Skip to main content

Coexistence and Dynamic Sharing in Cognitive Radio Networks

  • Chapter
Cognitive Wireless Communication Networks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referecnes

  1. S. Pollin, M. Ergen, M. Timmers, A. Dejonghe, L. Van der Perre, I. Moerman, F. Catthoor, and A. Bahai, “Distributed cognitive coexistence of 802.15.4 with 802.11,” in Proc. Intl. Conf. on Cognitive Radio Oriented Wireless Networks Commun., June 8–10, 2006.

    Google Scholar 

  2. D. Birru, V. Gaddam, C. Cordeiro, K. Challapali, M. Bellec, P. Pirat, L. Escobar, and D. Callonnec, “A cognitive PHY/MAC proposal for IEEE 802.22 WRAN systems Part 1: The cognitive PHY,” IEEE 802.22 Working Group doc.: IEEE 802.22 – 05/0103r0, 2005.

    Google Scholar 

  3. IEEE 802.11a, Part 11, Amendment 1, “High-speed physical layer in the 5 GHz band,” 1999.

    Google Scholar 

  4. F. Horlin, F. Petre, E. Lopez-Estraviz, F. Naessens, and L. Van der Perre, “Flexible transmission scheme for 4G wireless systems with multple antennas,” EURASIP J. Wireless Commun. Netw., vol. 3, pp. 308–322, Aug. 2005.

    Article  Google Scholar 

  5. J. Mitola, “Cognitive radio: An integrated agent architecture for software-defined radio,” PhD Thesis, Royal Institute of Technology, 2000.

    Google Scholar 

  6. R. Brodersen, W. Wolisz, D. Cabri, S. M. Mishra, and D. Willkomm, “A cognitive radio approach for usage of virtual unlicensed spectrum,” CORVUS White Paper, 2004.

    Google Scholar 

  7. IEEE 802.22 WG on Wireless Regional Area Networks.

    Google Scholar 

  8. C. Blanch, S. Pollin, G. Lafruit, and W. Eberle, “Channel adaptive rate control,” in Proc. International Packet Video Workshop (Hangzhou, China), 2006.

    Google Scholar 

  9. N. Khaled, “Transmit and receive optimization for MIMO/OFDM-based high-throughput wireless local area networks,” PhD Thesis, K.U.Leuven, Belgium, 2005.

    Google Scholar 

  10. C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power control via pricing in wireless data networks,” IEEE. Trans. Commun., vol. 50, no. 2, pp. 291–303, Feb. 2002.

    Article  Google Scholar 

  11. B. Bougard and B. Debaillie, “Energy-scalable OFDM transmitter design and control,” in Proc. 43rd Annual Conference on Design Automation, pp. 536–541, 2006.

    Google Scholar 

  12. IEEE 802.11g, Part 11, Amendment 4, ”Further higher-speed physical layer extension in the 2.4 GHz band,” 2003.

    Google Scholar 

  13. IEEE 802.11e, Part 11, Amendment 8, “Medium access control enhancements for quality of service,” 2005.

    Google Scholar 

  14. R. Coase, “The Federal Communication Commission,” J. Law Econ., pp. 1–49, 1959.

    Google Scholar 

  15. D. Hatfield and P. Weiser, “Property rights in spectrum: Taking the next step,” in Proc. IEEE DySPAN 2005, pp. 43–55, Nov. 2005.

    Google Scholar 

  16. L. Xu, R. Tnjes, T. Paila, W. Hansmann, M. Frank, and M. Albrecht, “DRiVE-ing to the Internet: Dynamic radio for IP services in vehicular environments,” in Proc. IEEE Conference on Local Computer Networks, pp. 281–289, 2000.

    Google Scholar 

  17. Q. Zhao and B. M. Sadler, “Dynamic spectrum access: Signal processing, networking and regulatory policy,” to appear in IEEE Signal Process. Mag., vol. 55, no. 5, pp. 2294–2309, May 2007.

    Article  Google Scholar 

  18. Y. Benkler, “Overcoming agoraphobia: Building the commons of the digitally networked environment,” Harvard J. Law Technol. vol. 287, 1998.

    Google Scholar 

  19. W. Lehr and J. Crowncroft, “Managing shared access to a spectrum commons,” in Proc. IEEE DySPAN 2005, pp. 420–444, Nov. 2005.

    Google Scholar 

  20. G. Marias, “Spectrum scheduling and brokering based on QoS demands of competing WISPs,” in Proc. IEEE DySPAN 2005, pp. 684–687, Nov. 2005.

    Google Scholar 

  21. O. Ileri, D. Samarzija, T. Sizer, and N. B. Mandayam, “Demand responsive pricing and competitive spectrum allocation via a spectrum server,” in Proc. IEEE DySPAN 2005, pp. 194–202, Nov. 2005.

    Google Scholar 

  22. X. Jing and D. Raychaudhuri, “Spectrum co-existence of IEEE 802.11b and 802.16a networks using CSCC etiquette protocol,” in Proc. IEEE DySPAN 2005, pp. 243–250, Nov. 2005.

    Google Scholar 

  23. J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” IEEE Mobile Multimedia Conference, pp. 3–10, 1999.

    Google Scholar 

  24. “DARPA: The Next Generation (XG) Program.” http://www.darpa.mil/ato/programs/ xg/index.htm.

    Google Scholar 

  25. C. Cordeiro, K. Challapali, D. Birru, and N. S. Shankar, “IEEE 802.22: The first worldwide wireless standard based on cognitive radios,” in Proc. IEEE DySPAN 2005, pp. 328–337, Nov. 2005.

    Google Scholar 

  26. I. F. Akyldiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Comput. Netw. J. (Elsevier), vol. 50, pp. 2127–2159, Sept. 2006.

    Article  Google Scholar 

  27. A. Sahai, N. Hoven, and R. Tandra, “Some fundamental limits on cognitive radio,” in Allerton Conf. Communication, Control, and Computing, Oct. 2004.

    Google Scholar 

  28. W. A. Gardner, “Signal interception: A unifying theoretical framework for feature detection,” IEEE. Trans. Commun., vol. 36, no. 8, pp. 897–906, Aug. 1988.

    Article  Google Scholar 

  29. Z. Tian and G. B. Giannakis, “A wavelet approach to wideband spectrum sensing for cognitive radios,” in Proc. Intl. Conf. on Cognitive Radio Oriented Wireless Networks Comnun., June 8–10, 2006.

    Google Scholar 

  30. S. Shankar, “Spectrum agile radios: Utilization and sensing architecture,” in Proc. IEEE DySPAN 2005, Nov. 2005.

    Google Scholar 

  31. B. Wild and K. Ramchandran, “Detecting primary receivers for cognitive radio applications,” in Proc. IEEE DySPAN 2005, pp. 124–130, Nov. 2005.

    Google Scholar 

  32. Q. Zhao, L. Tong, and A. Swami, “Decentralized cognitive MAC for dynamic spectrum access,” in Proc. IEEE DySPAN 2005, pp. 224–232, Nov. 2005.

    Google Scholar 

  33. C. Peng, H. Zheng, and B. Y. Zhao, “Utilization and fairness in spectrum assignment for opportunistic spectrum access,” Mobile Netw. Appl., vol. 11, issue 4, pp. 555–576, Aug. 2006.

    Article  Google Scholar 

  34. W. So, J. Mo, and J. Walrand, “Comparison of multi-channel MAC protocols,” in Proc. 8th ACM/IEEE International Symposium on Modeling, Analysis and Simulation of Wireless and Mobile Systems, 2005.

    Google Scholar 

  35. C. Cordeiro, K. Challapali, D. Birru, and N. S. Shankar, “IEEE 802.22: The first worldwide wireless standard based on cognitive radios,” J. Commun. (JCM), pp. 38–47, Apr. 2006.

    Google Scholar 

  36. IEEE 802.15.4, “Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs),” 2003.

    Google Scholar 

  37. Steibeis-Transfer Centre, “Compatibility of IEEE 802.15.4 (Zigbee) with IEEE802.11 (WLAN), Bluetooth, and Microwave Ovens in 2.4 GHz ISM-Band.” http://www.baloerrach.de.

    Google Scholar 

  38. C. Won, J.-H. Youn, H. Ali, H. Sharif, and J. Deogun, “Adaptive radio channel allocation for supporting coexistnce of 802.15.4 and 802.11b,” in Proc. IEEE Vehicular Tech. Conf. Fall, pp. 2522–2526, 2005.

    Google Scholar 

  39. http://www.chipcon.com/files/CC2420 Data Sheet 1 2.pdf.

    Google Scholar 

  40. focus.ti.com/pdfs/bcg/tnetw1130 prod bulletin.pdf.

    Google Scholar 

  41. D. Tang and M. Baker, “Analysis of a local-area wireless network,” in Proc. ACM Mobicom 2000, pp. 110, Aug. 2000.

    Google Scholar 

  42. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equations of state calculations by fast computing machines,” J. Chem. Phys., vol. 21, pp. 1087–1091, 1953.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pollin, S. (2007). Coexistence and Dynamic Sharing in Cognitive Radio Networks. In: Hossain, E., Bhargava, V. (eds) Cognitive Wireless Communication Networks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68832-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68832-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-68830-5

  • Online ISBN: 978-0-387-68832-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics