Link Adaptation in OFDM-Based Cognitive Radio Systems

  • Gaurav Bansal
  • Md. Jahangir Hossain
  • Vijay K. Bhargava


Orthogonal Frequency Division Multiplex Cognitive Radio Primary User Secondary User Transmission Capacity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. W. Broderson, A. Wolisz, D. Cabric, S. M. Mishra, and D. Willkomm, “CORVUS: A cognitive radio approach for usage of virtual unlicensed spectrum,” White Paper submitted at the University of Berkeley, CA, July. 2004.Google Scholar
  2. 2.
    Federal Communications Commission, “Spectrum Policy Task Force,” Report ET Docket no. 02-135, Nov. 2002.Google Scholar
  3. 3.
    J. Mitola, “The software radio architecture,” IEEE Commun. Mag., vol. 33, no. 5, pp. 26–38, May 1995.CrossRefGoogle Scholar
  4. 4.
    J. Mitola III, “Cognitive radio for flexible mobile multimedia communications,” in Proc. 6th International Workshop on Mobile Multimedia Commun. (MoMuC’99) (San Diego, CA), pp. 310, Nov. 1999.Google Scholar
  5. 5.
    J. Mitola III and G. Q. Maguire Jr., “Cognitive radios: Making software radios more personal,” IEEE Pers. Commun. Mag., vol. 6, pp. 13–18, Aug. 1999.CrossRefGoogle Scholar
  6. 6.
    S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Select. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb. 2005.CrossRefGoogle Scholar
  7. 7.
    D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” in Proc. Asilomar Conf. on Signals, Systems, and Computers (Pacific Grove, CA), pp. 772–776, Nov. 2004.Google Scholar
  8. 8.
    S. M. Mishra, A. Sahai, and R. Brodersen, “Cooperative sensing among cognitive radios,” in Proc. IEEE Int. Conf. Commun. (ICC’06) (Istanbul, Turkey), June 2006.Google Scholar
  9. 9.
    T. Weiss and F. K. Jondral, “Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency,” IEEE Commun. Mag., vol. 43, no. 3, pp. S8–S14, Mar. 2004.CrossRefGoogle Scholar
  10. 10.
    I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput Netw (Elsevier), vol. 50, pp. 2127–2159, Sept. 2006.MATHCrossRefGoogle Scholar
  11. 11.
    Darpa XG Working group, “The xg architectural framework,” rfc v1.0 2003.Google Scholar
  12. 12.
    Darpa XG Working group, “The xg vision,” rfc v1.0 2003.Google Scholar
  13. 13.
    C. Cordeiro, K. Challapali, D. Birru, and S. Shankar, “IEEE 802.22: The first worldwide wireless standard based on cognitive radios,” in Proc. IEEE Int. Symposium on Dynamic Spectrum Access Networks (DySPAN’05), pp. 328–337, Nov. 2005.Google Scholar
  14. 14.
    M. M. Buddhikot, P. Kolody, S. Miller, K. Ryan, and J. Evans, “DIMSUMNet: New directions in wireless networking using coordinated dynamic spectrum access,” in Proc. IEEE Int. Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’ 05), pp. 78–85, June 2005.Google Scholar
  15. 15.
    I. F. Akyildiz and Y. Li, “OCRA: OFDM-based cognitive radio networks,” Technical report, Broadband and Wireless Networking Laboratory, Georgia Institute of Technology, Mar. 2006.Google Scholar
  16. 16.
    L. Xu, R. Tonjes, T. Paila, W. Hansmann, M. Frank, and M. Albrecht, “DRiVE-ing to the internet: Dynamic radio for IP services in vehicular environments,” in Proc. 25th Annual IEEE Conference on Local Computer Networks, pp. 281–289, Nov. 2000.Google Scholar
  17. T. Weiss, J. Hillenbrand, A. Krohn, and F. K. Jondral, “Mutual interference in OFDM-based spectrum pooling systems, ” in Proc. IEEE Vehicular Technol. Conf. (VTC’04), vol. 4, pp. 1873–1877, May 2004.Google Scholar
  18. T. Keller and L. Hanzo, “Multicarrier modulation: A convenient framework for time-frequency processing in wireless communications,” Proc. IEEE, vol. 88, no. 5, pp. 611–640, May 2000.Google Scholar
  19. 19.
    A. T. Toyserkani, J. Ayan, S. Naik, Y. Made, and O. Al-Askary, “Sub-carrier based adaptive modulation in HIPERLAN/2 system,” in Proc. IEEE Int. Conf. Commun. (Paris, France), pp. 3460–3464, June 2004.Google Scholar
  20. 20.
    L. Goldfeld and V. Lyandres, “Capacity of the multicarrier channel with frequency-selective Nakagami fading,” IEICE Trans. Commun., vol. E83-B, no. 3, pp. 697–702, Mar. 2000.Google Scholar
  21. 21.
    C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multiuser OFDM with adaptive subcarrier, bit, power, and power allocation,” IEEE J. Select. Areas Commun., vol. 17, no. 10, pp. 1747–1758, Oct. 1999.CrossRefGoogle Scholar
  22. 22.
    A. M. Wyglinski, “Effects of bit allocation on non-contiguous multicarrier-based cognitive radio transceivers,” in Proc. 64th IEEE Veh. Technol. Conf. – Fall (Montreal, Canada), Sept. 2006.Google Scholar
  23. 23.
    J. M. Cioffi, “A multicarrier primer,” ANSI T1E1.4 Committee Contribution, pp. 91–157, Nov. 1991.Google Scholar
  24. 24.
    A. Antonio and W.-S. Lu, Optimization methods, algorithms, and applications. Kluwer Academic, 2005.Google Scholar
  25. 25.
    P. Chow, J. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 773–775, Feb./Mar./Apr.yy1995.CrossRefGoogle Scholar
  26. 26.
    S. T. Chung and A. J. Goldsmith, “ Degrees of freedom in adaptive modulation: A unified view, ” IEEE Trans. Commun., vol. 49, no. 9, pp. 1561–1571, Sept. 2001.MATHCrossRefGoogle Scholar
  27. 27.
    J. Bingham, “Multicarrier modulation for data transmission: An idea whose time has come,” IEEE Commun. Mag., vol. 28, no. 5, pp. 5–14, May 1990.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Gaurav Bansal
    • 1
  • Md. Jahangir Hossain
    • 1
  • Vijay K. Bhargava
    • 1
  1. 1.Department of Electrical and Computer EngineeringThe University of British ColumbiaCanada

Personalised recommendations