Skip to main content

Information Theoretic Analysis of Cognitive Radio Systems

  • Chapter
Book cover Cognitive Wireless Communication Networks

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FCC.

    Google Scholar 

  2. FCC, “Secondary markets initiative.”

    Google Scholar 

  3. J. Mitola, “Cognitive radio,” PhD Thesis, Royal Institute of Technology (KTH), 2000.5. N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive networks,” in 2005 IEEE International Symposium on Information Theory, Sept. 2005.

    Google Scholar 

  4. N. Devroye, P. Mitran, and V. Tarokh, “Cognitive decomposition of wireless networks,” in Proc. of CROWNCOM, Mar. 2006.

    Google Scholar 

  5. N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive radio channels,” IEEE Trans. Inf. Theory, vol. 52, pp. 1813–1827, May 2006.

    Article  MathSciNet  Google Scholar 

  6. A. Jovicic and P. Viswanath, “Cognitive radio: An information-theoretic perspective,” submitted to IEEE Trans. Inf. Theory, 2006.

    Google Scholar 

  7. W. Wu, S. Vishwanath, and A. Arapostathis, “On the capacity of the interference channel with degraded message sets,” submitted to IEEE Trans. Inf. Theory, June 2006.

    Google Scholar 

  8. I. Maric, R. Yates, and G. Kramer, “The strong interference channel with unidirectional cooperation,” in Information Theory and Applications ITA Inaugural Workshop, Feb. 2006.

    Google Scholar 

  9. P. Mitran, H. Ochiai, and V. Tarokh, “Space-time diversity enhancements using collaborative communication,” IEEE Trans. Inf. Theory, vol. 51, pp. 2041–2057, June 2005.

    Article  MathSciNet  Google Scholar 

  10. C. T. K. Ng and A. Goldsmith, “Capacity gain from transmitter and receiver cooperation,” in Proc. IEEE International Symposium on Information Theory, Sept. 2005.

    Google Scholar 

  11. S. Jafar, “Capacity with causal and non-causal side information – a unified view,” submitted to IEEE Trans. Inf. Theory, Oct. 2005.

    Google Scholar 

  12. A. Carleial, “Interference channels,” IEEE Trans. Inf. Theory, vol. IT-24, pp. 60–70, Jan. 1978.

    Article  MathSciNet  Google Scholar 

  13. H.Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the Gaussian MIMO broadcast channel,” IEEE Trans. Inf. Theory, vol. 52, pp. 3936–3964, Sept. 2006.

    Article  MathSciNet  Google Scholar 

  14. E. C. van der Meulen, “Three-terminal communication channels,” Adv. Appl. Prob., vol. 3, pp. 120–154, 1971.

    Article  MATH  Google Scholar 

  15. N. Devroye, P. Mitran, and V. Tarokh, “Achievable rates in cognitive radio channels,” in 39th Ann. Conf. Inf. Sci. Syst. (CISS), Mar. 2005.

    Google Scholar 

  16. T. Han and K. Kobayashi, “A new achievable rate region for the interference channel,” IEEE Trans. Inf. Theory, vol. IT-27, no. 1, pp. 49–60, 1981.

    Article  MathSciNet  Google Scholar 

  17. T. Cover and J. Thomas, Elements of Information Theory. New York: Wiley,

    Google Scholar 

  18. S. Gel’fand and M. Pinsker, “Coding for channels with random parameters,” Probl. Contr. Inf. Theory, vol. 9, no. 1, pp. 19–31, 1980.

    MATH  MathSciNet  Google Scholar 

  19. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol. IT-29, pp. 439–441, May 1983.

    Article  Google Scholar 

  20. I. Maric, R. Yates, and G. Kramer, “The strong interference channel with common information,” in Proc. of Allerton Conference on Communications, Control and Computing, Sept. 2005.

    Google Scholar 

  21. S. Jafar, “Degrees of freedom on the MIMO X channel – optimality of zero forcing and the MMK scheme,” submitted to IEEE Trans. Inf. Theory, Sept. 2006.

    Google Scholar 

  22. I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, no. 6, pp. 585–595, 1999.

    Article  Google Scholar 

  23. G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Commun., vol. 6, pp. 311–335, 1998.

    Article  Google Scholar 

  24. A. Host-Madsen, “Capacity bounds for cooperative diversity,” IEEE Trans. Inf. Theory, vol. 52, pp. 1522–1544, Apr. 2006.

    Article  MathSciNet  Google Scholar 

  25. A. Host-Madsen, “The multiplexing gain of wireless networks,” in Proc. of ISIT, Sept. 2005.

    Google Scholar 

  26. N. Devroye and M. Sharif, “The value of partial side information in interfering channels,” in preparation.

    Google Scholar 

  27. M. Maddah-Ali, A. Motahari, and A. Khandani, “Combination of multi-access and broadcast schemes,” in Proc. IEEE International Symposium on Information Theory (Seattle, WA), pp. 2104–2108, July 2006.

    Google Scholar 

  28. R. G. Gallagher, Information Theory and Reliable Communication, ch. 7. New York: Wiley, 1968.

    Google Scholar 

  29. T. Cover, A. E. Gamal, and M. Salehi, “Multiple access channels with arbitrarily correlated sources,” IEEE Trans. Inf. Theory, vol. IT-26, pp. 648–657, Nov. 1980.

    Article  Google Scholar 

  30. F. Willems and E. van der Meulen, “The discrete memoryless multiple-access channel with cribbing encoders,” IEEE Trans. Inf. Theory, vol. IT-31, pp. 313–327, Nov. 1985.

    Article  Google Scholar 

  31. T. M. Cover and A. E. Gamal, “Capacity theorems for the relay channel,” IEEE Trans. Inf. Theory, vol. 25, pp. 572–584, Sept. 1979.

    Article  MATH  Google Scholar 

  32. M. Aref, “Information flow in relay networks,” Technical report, Stanford University, 1980.

    Google Scholar 

  33. G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,” IEEE Trans. Inf. Theory, vol. 51, Sept. 2005.

    Google Scholar 

  34. P. Gupta and P. R. Kumar, “Towards an information theory of large networks: An achievable rate region,” IEEE Trans. Inf. Theory, vol. 49, pp. 1877–1894, Aug. 2003.

    Article  MathSciNet  Google Scholar 

  35. L.-L. Xie and P. R. Kumar, “A network information theory for wireless communication: Scaling laws and optimal operation,” IEEE Trans. Inf. Theory, vol. 50, pp. 748–767, May 2004.

    Google Scholar 

  36. L.-L. Xie and P. R. Kumar, “An achievable rate for the multiple level relay channel,” submitted to IEEE Trans. Inf. Theory, vol. 51, no. 4, April 2005.

    Google Scholar 

  37. G. Atia, M. Sharif, and V. Saligrama, “On optimal outage in relay channels with general fading distributions,” in Proc. of Allerton Conference on Communications, Control and Computing, Oct. 2006.

    Google Scholar 

  38. A. E. Gamal, M. Mohseni, and S. Zahedi, “On reliable communication over additive white gaussian noise relay channels,” IEEE Trans. Inf. Theory, 2006.

    Google Scholar 

  39. K. Azarian, H. El Gamal, and P. Schniter, “On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels,” IEEE Trans. Inf. Theory, Dec. 2005.

    Google Scholar 

  40. A. S. Avestimehr and D. N. Tse, “Outage-optimal relaying in the low SNR regime,” in Proc. IEEE International Symposium on Information Theory, Sept. 2005.

    Google Scholar 

  41. J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, 2004.

    Google Scholar 

  42. J. Wolfowitz, Coding Theorems of Information Theory. New York: Springer-Verlag, 1978.

    MATH  Google Scholar 

  43. I. Csisz’ar and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems. New York: Academic Press, 1981.

    Google Scholar 

  44. A. Reznik, S. Kulkarni, and S. Verdú, “Capacity and optimal resource allocation in the degraded Gaussian relay channel with multiple relays,” in Proc. of Allerton Conference on Communications, Control and Computing (Monticello, IL), Oct. 2002.

    Google Scholar 

  45. M. Katz and S. Shamai, “Communicating to co-located ad-hoc receiving nodes in a fading environment,” in Proc. IEEE International Symposium on Information Theory (Chicago, IL), p. 115, July 2004.

    Google Scholar 

  46. J. N. Laneman and G. W. Wornell, “Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inf. Theory, vol. 49, pp. 2415–2425, Oct. 2003.

    Article  MathSciNet  Google Scholar 

  47. S. Jafar and S. Srinivasa, “Capacity limits of cognitive radio with distributed dynamic spectral activity,” in Proc. of ICC, June 2006.

    Google Scholar 

  48. S. Srinivasa, S. Jafar, and N. Jindal, “On the capacity of the cognitive tracking channel,” in Proc. of ISIT, July 2006.

    Google Scholar 

  49. S. Srinivasa and S. Jafar, “On the capacity of the cognitive tracking channel,” in preparation.

    Google Scholar 

Additional Reading

  1. A. E. Gamal, “A capacity of a class of broadcast channels,” IEEE Trans. Inf. Theory, vol. 25, pp. 166–169, Mar. 1979.

    Article  MATH  Google Scholar 

  2. K. Marton, “A coding theorem for the discrete memoryless broadcast channel,” IEEE Trans. Inf. Theory, vol. 25, pp. 306–311, May 1979.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, Jul., Oct. 1948.

    Google Scholar 

  4. E. C. van der Meulen, “A survey of multi-way channels in information theory: 1961–1976,” IEEE Trans. Inf. Theory, vol. 23, pp. 1–37, 1977.

    Article  MATH  Google Scholar 

  5. W. D. Horne, “Adaptive spectrum access: Using the full spectrum space, in Proc. Telecommunications Policy Research Conference (TPRC), September 2003.”

    Google Scholar 

  6. F. M. J. Willems, E. C. van der Meulen, and J. P. M. Schalkwijk, “An achievable rate region for the multiple access channel with generalized feedback,” in Proc. Allerton Conference on Communications, Control and Computing, pp. 284–293, Oct. 1983.

    Google Scholar 

  7. J. Peha, “Approaches to spectrum sharing,” IEEE Commun. Mag., vol. 43, no. 2, pp. 10–12, 2005.

    Article  Google Scholar 

  8. T. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. IT-18, pp. 2–14, Jan. 1972.

    Article  MathSciNet  Google Scholar 

  9. G. Kramer and M. Gastpar, “Capacity theorems for wireless relay channels,” in Proc. Allerton Conference on Communications, Control and Computing, pp. 1074–1083, 2003.

    Google Scholar 

  10. T. Hunter and A. Nostratinia, “Coded cooperation under slow fading, fast fading, and power control,” in Asilomar Conference on Signals, Systems, and Computers, Nov. 2002.

    Google Scholar 

  11. T. Hunter and A. Nosratinia, “Coded cooperation under slow fading, fast fading, and power control,” in Asilomar Conference on Signals, Systems, and Computers, Nov. 2002.

    Google Scholar 

  12. T. Hunter, A. Hedayat, M. Janani, and A. Nostratinia, “Coded cooperation with spacetime transmission and iterative decoding,” in WNCG Wireless Networking Symposium, Oct. 2003.

    Google Scholar 

  13. J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” in Proc IEEE Mobile Multimedia Conference, 1999.

    Google Scholar 

  14. T. Cover, “Comments on broadcast channels,” IEEE Trans. Inf. Theory, vol. 44, pp. 2524–2530, Sept. 1998.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Stefanov and E. Erkip, “Cooperative space-time coding for wireless networks,” IEEE Trans. Commun., vol. 53, pp. 1804–1809, Nov. 2005.

    Article  Google Scholar 

  16. N. Jindal and A. Goldsmith, “Dirty-paper coding versus tdma for mimo broadcast channels,” IEEE Trans. Inf. Theory, vol. 51, pp. 1783–1794, May 2005.

    Article  MathSciNet  Google Scholar 

  17. T. Cover and M. Chiang, “Duality between channel capacity and rate distortion,” IEEE Trans. Inf. Theory, vol. 48, no. 6, 2002.

    Google Scholar 

  18. S. Viswanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates and sum rate capacity of the gaussian MIMO broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, pp. 2658–2668, Oct. 2003.

    Article  Google Scholar 

  19. FCC, “FCC ET docket no. 03-108: Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies,” Technical rep., FCC, 2003.

    Google Scholar 

  20. F. C. C. S. P. T. Force, “FCC report of the spectrum efficiency working group,” Technical report, FCC, 2002.

    Google Scholar 

  21. J. Mitola, “Future of signal processing – cognitive radio,” in Proc IEEE ICASSP, May 1999. Keynote address.

    Google Scholar 

  22. J. Korner and K. Marton, “General broadcast channels with degraded message sets,” IEEE Trans. Inf. Theory, vol. 23, pp. 60–64, Jan. 1979.

    Article  MathSciNet  Google Scholar 

  23. J. Korner and K. Marton, “General broadcast channels with degraded message sets,” IEEE Trans. Inf. Theory, vol. 23, pp. 60–64, Jan. 1979.

    Article  MathSciNet  Google Scholar 

  24. F. M. J. Willems, “Information theoretic results for the discrete memoryless multiple access channel,” PhD Thesis, Katholieke Universiteit Leuven, Oct. 1982.

    Google Scholar 

  25. D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization. Belmont: Athena Scientific, 1997.

    Google Scholar 

  26. N. Devroye, P. Mitran, and V. Tarokh, “Limits on communications in a cognitive radio channel,” IEEE Commun. Mag., June 2006.

    Google Scholar 

  27. R. Ahlswede, “Multi-way communcation channels,” in Proc. Int. Symp. Inf. Theory, Sept. 1973.

    Google Scholar 

  28. A. B. Carleial, “Multiple-access channels with different generalized feedback signals,” IEEE Trans. Inf. Theory, vol. 28, pp. 841–850, Nov. 1982.

    Article  MATH  Google Scholar 

  29. T. Berger, “Multiterminal source coding,” in G. Longo, editor, The Information Theory Approach to Communications. New York: Springer-Verlag, 1977.

    Google Scholar 

  30. I. Sason, “On achievable rate regions for the Gaussian interference channel,” IEEE Trans. Inf. Theory, June 2004.

    Google Scholar 

  31. M. Khojastepour, A. Sabharwal, and B. Aazhang, “On capacity of Gaussian ‘cheap’ relay channel,” in Proc. IEEE Global Telecommun. Conf., pp. 1776–1780, Apr. 2003.

    Google Scholar 

  32. G. Caire and S. Shamai, “On the achievable throughput of a multi-antenna Gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, pp. 1691–1705, July 2003.

    Article  MathSciNet  Google Scholar 

  33. M. Gastpar and M. Vetterli, “On the asymptotic capacity of Gaussian relay networks,” in Proc. IEEE International Symposium on Information Theory (Lausanne, Switzerland), p. 195, July 2002.

    Google Scholar 

  34. M. Khojastepour, A. Sabharwal, and B. Aazhang, “On the capacity of ‘cheap’ relay networks,” in Conference on Information Sciences and Systems, Apr. 2003.

    Google Scholar 

  35. M. Gastpar and M. Vetterli, “On the capacity of wireless networks: The relay case,” in Proc. IEEE INFOCOM (New York, NY), pp. 1577–1586, June 2002.

    Google Scholar 

  36. M. Costa, “On the gaussian interference channel,” IEEE Trans. Inf. Theory, vol. 31, pp. 607–615, Sept. 1985.

    Article  MATH  Google Scholar 

  37. G. Kramer, “Outer bounds on the capacity of Gaussian interference channels,” IEEE Trans. Inf. Theory, vol. 50, Mar. 2004.

    Google Scholar 

  38. V. Tarokh, N. Seshadri, and A. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inf. Theory, vol. 44, pp. 744–765, Mar. 1998.

    Article  MATH  MathSciNet  Google Scholar 

  39. T. Weiss and F. Jondral, “Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency,” IEEE Commun. Mag., pp. S8–S14, Mar. 2004.

    Google Scholar 

  40. O. Simeone, Y. Bar-Ness, and U. Spagnolini, “Stable throughput of cognitive radios with relaying capability,” in Proc. Fourty-Fourth Annual Allerton Conference on Communication, Control, and Computing, Sept. 2006.

    Google Scholar 

  41. W. Yu and J. Cioffi, “Sum capacity of gaussian vector broadcast channels,” IEEE Trans. Inf. Theory, vol. 50, pp. 1875–1892, Sept. 2004.

    Article  MathSciNet  Google Scholar 

  42. P. Viswanath and D. Tse, “Sum capacity of the vector gaussian broadcast channel and downlink-uplink duality,” IEEE Trans. Inf. Theory, vol. 49, pp. 1912–1921, Aug. 2003.

    Article  MathSciNet  Google Scholar 

  43. S. Vishwanath, N. Jindal, and A. Goldsmith, “The ”Z” channel,” in Proc. IEEE Global Telecommun. Conf., Dec. 2003.

    Google Scholar 

  44. H. Sato, “The capacity of Gaussian interference channel under strong interference,” IEEE Trans. Inf. Theory, vol. IT-27, Nov. 1981.

    Google Scholar 

  45. T. Han, “The capacity of general multiple-access channels with certain correlated sources,” Information and Control, vol. 40, pp. 37–60, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  46. I. Maric, R. Yates, and G. Kramer, “The discrete memoryless compound multiple access channel with conferencing encoders,” in Proc. IEEE International Symposium on Information Theory, Sept. 2005.

    Google Scholar 

  47. B. Schein and R. G. Gallager, “The Gaussian parallel relay network,” in Proc. IEEE International Symposium on Information Theory (Sorrento, Italy), p. 22, June 2000.

    Google Scholar 

  48. M. Gastpar, G. Kramer, and P. Gupta, “The multiple relay channel: Coding and antennaclustering capacity,” in Proc. IEEE International Symposium on Information Theory (Lausanne, Switzerland), p. 136, July 2002.

    Google Scholar 

  49. J. Mitola, “The software radio architecture,” IEEE Commun. Mag., vol. 33, pp. 26–38, May 1995.

    Article  Google Scholar 

  50. I. Kang, W. Sheen, R. Chen, and S. L. C. Hsiao, “Throughput improvement with relayaugmented cellular architecture,” Sept. 2005.

    Google Scholar 

  51. E. van der Meulen, “Transmission of information in a T-terminal discrete memoryless channel,” Technical report, University of California, Berkeley, 1968.

    Google Scholar 

  52. H. Sato, “Two user communication channels,” IEEE Trans. Inf. Theory, vol. IT-23, Nov. 1985.

    Google Scholar 

  53. A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity–part I: System description,” IEEE Trans. Commun., vol. 51, pp. 1927–1938, Nov. 2003.

    Article  Google Scholar 

  54. A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity–part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, pp. 1939–1948, Nov. 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Devroye, N., Mitran, P., Sharif, M., Ghassemzadeh, S., Tarokh, V. (2007). Information Theoretic Analysis of Cognitive Radio Systems. In: Hossain, E., Bhargava, V. (eds) Cognitive Wireless Communication Networks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68832-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68832-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-68830-5

  • Online ISBN: 978-0-387-68832-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics