primer,” ANSI T1E1.4 Committee Contribution, pp. 91–157, Nov. 1991.

    Google Scholar 

  24. A. Antonio and W.-S. Lu, Optimization methods, algorithms, and applications. Kluwer Academic, 2005.

    Google Scholar 

  25. P. Chow, J. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 773–775, Feb./Mar./Apr.yy1995.

    Article  Google Scholar 

  26. S. T. Chung and A. J. Goldsmith, “ Degrees of freedom in adaptive modulation: A unified view, ” IEEE Trans. Commun., vol. 49, no. 9, pp. 1561–1571, Sept. 2001.

    Article  MATH  Google Scholar 

  27. J. Bingham, “Multicarrier modulation for data transmission: An idea whose time has come,” IEEE Commun. Mag., vol. 28, no. 5, pp. 5–14, May 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bansal, G., Hossain, M.J., Bhargava, V.K. (2007). Link Adaptation in OFDM-Based Cognitive Radio Systems. In: Hossain, E., Bhargava, V. (eds) Cognitive Wireless Communication Networks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68832-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68832-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-68830-5

  • Online ISBN: 978-0-387-68832-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics