Advertisement

Decentralized Spectrum Management Through User Coordination

  • Haitao Zheng
  • Lili Cao

Keywords

Primary User Channel Assignment Graph Coloring System Utility Spectrum Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    M. McHenry, “Spectrum white space measurements,” New America Foundation Broadband Forum, June 2003.Google Scholar
  2. 2.
    R. W. Brodersen, A. Wolisz, D. Cabric, S. M. Mishra, and D. Willkomm, “Corvus: A cognitive radio approach for usage of virtual unlicensed spectrum.” Whitepaper, July 2004.Google Scholar
  3. 3.
    S. Mangold, Z. Zhong, K. Challapali, and C. T. Chou, “Spectrum agile radio: Radio resource measurements for opportunistic spectrum usage,” in Proc. of IEEE Globecom, Nov.–Dec. 2004.Google Scholar
  4. 4.
    K. Jain, J. Padhye, V. N. Padmanabha, and L. Qiu, “Impact of interference on multi-hop wireless network performance,” in Proc. of ACM MobiCom, Sept. 2003.Google Scholar
  5. 5.
    C. Peng, H. Zheng, and B. Y. Zhao, “Utilization and fairness in spectrum assignment for opportunistic spectrum access,” Mobile Networks Appl. (MONET), vol. 11, pp. 555–576, May 2006.CrossRefGoogle Scholar
  6. 6.
    S. Ramanathan, “A unified framework and algorithm for channel assignment in wireless networks,” Wireless Networks, vol. 5, pp. 81–94, Mar. 1999.CrossRefGoogle Scholar
  7. 7.
    H. Zheng and C. Peng, “Collaboration and fairness in opportunistic spectrum access,” in Proc. of IEEE ICC, June 2005.Google Scholar
  8. 8.
    R. J. Berger, “Open spectrum: A path to ubiquitous connectivity,” ACM Queue, vol. 1, May 2003.Google Scholar
  9. 9.
    J. M. Peha, “Approaches to spectrum sharing,” IEEE Commun. Mag., vol. 43, pp. 10–12, Feb. 2005.Google Scholar
  10. 10.
    X. Huang and B. Bensaou, “On max-min fairness and scheduling in wireless ad-hoc networks: analytical framework and implementation,” in Proc. of ACM MobiHoc, 2001.Google Scholar
  11. 11.
    T. Nandagopal, T. Kim, X.Gao, and V. Bharghavan, “Achieving MAC layer fairness in wireless packet networks,” in Proc. of ACM MobiCom, Aug. 2000.Google Scholar
  12. 12.
    T. Salonidis and L. Tassiulas, “Distributed on-line schedule adaptation for balanced slot allocation in wireless ad hoc networks,” in Proc. of IWQoS, June 2004.Google Scholar
  13. 13.
    L. Cao and H. Zheng, “Spectrum allocation in ad hoc networks via local bargaining,” in Proc. of SECON, Sept. 2005.Google Scholar
  14. 14.
    M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1990.Google Scholar
  15. 15.
    H. Zheng and L. Cao, “Device-centric spectrum management,” in Proc. of IEEE DySPAN, Nov. 2005.Google Scholar
  16. 16.
    L. Berlemann, B. Walke, and S. Mangold, “Behavior based strategies in radio resource sharing games,” in Proc. of IEEE PIMRC, Nov. 2004.Google Scholar
  17. 17.
    E. M. Arkin and R. Hassin, “On local search for weighted k-set packing.,” in Proc. of ESA, LNCS 1284, pp. 13–22, 1997.Google Scholar
  18. 18.
    M. M. Halld’orsson, “Approximations of independent sets in graphs,” in Proc. of the International Workshop on Approximation Algorithms for Combinatorial Optimization (APPROX), LNCS 1444, pp. 1–13, New York, NY: Springer-Verlag, 1998.Google Scholar
  19. 19.
    W. Yu and J. Cioffi, “FDMA capacity of gaussian multi-access channels with ISI,” IEEE Trans. Commun., vol. 50, pp. 102–111, Jan. 2002.CrossRefGoogle Scholar
  20. 20.
    G. Chartrand, A Scheduling Problem: An Introduction to Chromatic Numbers, New York: Dover, pp. 202–209, 1985.Google Scholar
  21. 21.
    E. Koutsoupias and C. Papadimitriou, “Worst-case equilibria,” in Proc. 16th Annual Conference Theoretical Aspects of Computer Science, vol. 1563 of Lecture Notes in Computer Science, pp. 404–413, New York, NY: Springer-Verlag, 1999.Google Scholar
  22. 22.
    A. Ephremides and T. Truong, “Scheduling broadcasts in multihop radio networks,” IEEE Trans. on Commun., vol. 38, pp. 456–460, Apr. 1990.CrossRefGoogle Scholar
  23. 23.
    H. Luo, S. Lu, and V. Bharghavan, “A new model for packet scheduling in multihop wireless networks,” in Proc. of ACM MobiCom, Aug. 2000.Google Scholar
  24. 24.
    L. Bao and J. J. Garcia-Luna-Aceves, “Hybrid channel access scheduling in ad hoc networks,” in Proc. of ICNP, Oct. 2002.Google Scholar
  25. 25.
    S. Ramanathan and E. Lloyd, “Scheduling algorithms for multihop radio networks,” IEEE/ACM Trans. Network., vol. 1, pp. 166–177, Apr. 1993.CrossRefGoogle Scholar
  26. 26.
    I. Katzela and M. Naghshineh, “Channel assignment schemes for cellular mobile telecommunication systems,” IEEE Personal Commun., vol. 3, pp. 10–31, June 1996.CrossRefGoogle Scholar
  27. 27.
    M. M. Halld’orsson, J. Y. Halpern, L. E. Li, and V. S. Mirrokni, “On spectrum sharing games,” in Proc. of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 107–114, ACM Press, 2004.Google Scholar
  28. 28.
    Z. Han, Z. Ji, and K. R. Liu, “Low-complexity OFDMA channel allocation with Nash bargaining solution fairness,” in Proc. of IEEE Globecom, Nov.–Dec. 2004.Google Scholar
  29. 29.
    Z. Han, Z. Ji, and K. R. Liu, “Power minimization for multi-cell OFDM networks using distributed non-cooperative game approach,” in Proc. of IEEE Globecom, Nov.–Dec. 2004.Google Scholar
  30. 30.
    G. Zussman and A. Segall, “Energy efficient routing in ad hoc disaster recovery networks,” in Proc. of IEEE INFOCOM, Mar. 2003.Google Scholar
  31. 31.
    E. Setton et al., “Cross-layer design of ad hoc networks for real-time video streaming,” IEEE Wireless Communications, vol. 12, pp. 59–65, Aug. 2005.CrossRefGoogle Scholar
  32. 32.
    A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, “A multi-radio unification protocol for IEEE 802.11 wireless networks,” Technical report, Microsoft Research, 2003.Google Scholar
  33. 33.
    N. Ahmed and R. Baraniuk, “Throughput Measures for Delay-constrained Communications in Fading Channels,” in Allerton Conference on Communication, Control and Computing, (Allerton, IL), Oct. 2003.Google Scholar
  34. 34.
    N. Abramson and F. Kuo, editors, Computer Networks, ch. The ALOHA System, pp. 501–518. Englewood NJ: Prentice-Hall, 1973.Google Scholar
  35. 35.
    C. Perkins and E. Royer, “Ad hoc on-demand distance vector routing,” in Proc. of ACM WMCSA, Feb. 1999.Google Scholar
  36. 36.
    L. Bao and J. Garcia-Luna-Aceves, “Collision-free topology-dependent channel access scheduling,” in Proc. of IEEE Milcom, 2000.Google Scholar
  37. 37.
    M. Alicherry, R. Bhatia, and L. Li, “Joint channel assignment and routing for throughput optimization in mmulti-radio wireless mesh networks,” in Proc. of ACM MobiCom, Aug. 2005.Google Scholar
  38. 38.
    V. Brik, A. Mishra, and S. Banerjee, “Eliminating handoff latencies in 802.11 WLANs using multiple radios: Applications, experience, and evaluation,” in Proc. IMC, Oct. 2005.Google Scholar
  39. 39.
    R. A. Brualdi, Introductory Combinatorics, 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1999.MATHGoogle Scholar
  40. 40.
    S. Buchegger and J.-Y. L. Boudec, “A robust reputation system for p2p and mobile ad-hoc networks,” in Proc. of the Second Workshop on the Economics of Peer-to-Peer Systems (P2PECON), 2004.Google Scholar
  41. 41.
    R. Ramanathan, “Challenges: A radically new architecture for next generation mobile ad hoc networks,” in Proc. of ACM MobiCom, Aug. 2005.Google Scholar
  42. 42.
    A. Akella, G. Judd, S. Seshan, and P. Steenkiste, “Self-management in chaotic wireless deployments,” in Proc. of ACM MobiCom, Aug. 2005.Google Scholar
  43. 43.
    P. Kyasanur, J. Padhye, and P. Bahl, “On the efficacy of separating control and data into different frequency bands,” in Proc. of Broadnets, Oct. 2005.Google Scholar
  44. 44.
    J. Li, C. Blake, D. S. D. Couto, H. I. Lee, and R. Morris, “Capacity of ad hoc wireless networks,” in Proc. of ACM MobiCom, July 2001.Google Scholar
  45. 45.
    D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput path metric for multi-hop wireless routing,” in Proc. of ACM MobiCom, Sept. 2003.Google Scholar
  46. 46.
    T. Henderson, D. Kotz, and I. Abyzov, “The changing usage of a mature campus-wide wireless network,” in Proc. of ACM MobiCom, Sept. 2004.Google Scholar
  47. 47.
    M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and D. Grunwald, “SoftMAC—flexible wireless research platform,” in Proc. of HotNets, Nov. 2005.Google Scholar
  48. 48.
    R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio,multi-hop wireless mesh networks,” in Proc. of ACM MobiCom, Sept. 2004.Google Scholar
  49. 49.
    R. Draves, J. Padhye, and B. Zill, “Comparison of routing metrics for static multi-hop wireless networks.,” in Proc. of ACM SIGCOMM, Aug. 2004.Google Scholar
  50. 50.
    M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Performance anomaly of 802.11b,” in Proc. of IEEE INFOCOM, Mar. 2003.Google Scholar
  51. 51.
    M. Heusse, F. Rousseau, R. Guillier, and A. Duda, “Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless LANs,” in Proc. of ACM SIGCOMM, Aug. 2005.Google Scholar
  52. 52.
    J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using reference broadcasts,” in Proc. of OSDI, Dec. 2002.Google Scholar
  53. 53.
    S. Biswas and R. Morris, “ExOR: Opportunistic multi-hop routing for wireless networks,” in Proc. of ACM SIGCOMM, Aug. 2005.Google Scholar
  54. 54.
    FCC, “Notice of inquiry: Additional spectrum for unlicensed devices below 900 MHz and in the 3 GHz band,” ET Docket No. 02-380, Dec. 2002Google Scholar
  55. 55.
    J. Cox, “FCC adds spectrum, channels for 5.4 GHz band.” NetworkWorld.com Article, Feb. 2006. http://www.networkworld.com/weblogs/wireless/011178.html.Google Scholar
  56. 56.
    “FCC spectrum policy task force.” http://www.fcc.gov/sptf.Google Scholar
  57. 57.
    G. Foschini and Z. Miljanic, “A simple distributed autonomous power control algorithm and its convergence,” IEEE Trans. Veh. Technol., vol. 42, pp. 641–646, Nov. 1994.CrossRefGoogle Scholar
  58. 58.
    A. Goldsmith and P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Inf. Theory, vol. 43, Nov. 1997.Google Scholar
  59. 59.
    “Wireless networks: State-of-the-art survey,” 2002. http://www.ceid.upatras.gr/crescco/archive.htm.Google Scholar
  60. 60.
    G. Hardin, “The tragedy of the commons,” Science, vol. 162, pp. 1243–1248, Dec. 1968.CrossRefGoogle Scholar
  61. 61.
    A. M. F. P. Kelly, and D. Tan, “Rate control in communication networks: Shadow prices, proportional fairness and stability,” J. Operat. Res. Soc., vol. 49, pp. 237–252, 1998.MATHCrossRefGoogle Scholar
  62. 62.
    M. S. Kodialam and T. Nandagopal, “Characterizing the achievable rates in multihop wireless networks,” in Proc. of ACM MobiCom, Aug. 2003.Google Scholar
  63. 63.
    M. S. Kodialam and T. Nandagopal, “Characterizing the capacity region in multi-radio multi-channel wireless mesh networks,” in Proc. of ACM MobiCom, Aug. 2005.Google Scholar
  64. 64.
    F. Xue and P. Kumar, “The number of neighbors needed for connectivity of wireless networks,” Wireless Networks, vol. 10, pp. 169–181, Mar. 2004.CrossRefGoogle Scholar
  65. 65.
    I. F. Akyildiz, et al., “Medium access control protocols for multimedia traffic in wireless networks,” IEEE Network, vol. 13, pp. 39–47, July/Aug. 1999.CrossRefGoogle Scholar
  66. 66.
    “Madwifi FAQ.” http://www.madwifi.net.Google Scholar
  67. 67.
    J. So and N. Vaidya, “Multi-channel MAC for ad hoc networks: Handling multi-channel hidden terminals using a single transceiver,” in Proc. of ACM MobiHoc, May 2004.Google Scholar
  68. 68.
    P. D. Vries and A. Hassan, “Spectrum sharing rules for new unlicensed bands.” Draft proposal to FCC, Nov. 2003.Google Scholar
  69. 69.
    R. Nelson and L. Kleinrock, “Spatial TDMA: A collision-free multihop channel access protocol,” IEEE Trans. Commun., vol. 33, pp. 934–944, Sept. 1985.CrossRefMathSciNetGoogle Scholar
  70. 70.
    P. Kyasanur and N. H. Vaidya, “Routing in multi-channel multi-interface ad hoc wireless networks,” Technical report, UIUC, Dec. 2004.Google Scholar
  71. 71.
    J. So and N. Vaidya, “A routing protocol for utilizing multiple channels in multi-hop wireless networks with a single transceiver,” Technical report, UIUC, Oct. 2004.Google Scholar
  72. 72.
    P. Kyasanur and N. H. Vaidya, “Routing and link-layer protocols for multi-channel multiinterface ad hoc wireless networks,” Technical report, UIUC, May 2005.Google Scholar
  73. 73.
    A. Rao and I. Stoica, “An overlay MAC layer for 802.11 networks,” in Proc. of ACM MobiSys, June 2005.Google Scholar
  74. 74.
    A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, “A multi-radio unification protocol for IEEE 802.11 wireless networks,” in Proc. of Broadnets, Oct. 2004.Google Scholar
  75. 75.
    J. Padhye, S. Agarwal, V. N. Padmanabhan, L. Qiu, and A. Rao, “Estimation of link interference in static multi-hop wireless networks,” in Proc. of IMC, Oct. 2005.Google Scholar
  76. 76.
    D. T. P. Viswanath and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. Inf. Theory, vol. 48, pp. 1277–1294, June 2002.MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    T. Harks, “Utility proportional fair bandwidth allocation: An optimization oriented approach,” in QoS-IP, pp. 61–74, 2005.Google Scholar
  78. 78.
    S. Borst and P. Whiting, “Dynamic rate control algorithms for HDR throughput maximization,” in Proc. of IEEE INFOCOM, pp. 976–985, Apr. 2001.Google Scholar
  79. 79.
    M. K. Powell, “Broadband migration III: New directions in wireless policy.” Remarks at the Silicon Flatirons Telecommunications Program, Oct. 2002.Google Scholar
  80. 80.
    P. Kyasanur and N. H. Vaidya, “Routing and interface assignment in multi-channel multiinterface wireless networks,” in Proc. of IEEE WCNC, Mar. 2005.Google Scholar
  81. 81.
    X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: A library for parallel simulation of large-scale wireless networks,” in Proc. of PADS, May 1998.Google Scholar
  82. 82.
    R. Ramanathan, “The performance of ad hoc networks with beamforming antennas,” in Proc. of ACM MobiHoc, Oct. 2001.Google Scholar
  83. 83.
    R. Choudhury, X. Yang, R. Ramanathan, and N. H. Vaidya, “Using directional antennas for medium access control in ad hoc networks,” in Proc. of ACM MobiCom, Sept. 2002.Google Scholar
  84. 84.
    C. McDiarmid, “Random channel assignment in the plane,” Random Struct. Algorithms, vol. 22, no. 2, pp. 187–212, 2003.MATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    A. Raniwala and T. cker Chiueh, “Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network,” in Proc. of IEEE INFOCOM, Mar. 2005.Google Scholar
  86. 86.
    A. Raniwala, K. Gopalan, and T. cker Chiueh, “Centralized channel assignment and routing algorithms for multi-channel wireless mesh networks,” ACM MC2R, vol. 8, no. 2, 2004.Google Scholar
  87. 87.
    K. Römer, “Time synchronization in ad hoc networks,” in Proc. of ACM MobiHoc, pp. 173–182, ACM, Oct. 2001.Google Scholar
  88. 88.
    S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math., vol. 126, no. 2–3, pp. 313– 322, 2003.MATHCrossRefMathSciNetGoogle Scholar
  89. 89.
    FCC, “Facilitating opportunities for flexible, efficient and reliable spectrum use employing coginitive radio technologies.” FCSS 03-322.Google Scholar
  90. 90.
    “Software defined radio forum.” http://www.sdrforum.org.Google Scholar
  91. 91.
    J. Mitola III, “Wireless architectures for the 21st century.” http://ourworld.compuserve. com/homepages/jmitola.Google Scholar
  92. 92.
    A. Sharma, M. Tiwari, and H. Zheng, “MadMAC: Building a reconfigurable radio testbed using commodity 802.11 hardware,” in IEEE SECON Workshop on Networking Technologies for Software Defined Radio Networks, Sept. 2006.Google Scholar
  93. 93.
    K. Sundaresan and R. Sivakumar, “Routing in ad-hoc networks with MIMO links,” in Proc. of ICNP, Nov. 2005.Google Scholar
  94. 94.
    A. Velayutham, K. Sundaresan, and R. Sivakumar, “Non-pipelined relay improves throughput performance of wireless ad-hoc networks,” in Proc. of IEEE INFOCOM, 2005.Google Scholar
  95. 95.
    J. So and N. Vaidya, “Multi-channel MAC for ad hoc networks: Handling multi-channel hidden terminals using a single transceiver,” in Proc. of ACM MobiHoc, pp. 222–233, ACM, May 2004.Google Scholar
  96. 96.
    J. So and N. Vaidya, “A routing protocol for utilizing multiple channels in multi-hop wireless networks with a single transceiver,” in Proc. of ACM MobiHoc, May 2004.Google Scholar
  97. 97.
    W. K. Edwards et al., “Using speakeasy for ad hoc peer-to-peer collaboration,” in Proc. of CSCW, Nov. 2002.Google Scholar
  98. 98.
    P. Bahl, R. Chandra, and J. Dunagan, “SSCH: Slotted seeded channel hopping for capacity improvement in IEEE 802.11 ad-hoc wireless networks,” in Proc. of ACM MobiCom, Sept. 2004.Google Scholar
  99. 99.
    M. S’anchez, J. Zander, and T. Giles, “Combined routing & scheduling for spatial TDMA in multihop ad hoc networks,” in Proc. of Adhoc, Mar. 2002.Google Scholar
  100. 100.
    J. R. Douceur, “The Sybil attack,” in Proc. of IPTPS, Mar. 2002.Google Scholar
  101. 101.
    M. Grossglauser and D. Tse, “Mobility increases the capacity of ad-hoc wireless networks,” in Proc. of IEEE INFOCOM, Apr. 2001.Google Scholar
  102. 102.
    M. Weiser, “The computer for the twenty-first century,” Sci. Am., vol. 265, pp. 94–104, Sept. 1991.CrossRefGoogle Scholar
  103. 103.
    J. Bicket, D. Aguayo, S. Biswas, and R. Morris, “Architecture and evaluation of an unplanned 802.11b mesh network,” in Proc. of ACM MobiCom, Aug. 2005.Google Scholar
  104. 104.
    N. Vaidya and S. Hameed, “Scheduling data broadcast in asymmetric communication environments,” Technical report TR96-022, Texas A & M University, 18 1996.Google Scholar
  105. 105.
    U. Lee, E. Magistretti, B. Zhou, M. Gerla, P. Bellavista, and A. Corradi, “Efficient data harvesting in mobile sensor platforms,” in Proc. of IEEE PerSeNS, Mar. 2006.Google Scholar
  106. 106.
    D. Raychaudhuri, “Adaptive wireless networks using cognitive radios as a building block,” MobiCom 2004 Keynote Speech, Sept. 2004. Philadelphia, PA.Google Scholar
  107. 107.
    X. Jing and D. Raychaudhuri, “A spectrum etiquette protocol for efficient coordination of radio devices in unlicensed bands,” in Proc. of IEEE PIMRC, Sept. 2003.Google Scholar
  108. 108.
    E. C. Efstathiou and G. C. Polyzos, “A peer-to-peer approach to wireless LAN roaming,” in Proc. of WMASH, Sept. 2003.Google Scholar
  109. 109.
    S. L. Wu, C. Y. Lin, Y. C. Tseng, and J. P. Sheu, “A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks,” in Proc. of I-SPAN, pp. 232–237, 2000.Google Scholar
  110. 110.
    “XG working group RFC, the XG vision and the XG architecture.” http://www.darpa. mil/ato/programs/XG.Google Scholar
  111. 111.
    “XG working group RFC, the XG architecture.” http://www.darpa.mil/ato/programs/XG.Google Scholar
  112. 112.
    X. Liu and H. Xiao, “Exploring opportunistic spectrum availability in wireless communication networks.” submitted for publication.Google Scholar
  113. 113.
    W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach for data delivery in sparse mobile ad hoc networks,” in Proc. of ACM MobiHoc, May 2004.Google Scholar
  114. 114.
    Q. Wang and H. Zheng, “Route and spectrum selection in dynamic spectrum networks,” in Proc. of IEEE CCNC, Jan. 2006.Google Scholar
  115. 115.
    Q. Wang and H. Zheng, “Route and spectrum selection in dynamic spectrum networks,” in Proc. of IEEE CCNC, Jan. 2006.Google Scholar
  116. 116.
    H. Zheng and H. Viswanathan, “Optimizing ARQ performance in high speed downlink systems with scheduling,” IEEE Trans. Wireless Commun., vol. 4, pp. 495–506, Mar. 2005.CrossRefGoogle Scholar
  117. 117.
    J. Chen, T. Lv, and H. Zheng, “Joint cross-layer design for wireless QoS content delivery,” EURASIP Journal on Applied Signal Process., Special Issue on Cross Layer Interaction for Communications, pp. 167–182, Feb. 2005.Google Scholar
  118. 118.
    H. Zheng and K. J. R. Liu, “The subband modulation: A joint power and rate allocation framework for subband image and video transmission,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, pp. 823–838, Aug. 1999.CrossRefGoogle Scholar
  119. 119.
    J. Zhao, H. Zheng, and G. Yang, “Distributed coordination in dynamic spectrum allocation networks,” in Proc. of IEEE DySPAN, Nov. 2005.Google Scholar
  120. 120.
    H. Zheng, Y. Zhu, C. Shen, and X. Wang, “On the effectiveness of cooperative diversity in ad hoc networks: A system level study,” in Proc. of IEEE ICASSP, Mar. 2005.Google Scholar
  121. 121.
    G. Yang, H. Zheng, J. Zhao, and V. Li, “Adaptive channel selection through collaborative sensing,” in Proc. of IEEE ICC, June 2006.Google Scholar
  122. 122.
    H. Zheng and K. J. R. Liu, “Power optimized space-time coding for image and video transmission over wireless channels,” in Proc. of ICIP, Oct. 1999.Google Scholar
  123. 123.
    H. Zheng and K. J. R. Liu, “Space-time diversity for image over wireless channels,” in Proc. of IEEE International Symposium on Circuit and Systems (ISCAS), May 2000.Google Scholar
  124. 124.
    L. Cao and H. Zheng, “Spectrum access through local bargaining,” under preparation.Google Scholar
  125. 125.
    H. Zheng and K. J. R. Liu, “Optimization approaches for delivering multimedia services over digital subscriber lines,” IEEE Signal Process. Mag., vol. 17, pp. 44–60, July 2000.CrossRefGoogle Scholar
  126. 126.
    H. Zheng and K. J. R. Liu, “Robust image and video transmission over spectrally shaped channel using multicarrier modulation,” IEEE Trans. Multimedia, vol. 1, pp. 88–103, Mar. 1999.CrossRefGoogle Scholar
  127. 127.
    H. Zheng, A. Lozano, and M. Haleem, “Multiple ARQ processes for MIMO systems,” Special Issue on MIMO Systems, EURASIP Journal on Applied Signal Process., vol. 2004, pp. 772–782, May 2004.CrossRefGoogle Scholar
  128. 128.
    S. Das, T. Klein, K. Leung, S. Mukherjee, G. Rittenhouse, L. Samuel, H. Viswanathan, and H. Zheng, “Distributed paging and registration in wireless networks,” IEEE Network, vol. 19, pp. 19–25, Oct. 2005.CrossRefGoogle Scholar
  129. 129.
    G. Song, Y. Li, J. L. J. Cimini, and H. Zheng, “A joint channel-aware and queue-aware data scheduling in multiple shared wireless channels,” in Proc. of IEEE WCNC, vol. 5, pp. 1922–1927, Mar. 2004.Google Scholar
  130. 130.
    T. E. Klein, K. K. Leung, and H. Zheng, “Enhanced scheduling algorithms for improved TCP performance in wireless IP networks,” in Proc. of IEEE Globecom, Nov. 2004.Google Scholar
  131. 131.
    H. Zheng and J. Boyce, “An improved UDP protocol for video transmission over internet-to-wireless networks,” IEEE Trans. Multimedia, vol. 3, pp. 356–365, Sept. 2001.CrossRefGoogle Scholar
  132. 132.
    H. Zheng, G. Rittenhouse, and M. Recchione, “The performance of voice over IP over UMTS downlink shared packet channel under different delay budgets,” in Proc. of IEEE VTC, Oct. 2003.Google Scholar
  133. 133.
    H. Zheng and G. Rittenhouse, “Providing VoIP service in UMTS-HSDPA with frame aggregation,” in Proc. of IEEE ICASSP, Mar. 2005.Google Scholar
  134. 134.
    S. Das, T. Klein, K. Leung, S. Mukherjee, G. Rittenhouse, L. Samuel, H. Viswanathan, and H. Zheng, “Distributed radio link protocol in an All-IP cellular network,” in Proc. of IEEE VTC, Fall 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Haitao Zheng
    • 1
  • Lili Cao
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations