Coexistence and Dynamic Sharing in Cognitive Radio Networks

  • Sofie Pollin


Medium Access Control Cognitive Radio Primary User Secondary User Cognitive Radio Network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Pollin, M. Ergen, M. Timmers, A. Dejonghe, L. Van der Perre, I. Moerman, F. Catthoor, and A. Bahai, “Distributed cognitive coexistence of 802.15.4 with 802.11,” in Proc. Intl. Conf. on Cognitive Radio Oriented Wireless Networks Commun., June 8–10, 2006.Google Scholar
  2. 2.
    D. Birru, V. Gaddam, C. Cordeiro, K. Challapali, M. Bellec, P. Pirat, L. Escobar, and D. Callonnec, “A cognitive PHY/MAC proposal for IEEE 802.22 WRAN systems Part 1: The cognitive PHY,” IEEE 802.22 Working Group doc.: IEEE 802.22 – 05/0103r0, 2005.Google Scholar
  3. 3.
    IEEE 802.11a, Part 11, Amendment 1, “High-speed physical layer in the 5 GHz band,” 1999.Google Scholar
  4. 4.
    F. Horlin, F. Petre, E. Lopez-Estraviz, F. Naessens, and L. Van der Perre, “Flexible transmission scheme for 4G wireless systems with multple antennas,” EURASIP J. Wireless Commun. Netw., vol. 3, pp. 308–322, Aug. 2005.CrossRefGoogle Scholar
  5. 5.
    J. Mitola, “Cognitive radio: An integrated agent architecture for software-defined radio,” PhD Thesis, Royal Institute of Technology, 2000.Google Scholar
  6. 6.
    R. Brodersen, W. Wolisz, D. Cabri, S. M. Mishra, and D. Willkomm, “A cognitive radio approach for usage of virtual unlicensed spectrum,” CORVUS White Paper, 2004.Google Scholar
  7. 7.
    IEEE 802.22 WG on Wireless Regional Area Networks.Google Scholar
  8. 8.
    C. Blanch, S. Pollin, G. Lafruit, and W. Eberle, “Channel adaptive rate control,” in Proc. International Packet Video Workshop (Hangzhou, China), 2006.Google Scholar
  9. 9.
    N. Khaled, “Transmit and receive optimization for MIMO/OFDM-based high-throughput wireless local area networks,” PhD Thesis, K.U.Leuven, Belgium, 2005.Google Scholar
  10. 10.
    C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power control via pricing in wireless data networks,” IEEE. Trans. Commun., vol. 50, no. 2, pp. 291–303, Feb. 2002.CrossRefGoogle Scholar
  11. 11.
    B. Bougard and B. Debaillie, “Energy-scalable OFDM transmitter design and control,” in Proc. 43rd Annual Conference on Design Automation, pp. 536–541, 2006.Google Scholar
  12. 12.
    IEEE 802.11g, Part 11, Amendment 4, ”Further higher-speed physical layer extension in the 2.4 GHz band,” 2003.Google Scholar
  13. 13.
    IEEE 802.11e, Part 11, Amendment 8, “Medium access control enhancements for quality of service,” 2005.Google Scholar
  14. 14.
    R. Coase, “The Federal Communication Commission,” J. Law Econ., pp. 1–49, 1959.Google Scholar
  15. 15.
    D. Hatfield and P. Weiser, “Property rights in spectrum: Taking the next step,” in Proc. IEEE DySPAN 2005, pp. 43–55, Nov. 2005.Google Scholar
  16. 16.
    L. Xu, R. Tnjes, T. Paila, W. Hansmann, M. Frank, and M. Albrecht, “DRiVE-ing to the Internet: Dynamic radio for IP services in vehicular environments,” in Proc. IEEE Conference on Local Computer Networks, pp. 281–289, 2000.Google Scholar
  17. 17.
    Q. Zhao and B. M. Sadler, “Dynamic spectrum access: Signal processing, networking and regulatory policy,” to appear in IEEE Signal Process. Mag., vol. 55, no. 5, pp. 2294–2309, May 2007.CrossRefGoogle Scholar
  18. 18.
    Y. Benkler, “Overcoming agoraphobia: Building the commons of the digitally networked environment,” Harvard J. Law Technol. vol. 287, 1998.Google Scholar
  19. 19.
    W. Lehr and J. Crowncroft, “Managing shared access to a spectrum commons,” in Proc. IEEE DySPAN 2005, pp. 420–444, Nov. 2005.Google Scholar
  20. 20.
    G. Marias, “Spectrum scheduling and brokering based on QoS demands of competing WISPs,” in Proc. IEEE DySPAN 2005, pp. 684–687, Nov. 2005.Google Scholar
  21. 21.
    O. Ileri, D. Samarzija, T. Sizer, and N. B. Mandayam, “Demand responsive pricing and competitive spectrum allocation via a spectrum server,” in Proc. IEEE DySPAN 2005, pp. 194–202, Nov. 2005.Google Scholar
  22. 22.
    X. Jing and D. Raychaudhuri, “Spectrum co-existence of IEEE 802.11b and 802.16a networks using CSCC etiquette protocol,” in Proc. IEEE DySPAN 2005, pp. 243–250, Nov. 2005.Google Scholar
  23. 23.
    J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” IEEE Mobile Multimedia Conference, pp. 3–10, 1999.Google Scholar
  24. 24.
    “DARPA: The Next Generation (XG) Program.” xg/index.htm.Google Scholar
  25. 25.
    C. Cordeiro, K. Challapali, D. Birru, and N. S. Shankar, “IEEE 802.22: The first worldwide wireless standard based on cognitive radios,” in Proc. IEEE DySPAN 2005, pp. 328–337, Nov. 2005.Google Scholar
  26. 26.
    I. F. Akyldiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput. Netw. J. (Elsevier), vol. 50, pp. 2127–2159, Sept. 2006.CrossRefGoogle Scholar
  27. 27.
    A. Sahai, N. Hoven, and R. Tandra, “Some fundamental limits on cognitive radio,” in Allerton Conf. Communication, Control, and Computing, Oct. 2004.Google Scholar
  28. 28.
    W. A. Gardner, “Signal interception: A unifying theoretical framework for feature detection,” IEEE. Trans. Commun., vol. 36, no. 8, pp. 897–906, Aug. 1988.CrossRefGoogle Scholar
  29. 29.
    Z. Tian and G. B. Giannakis, “A wavelet approach to wideband spectrum sensing for cognitive radios,” in Proc. Intl. Conf. on Cognitive Radio Oriented Wireless Networks Comnun., June 8–10, 2006.Google Scholar
  30. 30.
    S. Shankar, “Spectrum agile radios: Utilization and sensing architecture,” in Proc. IEEE DySPAN 2005, Nov. 2005.Google Scholar
  31. 31.
    B. Wild and K. Ramchandran, “Detecting primary receivers for cognitive radio applications,” in Proc. IEEE DySPAN 2005, pp. 124–130, Nov. 2005.Google Scholar
  32. 32.
    Q. Zhao, L. Tong, and A. Swami, “Decentralized cognitive MAC for dynamic spectrum access,” in Proc. IEEE DySPAN 2005, pp. 224–232, Nov. 2005.Google Scholar
  33. 33.
    C. Peng, H. Zheng, and B. Y. Zhao, “Utilization and fairness in spectrum assignment for opportunistic spectrum access,” Mobile Netw. Appl., vol. 11, issue 4, pp. 555–576, Aug. 2006.CrossRefGoogle Scholar
  34. 34.
    W. So, J. Mo, and J. Walrand, “Comparison of multi-channel MAC protocols,” in Proc. 8th ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2005.Google Scholar
  35. 35.
    C. Cordeiro, K. Challapali, D. Birru, and N. S. Shankar, “IEEE 802.22: The first worldwide wireless standard based on cognitive radios,” J. Commun. (JCM), pp. 38–47, Apr. 2006.Google Scholar
  36. 36.
    IEEE 802.15.4, “Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs),” 2003.Google Scholar
  37. 37.
    Steibeis-Transfer Centre, “Compatibility of IEEE 802.15.4 (Zigbee) with IEEE802.11 (WLAN), Bluetooth, and Microwave Ovens in 2.4 GHz ISM-Band.” Scholar
  38. 38.
    C. Won, J.-H. Youn, H. Ali, H. Sharif, and J. Deogun, “Adaptive radio channel allocation for supporting coexistnce of 802.15.4 and 802.11b,” in Proc. IEEE Vehicular Tech. Conf. Fall, pp. 2522–2526, 2005.Google Scholar
  39. 39. Data Sheet 1 2.pdf.Google Scholar
  40. 40. prod bulletin.pdf.Google Scholar
  41. 41.
    D. Tang and M. Baker, “Analysis of a local-area wireless network,” in Proc. ACM Mobicom 2000, pp. 110, Aug. 2000.Google Scholar
  42. 42.
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys., vol. 21, pp. 1087–1091, 1953.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Sofie Pollin
    • 1
    • 2
  1. 1.Inter-university Micro-Electronics Center (IMEC)
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations